Citrus

Christoph Deppisch, Martin Maher

Version 2.7.5, 2018-05-07

citrus

I = - T 2
2. What's new In Citrus 2.72] . ..o oo e 3
2.1.SINCE CIIIUS 2.7.5. o ot ettt ettt et ettt et ettt e 3
2.1.1. Message selector on non-XML payloads ...t 3
2.1.2. Send and receive zip archives. i 3
2.1.3. Support FTP store and retrieve file operations................coiiiiiiiiiiinnn.. 3
214, BINATY INESSAZES . . ottt vttt ittt ettt ettt ettt 3
2.2.8INCE CIIIUS 2.7.4. o o ottt et e 4
220 JDBC SEIVEL ..ttt ittt ettt e e 4
2.2.2. ASYNC CONTAIINET ..ottt ittt ittt 4
2.2.3. System/Env property functions. 4
2.2.4. URL encode/decode fUNCHIONS . .. oottt e e e e e e e et 4
2.3.SINCE CIIIUS 2.7.3. o oottt ettt ettt et e 4
2.3.1. Ignore sections in plain teXt. ottt 4
2.3.2.Json schema validationt e 5
2.3.3. JURNIES SUPPOTIT o oottt ettt ettt ettt ettt 5
2.3.4. RefaCtOTINg . . . oot e 5

2, BUG I RS . e 5

3 INTrOAUCTION ..ottt e 6
R 0)73 i V4 =X 6
3.2, USAZE SCRIMATIOS. . . oottt ittt ettt ettt ettt ettt 6
= 1) P 9
4.1 USING MAVEIL oottt ittt ettt ettt ettt ettt e ettt 9
4.1.1. Maven archetype 9
4.1.2. EXisting MaVen PrOJECTES . ..ot vttt ittt ettt ettt it eaaas 10
4.2.USING Gradleot e 12
4.2.1. Configurationoiiiiiiiiii i e e 12
422.Runwith Gradle e 13

4.3 USING AT .« .ottt e 13
4.3.1. PrecOnditiOnS. . ..ottt e 14
4.3.2.DOWNI0AA . .. 14
4.3.3. Installationot 14

S TSt LSS o ottt e e e 17
5.1. Writing test caseS IN XMLottt e 18
5.2. Writing teSt CaSeS IN JAVAottt ittt it 21
5.3.]Java DSL teSt AeSIgNer. . ..o o ittt e 21
5.4.Java DSLteSTTUINIIETttt ettt it e it ittt 25

5.5. Designer/RUnner iNjeCtion.o vttt i e 26

5.6. Test CONteXt INJECTION . ..ttt ittt et et e e et e e ittt 27

5.7.Java DSL test DERAVIOTSo e 28
5.8 DESCIIPION. & o v vttt ettt ettt e e et e e e e e 29
5.9 TSt ACHIONS . . vttt ettt ettt ettt ettt et e e e e e 29
5.10. FINally teSt SECHIOM . . o . vttt ettt ettt e et e e et e e e 30
5.11. Test meta INfOrmation e 31
LTSt variables ..o e 33
6.1. Global variables e 33
6.2. Create variables With CDATA i e eaes 34
6.3. Create variables With GroOVYoo it i e et e 35
6.4. Escaping variables eXPresSiOnttt e 36
CRUNNIN G 1eStS .. it 38
7L RUN WIth TESING.ttt eaa 38
7.2. UsSINg TeStNG DataProvIdersttt ettt 40
7.3. RUN WIth JURNIES ... e et e e e 41
74 RUN WIth JUNI ... e e et ettt e 45
7.5, RUNNING XM L £0SS . o o ettt ettt e et e e et et e e e e e et e et 47
CCONTIGUIATION . .ttt ettt e e e e e 50
8.1. Application environmMent SEttiNGSttt ittt et e 50
8.2. Application property file e 51
8.3. Spring XML application CONteXt. vuu ettt ettt et 52
8.4. SPrINg Java CONTIE . ..ottt e e e 53
CEAPOINES . oo 55
9.1. Send messages With endpointsttt e e 56
9.2. Receive messages wWith endpointst i i e 58
0.3, LOCAl INESSAZE STOTE . .« o v vttt ettt ettt e e et e e e et e e e e 60
10. Message validationttt et e e e 62
10.1. XML message validationoouunttiiin it e 62
10.1.1. XML payload validationouiuiiiiii i i 62
10.1.2. XML header validation oottt e 63
10.2. Ignore XML €leIMEItSttt ittt ettt et e e e 64
10.2.1. Customize XML parser and serializer.oouiiiiniiiiiine i 65
10.2.2. Groovy XML validation.ttt e e e 66
10.3. JSON message validationouiitint ittt e e 68
10.4. Schema validationo ottt e 73
10.4.1. Managing SChemias. oottt ittt 73
10.4.2. Schema definition OVerrulingttt i 75
10.4.3. XML schema validationo i 76
10.4.4. JSON schema validationttt i et iieae e 82
10.4.5. JSON schema repoSIitOrieSttt ittt it et eiiaaeann 83

10.4.6. JSON schema filtering and validation strategyoouiiiineiiiineeennnnnn 83

10.5. XHTML message validation.ootutint ettt 84

10.6. Plain text message validationuut ittt it e 85
10.6.1. Whitespace CharaCtersttt ittt eiianeans 86
10.6.2. IgNOTING TEXE PATTS . o o v vttt ettt ettt e e et e e it e et et 87
10.6.3. Creating variables i e e 88

10.7. Binary message validationiiiiininti i et e 89
10.7.1. Stream message validationiiiiinn it e e 89
10.7.2. Base64 message validationuiiiininnt it i 90

10.8. Gzip message validation.rt ittt e e 91

10.9. Java DSL validation callbackst e 92

10.10. Customize message validatorsuuurttttin et i 94

11 USINg XPath . . oot e e e 96

11.1. Manipulate with XPath. e 96

11.2. Validate with XPatho o e 97

11.3. Extract variables with XPath i 100

11.4. XML namespaces in XPath i e 101

11.5. Default namespaces in XPath ... i 103

12.USING JSONPaAth . ..o e e 105

12.1. Manipulate with JSONPatht e et 105

12.2. Validate with JSONPath e e et 107

12.3. Extract variables with JSONPath i e 109

12.4. Ignore with JSONPath i e e et 110

13, TeSE ACHIONS .« o et e ettt e ettt et e e et ettt et e e 111

13.1. SENAING INESSAZES .« . o vt ettt ettt e et e et e e e et e e e e et e 111

132, RECEIVE IS A S . « v v vt ettt ettt et e et ettt e e ettt e e e e et e e e 118
13.2.1. Validate message payloadsooiiiiint i e 121
13.2.2. Validate message headersttt et e 123
13.2.3. MESSAZE SELECTOTS . . .\ ittt ettt ettt et et e e e 124
13.2.4. Groovy MarkupBuilder. e 126

13.3. Database aCtiONsttt 127
13.3.1. SQL update, insert, deletettt e 128
13.3.2. SOL QUL .ottt e 129
13.3.3. Transaction ManaGeIMEIItttt et e tte ettt ee e et tiee e e eiae e eennneeans 133
13.3.4. Groovy SQL result set validationuiiiiinn it iiiaeeeenn 134
13.3.5. Saveresult set values e 135

S 7 Y =T o P 136

S 70 T - 136

13.6. ReCeIVE LIMEOULottt et 138

13,7 ECNO. . 140

13,8, STOP tIIMIE oottt ettt e e e e e e e e 140

13.9. Create Variables . . oot vt e e e e 142

13.10. Trace Variables . . oottt e e e e e e e 144

13,11, TransSforIN . . .o oo 145
13.12. GroOVY SCriPt @XECULIOM . ¢ v\ ottt ettt et ettt e e e et e e e e e e e e iee e iie e 148
13.13. Falling the (oSt . oo vttt et e e et e e 151
13 04 IPUL . .t 153
13015, L0Ad - .ttt 155
13006, WAl .t 156
13.17. Purging JMS desStinatiOns.o v vttt ettt ettt e e et ie e e i 158
13.18. Purging message channelsoiiiiiiiin i i et 162
13.19. PUrging endpointso oottt e 167
13.20. Assert failuret 171
13.21. CatCh eXCEPLIONS ..ottt ittt e e e 172
13.22. Apache ANt buildo e 173
0] U 7] (0] 1<) 0 V4= P 177
13,24, STOP TIIMIBT . . ottt e et e e e e e ettt e e 179
13.25. CUStOM tEST ACHIOMIS .« o v v vttt ettt ettt 180
I =) 401 0] =TT P 183
15. TeSt DEhaVIOTS . ..ot e e e 187
15,1, BERaAVIOT (Y POS o ettt ettt ettt e e e e 188
00} = 0 41 189
16.1. SEQUENTIAL . . .ottt e e e 189
16.2. Conditionalttt 190
16.3. Paralle] 191
16,4, TEOTATE . o .ottt e e 193
16.5. Repeat UNTIL tIUettt et e e et et et 195
16.6. Repeat on error UNtil true oot e e e 197
16.7. TIIMBT ..ttt ettt ettt e e et e e e e e e e e e et 199
TR T N3 7 o (o 202
16.9. CUSTOIM CONTAINETS . « o ottt ettt et ettt et e et ettt et e e et ettt 204
R 1 T84 0 0) o 207
17.0. JMS @NAPOINES. . oottt ettt ettt e e 207
17.2. JMS synchronous eNdpOintsuun ettt ittt 209
173, JMS LOPICS .« v ottt ettt e e et e e e e e e e e e e 212
17.4. JMS mMesSage headersottt e 213
17.5. Dynamic destination NaIMesu ettt ettt 213
17.6. SOAP OVET VS .ottt 214
18, HTTP REST SUPPOIT . . .ttt ettt e e et e e e e e et et et e et et et e e e 215
18.1. HTTP REST CHENT . . o oo ettt e 215
18.2. HTTP CLieNt INTEICEPLOTS & v vttt ettt ettt e e e e e e e e e e e e i ee e e 221
18.3. HTTP REST SEIVEL ..ottt it ettt it e et et et it it eans 221

S G U 2 =T U <) o T 225

18.5. HTTP SerVer INTeICEPIOTS. « . ot ettt ettt e e e e e e e e e e e e e e ie e eie e eneeens 229

18.6. HTTP form urlencoded dataouuuuiiitiniie ittt 230
18. 7. HTTP error handling.ttt et ettt 231
18.8. HTTP client basic authentication.ooiuiiiiiiiiin i it 233
18.9. HTTP server basic authenticationt it 235
18.10. HTTP COOKIES ..o v vttt ittt et e e e e e e ettt e e e e et 236
18.11. HTTP GZIP COMPIESSION . ¢ v vttt ettt et tee et ettt e e ettt e e e e iee e e iaa e 241
18.12. HTTP Serviet fllterso oot e e e e et 243
18.13. HTTP servlet context CUSTOMIZAtION« v vttt ettt e e ns 244
19. WD SOCKEt SUPPOTt . . vttt ettt ettt et e e et e et e e e et 246
19.1. WebSO0CKet CLIENTttt e et e i 246
19.2. WebSocket server endpOointsue ettt it 248
19.3. WebSocCKket Readerso oottt e e 249
20. SOAP WD SOIVICES ..ottt ittt ettt et e e et e et e e 252
20.1. SOAP ClIBINE ..ttt ettt et e e e e e e 252
20.2. SOAP ClIeNt INTEICEPIOTS . .ottt e ettt et e et e e e et e e e e e ie e iiee e iianeeas 254
20.3. SOADP SBI VO . . . ottt et e e e e 255
20.4. SOAP Send AN FECEIVEottt t ettt ettt e e et e e e e e e e i 257
20.5. SOAP RARTS . . o vttt ettt e e 259
20.6. SOAP HTTP mime headersoioiunniiii it e ea 262
20.7. SOAP Envelope handlingttt et it e 263
20.8. SOAP SeIVer INTEICEPIOTS . . v vttt ettt et ettt e e e e et e e e ettt 264
20.9. SOA P L. ottt 265
20.10. SOAP faUILS .. oottt e e e e 266
20.11. Send SOAP faultso ot e 266
20.12. Receive SOAP faultst e e 268
20.13. Multiple SOAP fault detailsoovit i e et e 274
20.14. Send HTTP error codes With SOAP ottt et e ee 277
20.15. SOAP attaChment SUPPOTt . ..o v v ettt e et e i iiae e ea 278
20.16. Send SOAP attaChmentsot e et i e 278
20.17. Receive SOAP attaChmentsttt e et e e ea 279
20.18. SOAP MTOM SUPPOTT .. vttt ettt et et e e e e e e ettt et e i ea e 280
20.19. SOAP client basic authentication.vitutin it et e eiian e ean 283
20.20. SOAP server basic authenticationuuuiiiit it e eiiae e eann 285
20.21. WS-AdAresSing SUPPOTLT . ..ottt tie ettt et e et e e e et ee et e ie et iae e ianeeans 286
20.22. SOAP client fork mode oo e 288
20.23. SOAP servlet context CUStOMIZAtIONo vttt et e iae e ea 289
2 R Sl D1 0 0) o PP 293
2 0 O 2) 4L PP 293
A /0 o 1 ST = 7) P 294

22. Message Channel SUPPOTTttt et e et e e e et 298

22.1. Channel eNdPOintottt et e e e 298

22.2. Synchronous channel endpointsttt et e 300
22.3. Message selectors on channels. i i e e 302
22.4. Payload matching MesSsage SeleCtorttt ittt e eiiae e ean 302
22.5. Root QName Message SeleCtOrttt et e e 303
22.6. Xpath Message SeleCtOrttt et i e 304
22.7.JsonPath Message SeleCtOr.ttt e e e 305
B0 T 1 L] 0] o) G 307
230 Wite fIleS oo 307
23.2. Read fles . ..o 308
24. Apache Camel SUPPOTtttt et e e et e e 310
24.1. Camel eNAPOINtttt e 310
24.2. Synchronous Camel endpoint.ottt i e e 313
24.3. Camel exchange headerst e e e 314
24.4. Camel exception handling . ..ottt e e e 314
24.5. Camel context handlingttt e e e 316
24.6. Camel FOULE ACHIONIS. . . v v vttt ettt ettt ettt e et 317
24.7. Camel controlbus aCtiOnS.ottt e 320
25. Vert.X eVEeNt DUS SUPPOTL ..ottt ittt ittt et e e ettt et 323
25.1. Vert.X eNAPOINt. . ..ottt e e 323
25.2. Synchronous Vert.X eNdpointttt et et 325
25.3. Vert. X INStanCe factoryottt et e e 326
26, Mail SUPPOTT & ottt ettt et et e e e 328
26. 1. Mail CIENT .. oot 329
26.2. MaAll SEIVET . .ottt 332
27, ArqUILLIAN SUPPOTT. . .ottt et e e et e e e 336
27.1. Citrus Arquillian eXtenSIONo vttt e e 336
27.2. ClieNt SIA@ teSTIN. . o oot vttt ettt ettt e e e et e e e e et e e 337
27.3. Container Side teStiNgo v ettt ettt e e 339
274 TESUTUINIIETS & oottt ettt et et et ettt it e et et et 341
28, DOCKET SUPPOT. o vttt ettt ettt e e et e e e e e e e e 345
28.1. DOCKET CHENT . . o oottt 345
28.2. DOCKET COMIMAIIAS . « « .« e vttt ettt ettt et ettt ettt e e et e ettt 346
29. KUDEINETES SUPPOTT .« ettt ettt ettt et e e e e e e ettt e e e et ee e i iine e eennns 351
29.1. Kubernetes CLIENT.t e 351
29.2. Kubernetes commands in XMLttt 353
29.3. Kubernetes commands N Java.ouuunt ettt i e 354
29.4.Info COMIMANG . . .o ottt 356
29.5. LISETESOUICES . o o v vt ettt et e e e et e e e e e ettt et et et e e et e ettt 357
29.6. List N0des and NamMeSPaACES . . .« v v v vttt ettt ettt ee e e et a e e e 358

20,7, GO LB OUT CES . v vttt ettt ettt et et e et e e e e e e 358

20,8, Gt TS OUL S, « v vttt ettt ettt ettt ettt et et e e e e e e e e 360

29.9. DElete TESOUICES . .« v v vttt ettt et ettt et ettt et e e e e e e e e et 363
29.10. WatCh FESOUICES . . . v ettt ettt ettt e 363
29.11. Kubernetes MesSSagiNg ovututn ettt ettt ettt e et i e iiee e ian e 364
30. SSH SUP PO . .ttt ettt e e e e e 366
30.1. SSH ClIENt ...ttt e e et 367
30,2, SSH SO VeI . o vttt e e e e 369
B R 1Y 0 16 0 01) o 372
311 RMICHENL. . . oottt 373
R 0 L] 7) 375
B3 0 G0 0 010) 378
320 JMXE CHIENL. . oottt 379
R 0 1\ QST 1= 382
33. Cucumber BDD SUPPOTT . . o vttt ettt ettt e ettt e e e e 387
33.1. Cucumber INtegrationuuit it e e e 388
33.2. CUCUMDBET XML SEEPS . vttt ittt ettt e e ettt ettt e e e e e i 391
33.3. Cucumber SPring SUPPOLt . ..ttt ettt et e et e e e e e i 394
33.4. Citrus step definitions.ottt e e 396
33,5, VAT able STEPS & oottt ittt e e e 398
33.6. MBS AZINIE STt v vttt ettt et e ettt e e et e e e e e e e 399
33.7. NAMEA IMNESSAZES .« v o v ettt ettt et e ettt e e e et e e e e et e e e e 400
33.8. M ESSaAZE CreatOr St PS . .« et ittt ettt et e e e e e e e e 401
33,0, ECNO St PS vttt e e 403
10 0 Y (=] o I3 =3 o 1S P 403
3% 700 I 5 L 1<) 01 404
33,12, DOCKET S PS & vt vttt et ettt et ettt e e e e e e e 405
33,13, SEIEIMIUIN SEEPS v v v ittt ettt ettt e e ettt e e e e e e 406
34, ZOOKEEPET SUPPOTE .ttt t ettt et ettt e e et e e e e e e e 410
34.1. ZOOKEEPET CLIEINL.ottt ittt ettt et e e e e e 410
34.2. ZOOKeePer COMIMANAS . ..ottt ettt ettt ettt e e ettt ie e e e iee e iaee e 411
35. SPring ReStAOCS SUPPOTT & v vttt ettt ettt ettt e e e et e e e e e ee et e ie e iae e eennns 416
35.1. Spring Restdocs USING HItPo oottt e e et 416
35.2. Spring Restdocs USING SOAPttt e et e 419
35.3. Spring Restdocs in Java DSLottt 420
36. SELENIUIM SUPPOTT . .\ttt t ettt ettt e e et e e e e e e et ie e e ia e ennns 423
36.1. Selenium DrOWSert 423
36.2. Selenium aCtions v 424
36.3. StArt/StOP DrOWSET . . .ottt e e e 428
36.4. FINd . . . 429
36,5, ClICK. . .ttt 430

30,6, HOV T .ottt e e e e e e 431

36.7. FOrmM INPUL QCHIOIIS . . vttt ittt ettt et ettt e e e et e e e e e e iee e i 431

36.8. PAZe ACH OIS, . o vttt t et e e e 432
36.9. Page validationottt e e 433
36.10. Waalt. . .t 435

1 00 I R A V4 = = P 435
36.12. WINAOW ACHIONS . .« o vt ettt ettt e et ettt ettt e et e et e e 436
3603, ALt ..t 436
36.14. Make SCreenshotottt 437
36.15. Clear DProwser CaChe e 438
37 JDBC SUPPOTT. .ttt et et e e e e e e e e e e e 439
37.1. The Citrus-JDBC-DIIVeT.ttt et et e e e e it 439
37.2. The CItrus-JDBC-SOIVET. . . .\ttt e ettt e e e e it 440
37.2.1. TranSaACIONS . .. oottt ettt ettt e ettt e et e et e e 442
37.2.2. Prepared StateIMENTSo v vttt ettt et et e e e 443
37.2.3. Callable statements / Stored ProCedures.ouuuneettin et iieeeeinneennn 444
37.2.4. Configurationiiii e e e 444
37.3. JADCMESSAZE . . v e vttt ettt e e e e e e e 446
37.3.0. DaAtaSet PATSINIE . . . vt ettt et et e e e e e e e e 448

38. Dynamic endpoint COMPONENTS v vttt ettt e ettt ee e et iee et iae e ineeeennns 450
39. ENAPOINt @daDter. . ..ottt ettt ettt e e e e e e e e 456
39.1. Empty response endpoint adapteruueetitiie et 456
39.2. Static response endpoint adapPteruuitt ittt e 456
39.3. Request dispatching endpoint adapter.ottt it 458
39.4. Channel endpoint @daPler.oouun ettt ettt et e 459
39.5. JMS endpoint @dapter. . ..o vttt e 459
LT S q Tt o) 1 PP 461
0.1, COMCATO .« vttt e 461
40.2. SUDSITINZ() -+ o v v ettt et e e e e e e e e e 462
40.3. StriNGLength() oottt e 463
40.4. transSlate()v vt e 463
40.5. SUbSIIINGBEIOre() oottt e 464
40.6. SUDSITINGATTET() .« . o oottt et e e et e e 464
40.7.TOUNAQ . oo ettt e et 464
40.8. F100T() . oo vttt e 465
40.9. CRIINGO) . « o v ettt e e 465
40.10. randomNUumDber()ttt e 465
40.171. randOmMSIIINZ (). . o oo vttt et e e e 466
40.12. randomEnumValue()ttt e 466
40.13. currentDate()ottt e 467
0.4, UPPETCASE) -« v ettt ettt e e e e e e e e e e 468

40,05, JOWETCASE() v vttt et e e e e 468

006, AVETAZE() « v ettt ettt e e e e e e e e e 468

40.17. MINIMUINIO oottt e et et e et e e e et e e e 469
40.18. MAKIIMUITIO) &+ vt te ettt et e et e e e ettt e e e e e e e e e e et e i e 469
009, SUIMI(.« - o e vttt et et e e e e e e e e e e e e e e e 469
40.20. @DSOIULE() . . o v vttt e 469
40.21. MAPVAIUEQ . oo v ittt e e 469
40.22. TandomUUID() . ..ottt ittt ettt et e e et e e e e 470
40.23. eNCOAEBASEOA() ..ottt ittt e e 470
40.24. deCOodeBasEB4(). . . oo vttt et e e 470
40.25. €SCAPEXIMI() .+« v vttt e e 471
40.26. CAAtASECHION() .+« . v vt ettt ettt et e e e e e e e 471
40.27. digestAUthHeader().o oottt e e e 471
40.28. 10CAIHOSTAAATESS() . o vt vv ettt ittt e e e e et e e et e e e 472
40.29. ChanGeDAte() . . . vt ettt et e 472
40.30. TEAAFIIE() . . o o vttt e e 473
0.3 1. INESSAGE) « -+ e vttt et e e e e e e e e e e e e e e e 473
40.32. XPAtI() .« .ot e 474
40.33. JSONPAth(). . ..ottt e 475
40.34. urlEncode/urIDecode()unititi et e 476
40.35. SYStEIMPTIOPEITY() . . . ottt ettt et et e e e e e e e 476
A0.36. BIIV() .« ettt ettt e e e e e e e e e e e e 476
471. Validation MatChert e e e e e 478
0 O ¥4 4 o) 1 S PP 479
41.2. matchesXml()t e 480
41.3. eqUAlSIGNOTECASE() . .ottt t ettt ettt e e e e 481
414, CONTAINS() - o v v e vttt ettt et e et e e et e e et e e e e e 481
41,5, StartSWIth() . ..ot e 481
41.6. enASWIth () . . . oot e e 481
A1.7.MAtCRES() . . oo et e 481
41.8. matchesDatePattern()ottt ittt et e 482
41,9, ISNUIMDET() .ottt et e e et e e 482
41.10. IoWerTRAn()ttt e e e e 482
41171, greaterThan()o oottt e e 482
4112, ISWEEKAAY() .+ vt vt ettt ettt e e e e e e e e 482
A1.13.variable) . . . oo e 483
41,04, dateRANGE() .+« v vttt ettt e e 483
41,15, @SSEItTRAL() . o o v ittt et e e e e 484
Z 0 DT U= e b (ot () g U (3 485
42.1. XML data diCtionaries. . ..ottt ittt ittt e e e e e e e e 485
42.2. JSON data diCtIONATIES . ..ottt ittt ettt ettt e e e e e e ie e iiee e ian e 487

42.3. DICHONATY SCOPES. &+ v ettt et ettt et e et e e e et e e e et e et et 488

42.4. Path MapPPing Strategies. . oottt ittt ittt ettt et et 489

TR 1 - (o] (0 491
43.1. DefiNe teSt ACTOTSottt ettt ettt ettt et e e e 491
43.2. LINK tEST @CTOTS . . . vttt ettt ettt ettt e ettt e e e e e 491
43.3. DiSable teSt ACTOTS . . . oottt ettt ettt e 492

44, TeSt SUILE ACTIOMS . . . oot ettt ettt ettt ettt e e e et e et ettt 493
44.1. BelOTe SUITeo e 493
4.2, ATTeY SUITE . ..ottt e 496
44,3, BeIOTe 1St . oottt 499
N (=) gl (=] 502

45, FINAllY SECHION . ..ttt e e e e et e e e e 505

46. Customize meta INfOrmation ittt e 508

47. Tracing inCOMING/OUtZOING IMESSAZES .. vttt ttee ettt ettt iee et iiee et iiaee s 510

48. Reporting and teSt TESULLSttt et ettt i 512
48.1. ConS0le I0gEINg.ottt e 512
A8.2. JUNIE FOPOTES & o v vttt ettt et ettt e e ettt e e et e e e e ettt et et i 513
48.3. HT ML rePOTTS . . ettt ettt et et e e e et e et e e e 513

49, QAT IO . .ttt e e 515
49.1. The FLightBoOKINg SAMPIeo\t et i e ea 515

49.1.1. TRE USE CASE. . oottt 516
49.1.2. Configure the simulated SYSteImMSovtt it et e 517
49.1.3. Configure the Http adapteroottiiit i e e i 519
49.1.4. TRE LEST CASE . o vttt ettt e ettt 520

ST o) 13 4 o b - P 526

Changes IN CIIIUS 2.7 ...ttt ittt ettt et e e e e e e et i et iae e eas 526
JAVA 8 . e 526
KUDEINETeS SUPPOTT . . ottt ettt et et et et e et e e e e e i 526
SElENIUIM SUPPOTT .« . ettt t ettt ettt e e ettt e et e e e e ee i 526
Environment based before/after suite............ .. o i 526
WsAddressing header customizationuiuiiiuiineeiiie i 527
JsonPath data diCtionary.ouu ittt e it e e 527
Java DSL test DehaVIOT.t e 527
AULO SElECt IMNESSAZE Ty P .+ vttt ettt ettt e ettt e e e e 527
Default CUCUIMDET STEPS ...ttt ettt ettt et e e e e e e e et 527
Database transaction handling i e e 527
ENVIrOnmMent Settings.ttt e e 528
HEP COOKIE SUPPOTT . . ot vt ettt ettt ettt e e e e e e e et ia e 528
File resource eNCOAINGoouunntttti e et e et 528

Changes IN CIIIUS 2.6 . ..ottt ettt et e e e e et e e e iiae e eas 528
(€4 10 44) W11 (0 4 528

CUSTOIM SEIVIEt FHltOTS . . ot ettt e e e e e e e e e 529

Escape test variable SYNtaxc.iotuint i e 529

Configurable XML serializercouuuiiiiit i et 529
L0CAl MESSAZE STOTE . . v ettt ettt ettt et e et e e e e 529
Wait message CONAITIONttt et e eiiaeeeas 529
Xpath and JsonPath FUNCHON ... oo e e e eas 529
Static response adapter variables SUPPOIt.ttt i e 529
CUCUMDBET BDD SUPPOTL. « v et ettt ettt ettt et e e e e e e e e e et 530
ZOOKEEPET SUPPOLT & ettt ettt ettt ettt et e e et e e e e e e e 530
SPring ReStAOCS SUPPOTT .« ..ottt e ettt et et e e e e e e et 530
Hamcrest matcher CONditionst e 530
SOAP Java DS . .ottt 530
L2 - (1 (0 0 2 530
Changes IN CIIIUS 2.5 ...ttt ettt et e e e e e et iae e eans 531
Hamcrest matCher SUPPOTtttt et e 531
Binary base64 message validatorouittuint it e 531
R SU P POTT .« . ottt ettt e e et e e e e e e e e e e 531
G101 0 10) o P 532
RESOUICE INJECTION ..ttt ettt ettt et ettt e et e e i iiae s 532
Http x-www-form-urlencoded message validatort iiinnnennnn. 532
Date range validation matCherttt i et 532
Read file resource fUNCHION e e 532
TIMEr CONEAINET ...ttt ettt ettt e ettt e 532
Upgrade t0 Vert.X 3.2.0 ...ttt ettt e e e e 532
Changes IN CIIIUS 2.4 . ..ottt ettt et e e et e e et et e iiae e eaas 533
DOCKET SUPPOTT & v vttt ettt ettt e ettt e e e et e e e e e e e e e 533
5 L0 OIS N U 0 (o) U 533
WaIt teSt ACHION . . o v vttt et e e 533
CamEl ACHIOMIS . . . oottt ettt e 533
Purge endpoints aCtiOnttt ettt et e 533
Release to Maven Centraluuuiii e 533
Changes IN CIIIUS 2.3 ...ttt ettt ettt e e e e et ettt iiae e eas 534
Test runner and teSt AeSIZNETottt ettt e et 534
WeEDSOCKET SUPPOTT ...ttt et e e et e e e 534
JSONPATR SUPPOTt ..ttt ettt e et e et e e et e e 534
Customize message vValidators.oou vttt e e 534
LIDrary UPGradesttt et ettt ettt e e e 535
Upgrade from CItIUS 2.2 ... oottt ettt e e e et et 535
BUG KOS . . .ttt e 535
Changes IN CIIIUS 2.2 ...ttt ettt et et e e e e e ettt iae e eas 536
ArqUILLIAN SUPPOTT ottt ettt et et e e e e 536

JUNIE SU P POTE .« ettt ettt et e et e e e e e e e e 536

StArt/STOP SEIVEr ACTIOM . . . vttt ittt ettt et et e e e e e e e e e i 536

CItruS ANt tasKsS . ..o oot e 536
BUG KOS . ..ttt e 536
Changes IN CIIIUS 2.1 ...ttt ittt et et e e e e e ettt iiae e eas 536
SOAP MTOM SUPPOTT . . ettt ettt e e e e e e e e e e e e et e et e ea e 537
SOAP envelope handling.ttt e e e 537
SOAP 1.2 MeSSage faCtOrY . . oo vttt ettt et e e 537
TestNG data provider handlingoooiiii it i et 537
Mail MeSSaZEe NAIMESPACE . . oot e ettt ettt ettt e et et e e e et ae e e taa e ine e eennns 537
SSh MESSAZE NAIMESPACE . . . vttt et ettt et ettt e e e et e e e et e e et iaa e ineeeennns 537
Changes IN CITIUS 2.0 ...ttt et e e e e e e e e e i i eas 538
L2 - (1 (0 0 2 538
SPring frameWOorK 4.Xt 539
o S D1 00) o PP 539
Functions with test CONtEXt aCCESSttt 539
Validation matcher with test CONteXt aCCeSsttt 539
Message listener with test CONTEXt ACCESS . . .o v vttt ettt iiiae s 540
SOAP OVET M S . . e 540
Multiple SOAP attaChmentsttt e et e 540
Multiple SOAP XML header fragmentsouiiiiinntiiin ittt 540
Create variable validation matcher i 540
New configuration COMPONEINTSttt ettt ettt e et e ee e iiaa e ineeeennns 540
Before/after suite COMPONENTSttt ettt iiiae s 541

CItrus JMS mOAULEot e e et 541

Copyright © 2018 ConSol Software GmbH
Version: 2.7.5

CITRUSE

Chapter 1. Preface

Integration testing can be very hard, especially when there is no sufficient tool support. Unit testing
is flavored with fantastic tools and APIs like JUnit, TestNG, EasyMock, Mockito and so on. These
tools support you in writing automated tests. A tester who is in charge of integration testing may
lack of tool support for automated testing especially when it comes to simulate messaging
interfaces.

In a typical enterprise application scenario the test team has to deal with different messaging
interfaces and various transport protocols. Without sufficient tool support the automated
integration testing of message-based interactions between interface partners is exhausting and
sometimes barely possible.

The tester is forced to simulate several interface partners in an end-to-end integration test. The first
thing that comes to our mind is manual testing. No doubt manual testing is fast. In long term
perspective manual testing is time consuming and causes severe problems regarding
maintainability as they are error prone and not repeatable.

The Citrus framework gives a complete test automation tool for integration testing of enterprise
applications. You can test your message interfaces to other applications as client and server. Every
time a code change applies all automated Citrus tests ensure the stability of interfaces and message
communication.

Regression testing and continuous integration is very easy as Citrus fits into your build lifecycle as
usual Java unit test. You can use Citrus with JUnit or TestNG in order to integrate with your
application build.

With powerful validation capabilities for various message formats like XML, CSV or JSON Citrus is
designed to provide fully automated integration tests for end-to-end use cases. Citrus effectively
composes complex messaging use cases with response generation, error simulation, database
interaction and more.

This documentation provides a reference guide to all features of the Citrus test framework. It gives
a detailed picture of effective integration testing with automated integration test environments.
Since this document is considered to be under construction, please do not hesitate to give any
comments or requests to us using our user or support mailing lists.

Chapter 2. What’s new in Citrus 2.7?!

We have the following features included in the box.

2.1. Since Citrus 2.7.5

2.1.1. Message selector on non-XML payloads

Citrus has always been able to select messages on a queue or channel in a receive test action in
order to pick a message of matching headers and or payload contents from a list of inbound
messages. This enabled us to perform parallel testing and in addition to that we are able to realize
test scenarios where multiple messages arrive unordered at the same time.

The message selector processing has been enhnaced with JsonPath support as well as validation
matcher conditions. So you can filter messages of certain nature based on non XML payloads, too.

Read more about message selectors in message-selector and message-channel-selector.

2.1.2. Send and receive zip archives

Citrus provides a special message implementation that automatically adds the payload in form of
one to many files and directories to a zip archive. The final zipped content is then provided as
binary message payload. This makes it very easy to send and receive zipped files and directories
within Citrus.

2.1.3. Support FTP store and retrieve file operations

The FTP support has been rewritten to a certain extend in this release. This is because the former
implementation has been too close to the FTP protocol. The new implementation is much more
comfortable when it comes to store and retrieve files on a FTP server. Also you can now check on a
server side that files are pushed or retrieved via client interaction.

This new FTP API is backward compatible to former tests but you should definitely have a look at
the new capabilities in FTP support. Check out the new stuff in chapter ftp.

2.1.4. Binary messages

Handling of binary message content has been possible in Citrus. We have had some issues though
when using non standard binary Content-Type headers in Http communication. The binary content
was then treated as String content obviously corrupting the binary content while processing. Also
the Http client has not been able to retrieve binary message content from the server in order to
validate the binary streams. All issues are fixed with this release and in combination with extended
binary message content utilities we expand the framework to handle binary content on client and
server side.

To mention only one of these enhancements we now have a binary message stream validator that is
able to compare two input streams of binary content. See chapter binary-message-validation for
details.

#message-selectors
#message-channel-selector
#ftp
#binary-message-validation

2.2. Since Citrus 2.7.4

2.2.1. JDBC server

Preparing databases for testing can be hard times. Creating all tables and preparing the test data
with all constraints and data integrity is often a full time job and very exhausting. Instead of
preparing a real database would’'nt it be nice to just mock the database queries with proper result
set generation just in time within the test? But at the same time we need to really use JDBC to
connect and retrieve the data from a JDBC mock server.

This is now possible with the new JDBC server integration in Citrus. You can receive incoming SQL
statements (INSERT, UPDATE, SELECT, DELETE, ...) and respond with a proper data set and/or rows
updated result. This enables us to test the data access in a database persistence layer without
having to actually create the tables and data needed for the test scenario.

Read about it in chapter JDBC server.

2.2.2. Async container

Sometimes it is good to execute test actions in parallel so you can do things simultaneously in a test
case. In some cases it is just to execute a single test action in parallel to the rest of the test. When
using send operations you already could have used fork="true" option on that test action. The async
test action container provides such functionality for all other test actions, too. Just add a test action
to the async container and the action is executed in a separate thread. The test case is not blocked
with that action execution and immediately executes the next action in place.

Read about it in chapter Async.

2.2.3. System/Env property functions

There are new functions available to access System properties and environment settings. This
enables you to resolve property values in test cases at runtime. See how to use this functions in
chapter functions.

2.2.4. URL encode/decode functions

Two new functions enable you to URL encode/decode a String with proper URL escaping. See how
to use this functions in chapter functions.

2.3. Since Citrus 2.7.3

2.3.1. Ignore sections in plain text

Plain text message validation is usually based on a complete String equals comparison. With latest
release we added the possibility to ignore some sections with well known @ignore@ keyword
placeholder. The message validator will automatically ignore words or character sections based on
that. Read more about this in chapter plain text message validation.

#jdbc
#containers-async
#functions
#functions
#plain-text-message-validation

Also possible is the extraction of sections as new test variables when using the @variable()@
matcher in the plain text message content.

2.3.2. Json schema validation

When dealing with Json message content the latest release allows adding of schema validation. The
Json structure is validated with proper schema as of Open API (Swagger) schema rules. As usual the
available schema files are defined in a schema repository in the project configuration. Read more
about this in chapter json schema validation.

2.3.3. JUnit5 support

With this release you are able to integrate Citrus with JUnit5 the new generation of the famous unit
testing framework. We provide a Citrus JUnit5 extension that can do the trick. Read more about this
in chapter run with JUnit5.

2.3.4. Refactoring

Deprecated APIs and classes that coexisted a long time are now removed. If your project is using on
of these deprecated classes you may run into compile time errors. Please have a look at the Citrus
API JavaDocs and documentation in order to find out how to use the new APIs and classes that
replaced the old deprecated stuff.

2.4. Bugfixes

Bugs are part of our software developers world and fixing them is part of your daily business, too.
Finding and solving issues makes Citrus better every day. For a detailed listing of all bugfixes please
refer to the complete changes log of each release.

#json-schema-validation
#run-with-junit5
http://www.citrusframework.org/changes-report.html

Chapter 3. Introduction

Nowadays enterprise applications usually communicate with different partners over loosely
coupled messaging interfaces. The interaction and the interface contract needs to be tested in
integration testing.

In a typical integration test scenario we need to simulate the communication partners over various
transports. How can we test use case scenarios that include several interface partners interacting
with each other? How can somebody ensure that the software components work correctly
regarding the interface contract? How can somebody run integration test cases in an automated
reproducible way? Citrus tries to answer these questions!

3.1. Overview

Citrus aims to strongly support you in simulating interface partners across different messaging
transports. You can easily produce and consume messages with a wide range of protocols like HTTP,
JMS, TCP/IP, FTP, SMTP and more. The framework is able to both act as a client and server. In each
communication step Citrus is able to validate message contents towards syntax and semantics.

In addition to that the Citrus offers a wide range of test actions to take control of the process flow
during a test (e.g. iterations, system availability checks, database connectivity, parallelism, delaying,
error simulation, scripting and many more).

The basic goal in Citrus test cases is to describe a whole use case scenario including several
interface partners that exchange many messages with each other. The composition of complex
message flows in a single test case with several test steps is one of the major features in Citrus.

The test case description is either done in XML or Java and can be executed multiple times as
automated integration test. With JUnit and TestNG integration Citrus can easily be integrated into
your build lifecycle process. During a test Citrus simulates all surrounding interface partners (client
or server) without any coding effort. With easy definition of expected message content (header and
payload) for XML, CSV, SOAP, JSON or plaintext messages Citrus is able to validate the incoming data
towards syntax and semantics.

3.2. Usage scenarios

If you are in charge of an enterprise application in a message based solution with message
interfaces to other software components you should use Citrus. In case your project interacts with
other software over different messaging transports and in case you need to simulate these interface
partners on client or server side you should use Citrus. In case you need to continuously check the
software stability not only on a unit testing basis but also in an end-to-end integration scenario you
should use Citrus. Bug fixing, release or regression testing is very easy with Citrus. In case you are
struggling with code stability and feel uncomfortable regarding your next software release you
should definitely use Citrus.

SOAP

) Backend |
~

SOAP SUT JMS

> Gm— Backend 2
_ - System p—
Client Application
Under Test

4 Http

{> Backend 3
_ y _
Fos ~ s ~
SOAP

{——> Backend |

SOAP sUT JMS

System <> Backend 2

Under Test

Http

> Backend 3

\ v L v

This test set up is typical for a Citrus use case. In such a test scenario we have a system under test
(SUT) with several message interfaces to other applications like you would have with an enterprise
service bus for instance. A client application invokes services on the SUT application. The SUT is
linked to several backend applications over various messaging transports (here SOAP, JMS, and
Http). Interim message notifications and final responses are sent back to the client application. This
generates a bunch of messages that are exchanged throughout the applications involved.

In the automated integration test Citrus needs to send and receive those messages over different
transports. Citrus takes care of all interface partners (ClientApplication, Backendl, Backend2,
Backend3) and simulates their behavior by sending proper response messages in order to keep the
message flow alive.

Each communication step comes with message validation and comparison against an expected
message template (e.g. XML or JSON data). Besides messaging actions Citrus is also able to perform
arbitrary other test actions. Citrus is able to perform a database query between requests as an
example.

The Citrus test case runs fully automated as a Java application. In fact a Citrus test case is nothing
but a JUnit or TestNG test case. Step by step the whole use case scenario is performed like in a real
production environment. The Citrus test is repeatable and is included into the software build
process (e.g. using Maven or ANT) like a normal unit test case would do. This gives you fully
automated integration tests to ensure interface stability.

The following reference guide walks through all Citrus capabilities and shows how to set up a great
integration test with Citrus.

Chapter 4. Setup

This chapter discusses how to get started with Citrus. It deals with the installation and set up of the
framework, so you are ready to start writing test cases after reading this chapter.

Usually you would use Citrus as a dependency library in your project. In Maven you would just add
Citrus as a test-scoped dependency in your POM. When using ANT you can also run Citrus as
normal Java application from your build.xml. As Citrus tests are nothing but normal unit tests you
could also use JUnit or TestNG ant tasks to execute the Citrus test cases.

This chapter describes the Citrus project setup possibilities, choose one of them that fits best to
include Citrus into your project.

4.1. Using Maven

Citrus uses Maven internally as a project build tool and provides extended support for Maven
projects. Maven will ease up your life as it manages project dependencies and provides extended
build life cycles and conventions for compiling, testing, packaging and installing your Java project.
Therefore it is recommended to use the Citrus Maven project setup. In case you already use Maven
it is most suitable for you to include Citrus as a test-scoped dependency.

As Maven handles all project dependencies automatically you do not need to download any Citrus
project artifacts in advance. If you are new to Maven please refer to the official Maven
documentation to find out how to set up a Maven project.

4.1.1. Maven archetype

If you start from scratch or in case you would like to have Citrus operating in a separate Maven
module you can use the Citrus Maven archetype to create a new Maven project. The archetype will
setup a basic Citrus project structure with basic settings and files.

mvn archetype:generate -Dfilter=com.consol.citrus.mvn:citrus

1: remote -> com.consol.citrus.mvn:citrus-quickstart (Citrus quickstart project)

2: remote -> com.consol.citrus.mvn:citrus-quickstart-jms (Citrus quickstart project
with JIMS consumer and producer)

3: remote -> com.consol.citrus.mvn:citrus-quickstart-soap (Citrus quickstart project
with SOAP client and producer)

Choose a number: 1

Define value for groupld: com.consol.citrus.samples
Define value for artifactId: citrus-sample

Define value for version: 1.0-SNAPSHOT

Define value for package: com.consol.citrus.samples

In the sample above we used the Citrus archetype available in Maven central repository. As the list
of default archetypes available in Maven central is very long, it has been filtered for official Citrus

http://maven.apache.org/

archetypes.

After choosing the Citrus quickstart archetype you have to define several values for your project:
the groupld, the artifactld, the package and the project version. After that we are done! Maven
created a Citrus project structure for us which is ready for testing. You should see the following
basic project folder structure.

citrus-sample

| + src

| | + main
||| +java
| | + resources
| | + test

| | | +java
| | + resources
pom.xml

The Citrus project is absolutely ready for testing. With Maven we can build, package, install and test
our project right away without any adjustments. Try to execute the following commands:

mvn clean verify
mvn clean verify -Dtest=MyFirstCitrusTest

0 If you need additional assistance in setting up a Citrus Maven project please visit
our Maven setup tutorial on http://www.citrusframework.org/tutorials.html.

4.1.2. Existing Maven projects

In case you already have a proper Maven project you can also integrate Citrus with it. Just add the
Citrus project dependencies in your Maven pom.xml as a dependency like follows.

* We add Citrus as test-scoped project dependency to the project POM (pom.xml)

<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-core</artifactId>
<version>2.7.5</version>
<scope>test</scope>

</dependency>

* In case you would like to use the Citrus Java DSL also add this dependency to the project

10

http://www.citfrusframework.org

<dependency>
<groupId>com.consol.citrus</groupld>
<artifactId>citrus-java-dsl</artifactId>
<version>2.7.5</version>
<scope>test</scope>

</dependency>

* Add the citrus Maven plugin to your project

<plugin>
<groupId>com.consol.citrus.mvn</groupld>
<artifactId>citrus-maven-plugin</artifactId>
<version>2.7.5</version>
<configuration>
<author>Donald Duck</author>
<targetPackage>com.consol.citrus</targetPackage>
</configuration>
</plugin>

Now that we have added Citrus to our Maven project we can start writing new test cases with the
Citrus Maven plugin:

mvn citrus:create-test

Once you have written the Citrus test cases you can execute them automatically in your Maven
software build lifecycle. The tests will be included into your projects integration-test phase using
the Maven failsafe plugin. Here is a sample failsafe configuration for Citrus.

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<version>2.20</version>
<executions>
<execution>
<id>integration-tests</id>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
</execution>
</executions>
</plugin>

The Citrus test sources go to the default Maven test sources directory src/test/java and
src/test/resources:

11

Now everything is set up and you can call the usual Maven install goal (mvn clean install) in order
to build your project. The Citrus integration tests are executed automatically during the build
process. Besides that you can call the Maven verify phase explicitly to execute all Citrus tests or a
specific test by its name including a validation of the test results.

mvn clean verify
mvn clean verify -Dtest=MyFirstCitrusIT

The Maven failsafe plugin by default executed tests with specific name pattern.

o This is because integration tests should not execute in Maven unit test phase, too.
Therefore integration tests should follow the failsafe name pattern with each test
name beginning or ending with 'IT".

o If you need additional assistance in setting up a Citrus Maven project please visit
our Maven setup tutorial on http://www.citrusframework.org/tutorials.html.

4.2. Using Gradle

As Citrus tests are nothing but normal JUnit or TestNG tests the integration to Gradle as build tool is
as easy as adding the source files to a folder in your project. With the Gradle task execution for
integration tests you are able to execute the Citrus tests like you would do with normal unit tests.

4.2.1. Configuration

The Gradle build configuration is done in the build.gradle and settings.gradle files. Here we
define the project name and the project version.

rootProject.name = 'citrus-sample-gradle’
group 'com.consol.citrus.samples’
version '2.7.5'

Now as Citrus libraries are available on Maven central repository we add these repositories so
Gradle knows how to download the required Citrus artifacts.

repositories {
mavenCentral()
maven {
url "http://labs.consol.de/maven/snapshots-repository/’

Citrus stable release versions are available on Maven central. If you want to use the very latest next
version as snapshot preview you need to add the ConSol Labs snapshot repository which is
optional. Now lets move on with adding the Citrus libraries to the project.

12

http://www.citfrusframework.org

dependencies {
testCompile group: 'com.consol.citrus', name: 'citrus-core', version: '2.7.5'
testCompile group: 'com.consol.citrus', name: 'citrus-java-dsl', version: '2.7.5'
testCompile group: 'org.testng', name: 'testng', version: '6.11'

[...]

This enables the Citrus support for the project so we can use the Citrus classes and APIs. We decided
to use TestNG unit test library.

test {
useTestNG()

Of course JUnit is also supported. This is all for build configuration settings. We can move on to
writing some Citrus integration tests. You can find those tests in src/test/java directory.

4.2.2. Run with Gradle

You can use the Gradle wrapper for compile, package and test the sample with Gradle build
command line.

gradlew clean build

This executes all Citrus test cases during the build and you will see Citrus performing some
integration test logging output. After the tests are finished build is successful and you are ready to
go for writing some tests on your own.

If you just want to execute all tests you can call
gradlew clean check

Of course you can also start the Citrus tests from your favorite IDE. Just start the Citrus test using
the Gradle integration in Intelli], Eclipse or Netbeans.

4.3. Using Ant

Ant is a very popular way to compile, test, package and execute Java projects. The Apache project
has effectively become a standard in building Java projects. You can run Citrus test cases with Ant
as Citrus is nothing but a Java application. This section describes the steps to setup a proper Citrus
Ant project.

13

4.3.1. Preconditions

Before we start with the Citrus setup be sure to meet the following preconditions. The following
software should be installed on your computer, in order to use the Citrus framework:

* Java 8 or higher

Installed JDK plus JAVA_HOME environment variable set up and pointing to your Java installation
directory

* Java IDE (optional)

A Java IDE will help you to manage your Citrus project (e.g. creating and executing test cases). You
can use the any Java IDE (e.g. Eclipse or Intelli] IDEA) but also any convenient XML Editor to write
new test cases.

* Ant 1.8 or higher

Ant (http://ant.apache.org/) will run tests and compile your Citrus code extensions if necessary.

4.3.2. Download

First of all we need to download the latest Citrus release archive from the official website
http://www.citrusframework.org

Citrus comes to you as a zipped archive in one of the following packages:

e citrus-x.x-release

e citrus-x.x-src

The release package includes the Citrus binaries as well as the reference documentation and some
sample applications.

In case you want to get in touch with developing and debugging Citrus you can also go with the
source archive which gives you the complete Citrus Java code sources. The whole Citrus project is
also accessible for you on http:/github.com/christophd/citrus. This open git repository on GitHub
enables you to build Citrus from scratch with Maven and contribute code changes.

4.3.3. Installation

After downloading the Citrus archives we extract those into an appropriate location on the local
storage. We are seeking for the Citrus project artifacts coming as normal Java archives (e.g. citrus-
core.jar, citrus-ws.jar, etc.)

You have to include those Citrus Java archives as well as all dependency libraries to your Apache
Ant Java classpath. Usually you would copy all libraries into your project’s lib directory and declare
those libraries in the Ant build file. As this approach can be very time consuming I recommend to
use a dependency management API such as Apache Ivy which gives you automatic dependency
resolution like that from Maven. In particular this comes in handy with all the 3rd party
dependencies that would be resolved automatically.

14

http://ant.apache.org/
http://www.citrusframework.org
http://github.com/christophd/citrus

No matter what approach you are using to set up the Apache Ant classpath see the following sample
Ant build script which uses the Citrus project artifacts in combination with the TestNG Ant tasks to
run the tests.

<project name="citrus-sample" basedir="." default="citrus.run.tests"
xmlns:artifact="antlib:org.apache.maven.artifact.ant">

<property file="src/it/resources/citrus.properties"/>

<path id="maven-ant-tasks.classpath" path="1lib/maven-ant-tasks-2.1.3.jar" />

<typedef resource="org/apache/maven/artifact/ant/antlib.xml"
uri="antlib:org.apache.maven.artifact.ant"
classpathref="maven-ant-tasks.classpath" />

<artifact:pom id="citrus-pom" file="pom.xml" />
<artifact:dependencies filesetId="citrus-dependencies" pomRefId="citrus-pom" />

<path id="citrus-classpath">
<pathelement path="src/it/java"/>
<pathelement path="src/it/resources"/>
<pathelement path="src/it/tests"/>
<fileset refid="citrus-dependencies"/>
</path>

<taskdef resource="testngtasks" classpath="1ib/testng-6.8.8.jar"/>

<target name="compile.tests">
<javac srcdir="src/it/java" classpathref="citrus-classpath"/>
<javac srcdir="src/it/tests" classpathref="citrus-classpath"/>
</target>

<target name="create.test" description="Creates a new empty test case">
<input message="Enter test name:" addproperty="test.name"/>
<input message="Enter test description:" addproperty="test.description"/>
<input message="Enter author's name:" addproperty="test.author"
defaultvalue="${default.test.author}"/>
<input message="Enter package:" addproperty="test.package"
defaultvalue="${default.test.package}"/>
<input message="Enter framework:" addproperty="test.framework"
defaultvalue="testng"/>

<java classname="com.consol.citrus.util.TestCaseCreator">
<classpath refid="citrus-classpath"/>
<arg line="-name ${test.name} -author ${test.author} -description
${test.description} -package ${test.package} -framework ${test.framework}"/>
</java>
</target>

<target name="citrus.run.tests" depends="compile.tests" description="Runs all Citrus
tests">

15

16

<testng classpathref="citrus-classpath">
<classfileset dir="src/it/java" includes="**/*.class" />
</testng>
</target>

<target name="citrus.run.single.test" depends="compile.tests" description="Runs a
single test by name">
<touch file="test.history"/>
<loadproperties srcfile="test.history"/>

<echo message="Last test executed: ${last.test.executed}"/>
<input message="Enter test name or leave empty for last test executed:"
addproperty="testclass" defaultvalue="${last.test.executed}"/>

<propertyfile file="test.history">
<entry key="last.test.executed" type="string" value="${testclass}"/>
</propertyfile>

<testng classpathref="citrus-classpath">
<classfileset dir="src/it/java" includes="**/${testclass}.class" />
</testng>
</target>

</project>
If you need detailed assistance for building Citrus with Ant do also visit our

tutorials section on http://www.citrusframework.org. There you can find a
tutorial which describes the Citrus Java project set up with Ant from scratch.

http://www.citrusframework.org

Chapter 5. Test cases

Now let us start writing test cases! A test case in Citrus describes all steps for a certain use case in
one single file. The Citrus test holds a sequence of test actions. Each action represents a very special
purpose such as sending or receiving a message. Typically with message-based enterprise
applications the sending and receiving of messages represent the main actions inside a test.

However you will learn that Citrus is more than just a simple SOAP client for instance. Each test
case can hold complex actions such as connecting to the database, transforming data, adding loops
and conditional steps. With the default Citrus action set you can accomplish very complex use case
integration tests. Later in this guide we will briefly discuss all available test actions and learn how
to use various message transports within the test. For now we will concentrate on the basic test case
structure.

- _____ references __, [Endpoint |]
- _____ references [Endpoint|]
- _____ references [Endpoint2]
- _____ references [Endpoint2]

17

_____ references [Endpoint |]

_____ references __, [Endpoint|]

_____ references __, [Endpoint2]

_____ references __, [Endpoint2]

The figure above describes a typical test action sequence in Citrus. A list of sending and receiving
test actions composing a typical test case here. Each action references a predefined Citrus endpoint
component that we are going to talk about later on.

So how do we define those test cases? In general Citrus specifies test cases as Java classes. With
TestNG or JUnit you can execute the Citrus tests within your Java runtime as you would do within
unit testing. You can code the Citrus test in a single Java class doing assertions and using Spring’s
dependency injection mechanisms.

If you are not familiar to writing Java code you can also write Citrus tests as XML files. Whatever
test language you choose for Citrus the whole test case description takes place in one single file
(Java or XML). This chapter will introduce the custom XML schema language as well as the Java
domain specific language so you will be able to write Citrus test cases no matter what knowledge
base you belong to.

5.1. Writing test cases in XML

Put simply, a Citrus test case is nothing but a simple Spring XML configuration file. The Spring
framework has become a state of the art development framework for enterprise Java applications.
As you work with Citrus you will also learn how to use the Spring Ioc (Inversion of control)
container and the concepts of dependency injection. So let us have a look at the pure Spring XML
configuration syntax first. You are free to write fully compatible test cases for the Citrus framework
just using this syntax.

18

Spring bean definition syntax

<beans
xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean name="MyFirstTest"
class="com.consol.citrus.TestCase">
<property name="variableDefinitions">
<!-- variables of this test go here -->
</property>
<property name="actions">
<!-- actions of this test go here -->
</property>
</bean>
</beans>

Citrus can execute these Spring bean definitions as normal test cases - no problem, but the pure
Spring XML syntax is very verbose and probably not the best way to describe a test case in Citrus.
In particular you have to know a lot of Citrus internals such as Java class names and property
names. In addition to that as test scenarios get more complex the test cases grow in size. So we need
a more effective and comfortable way of writing tests. Therefore Citrus provides a custom XML
schema definition for writing test cases which is much more adequate for our testing purpose.

The custom XML schema aims to reach the convenience of domain specific languages (DSL). Let us
have a look at the Citrus test describing XML language by introducing a first very simple test case
definition:

19

XML DSL

<spring:beans
xmlns="http://www.citrusframework.org/schema/testcase"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:spring="http://www.springframework.org/schema/beans"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/testcase
http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd">

<testcase name="MyFirstTest">
<description>
First example showing the basic test case definition elements!
</description>
<variables>
<variable name="text" value="Hello Test Framework"/>
</variables>
<actions>
<echo>
<message>${text}</message>
</echo>
</actions>
</testcase>
</spring:beans>

We do need the “<spring:beans>" root element as the XML file is read by the Spring IoC container.
Inside this root element the Citrus specific namespace definitions take place.

The test case itself gets a mandatory name that must be unique throughout all test cases in a
project. You will receive errors when using duplicate test names. The test name has to follow the
common Java naming conventions and rules for Java classes. This means names must not contain
any whitespace characters but characters like -, "', ' are supported. For example, _TestFeature_1 is
valid but Test Feature 1 is not as it contains whitespace characters like spaces.

Now that we have an XML definition that describes the steps of our test we need a Java executable
for the test. The Java executable is needed for the framework in order to run the test. See the
following sample Java class that represents a simple Citrus Java test:

20

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.testng.AbstractTestNGCitrusTest;

@Test
public class MyFirstTest extends AbstractTestNGCitrusTest {

@CitrusXmlTest(name = "MyFirstTest")
public void myFirstTest() {
}

The sample above is a Java class that represents a valid Citrus Java executable. The Java class has
no programming logic as we use a XML test case here. The Java class can also be generated using
the Citrus Maven plugin. The Java class extends from basic superclass AbstractTestNGCitrusTest
and therefore uses TestNG as unit test framework. Citrus also supports JUnit as unit test framework.
Read more about this in run-with-testngand run-with-junit.

Up to now it is important to understand that Citrus always needs a Java executable test class. In
case we use the XML test representation the Java part is generic, can be generated and contains no
programming logic. The XML test defines all steps and is our primary test case definition.

5.2. Writing test cases in Java

Before we go into more details on the attributes and actions that take place within a test case we
just have a look at how to write test cases with pure Java code. Citrus works with Java and uses the
well known JUnit and TestNG framework benefits that you may be used to as a tester. Many users
may prefer to write Java code instead of the verbose XML syntax. Therefore you have another
possibility for writing Citrus tests in pure Java.

When using the Citrus Java DSL we need to include a special Maven dependency module to our
project that provides the needed API.

<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-java-dsl</artifactId>
<version>2.7.5</version>
<scope>test</scope>

</dependency>

Citrus in general differences between two ways of test cases in Java. These are test-designers and
test-runners that we deal with each in the next two sections.

5.3.Java DSL test designer

The first way of defining a Citrus test in Java is the test-designer . The Java DSL for a test designer

21

#run-with-testng
#run-with-junit

works similar to the XML approach. The whole test case is built with all test actions first. Then the
whole test case is executed as a whole Citrus test. This is how to define a Citrus test with designer
Java DSL methods:

Java DSL designer

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class MyFirstTestDesigner extends TestNGCitrusTestDesigner {
@CitrusTest(name = "MyFirstTest")
public void myFirstTest() {
description("First example showing the basic test case definition elements!");

variable("text", "Hello Test Framework");

echo("${text}");

Citrus provides a base Java class com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner that
provides all capabilities for you in form of builder pattern methods. Just use the @CitrusTest
annotation on top of the test method. Citrus will use the method name as the test name by default.
As you can see in the example above you can also customize the test name within the @CitrusTest
annotation. The test method builds all test actions using the test builder pattern. The defined test
actions will then be called later on during test runtime.

The design time runtime difference in test-designer is really important to be understood. You can
mix the Citrus Java DSL execution with other Java code with certain limitations. We will explain
this later on when introducing the test-runner .

This is the basic test Java class pattern used in Citrus. You as a tester with development background
can easily extend this pattern for customized logic. Again if you are coming without coding
experience do not worry this Java code is optional. You can do exactly the same with the XML
syntax only as shown before. The test designer Java DSL is much more powerful though as you can
use the full Java programming language with class inheritance and method delegation.

We have mentioned that the test-designer will build the complete test case in design time with all
actions first before execution of the whole test case takes place at runtime of the test. This approach
has the advantage that Citrus knows all test actions in a test before execution. On the other hand
you are limited in mixing Java DSL method calls and normal Java code. The following example
should clarify things a little bit.

22

Java DSL designer

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class LoggingTestDesigner extends TestNGCitrusTestDesigner {
private LoggingService loggingService = new LoggingService();

@CitrusTest(name = "LoggingTest")
public void loggingTest() {
echo("Before loggingService call");

loggingService.log("Now called custom logging service");

echo("After loggingService call");

In this example test case above we use an instance of a custom LoggingService and call some
operation log() in the middle of our Java DSL test. Now developers might expect the logging service
call to be done in the middle of the Java Citrus test case but if we have a look at the logging output
of the test we get a total different result:

Expected output
INFO Citrus| STARTING TEST LoggingTest
INFO EchoAction| Before loggingService call
INFO LoggingService| Now called custom logging service
INFO EchoAction| After loggingService call
INFO Citrus| TEST SUCCESS LoggingTest
Actual output

INFO LoggingService| Now called custom logging service

INFO Citrus| STARTING TEST LoggingTest
INFO EchoAction| Before loggingService call
INFO EchoAction| After loggingService call
INFO Citrus| TEST SUCCESS LoggingTest

So if we analyse the actual logging output we see that the logging service was called even before the
Citrus test case did start its action. This is the result of test-designer building up the whole test case
first. The designer collects all test actions first in internal memory cache and the executes the whole
test case. So the custom service call on the LoggingService is not part of the Citrus Java DSL test
and therefore is executed immediately at design time.

We can fix this with the following test-designer code:

23

Java DSL designer

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class LoggingTestDesigner extends TestNGCitrusTestDesigner {
private LoggingService loggingService = new LoggingService();

@CitrusTest(name = "LoggingTest")
public void loggingTest() {
echo("Before loggingService call");

action(new AbstractTestAction() {
doExecute(TestContext context) {
loggingService.log("Now called custom logging service");

}
b

echo("After loggingService call");

Now we placed the loggingService call inside a custom TestAction implementation and therefore
this piece of code is part of the Citrus Java DSL and following from that part of the Citrus test
execution. Now with that fix we get the expected logging output:

INFO Citrus| STARTING TEST LoggingTest

INFO EchoAction| Before loggingService call

INFO LoggingService| Now called custom logging service
INFO EchoAction| After loggingService call

INFO Citrus| TEST SUCCESS LoggingTest

Now this is not easy to understand and people did struggle with this separation of designtime and
runtime of a Citrus Java DSL test. This is why we have implemented a new Java DSL base class
called test-runner that we deal with in the next section. Before we continue we have to mention
that the test-designer approach does also work for JUnit. Although we have only seen TestNG
sample code in this section everything is working exactly the same way with JUnit framework. Just
use the base class com.consol.citrus.dsl.junit.JUnit4CitrusTestDesigner instead.

Neither TestNGCitrusTestDesigner nor JUnit4CitrusTestDesigner
implementation is thread safe for parallel test execution. This is simply because

o the base class is holding state to the current test designer instance in order to
delegate method calls to this instance. Therefore parallel test method execution is
not available. Fortunately we have added a threadsafe base class implementation
that uses resource injection. Read more about this in test-resource-injection.

24

#test-resource-injection

5.4. Java DSL test runner

The new test runner concept solves the issues that may come along when working with the test
designer. We have already seen a simple example where the test designer requires strict separation
of designtime and runtime. The test runner implementation executes each test action immediately.
This changes the prerequisites in such that the test action Java DSL method calls can be mixed with
usual Java code statements. The the example that we have seen before in a test runner
implementation:

Java DSL runner

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.testng.TestNGCitrusTestRunner;

@Test
public class LoggingTestRunner extends TestNGCitrusTestRunner {
private LoggingService loggingService = new LoggingService();

@CitrusTest(name = "LoggingTest")
public void loggingTest() {
echo("Before loggingService call");

loggingService.log("Now called custom logging service");

echo("After loggingService call");

With the new test runner implementation as base class we are able to mix Java DSL method calls
and normal Java code statement in our test in an unlimited way. This example above will also
create the expected logging output as all Java DSL method calls are executed immediately.

INFO Citrus| STARTING TEST LoggingTest

INFO EchoAction| Before loggingService call

INFO LoggingService| Now called custom logging service
INFO EchoAction| After loggingService call

INFO Citrus| TEST SUCCESS LoggingTest

In contrary to the test designer the test runner implementation will not build the complete test case
before execution. Each test action is executed immediately as it is called with Java DSL builder
methods. This creates a more natural way of coding test cases as you are also able to use iterations,
try catch blocks, finally sections and so on.

In the examples here TestNG was used as unit framework. Of course the exact same approach can
also apply to JUnit framework. Just use the base class
com.consol.citrus.dsl.junit.JUnit4CitrusTestRunner instead. Feel free to choose the base class for
test-designer or test-runner as you like. You can also mix those two approaches in your project.

25

Citrus is able to handle both ways of Java DSL code in a project.

The TestNGCitrusTestRunner and JUnit4CitrusTestRunner implementation is
not thread safe for parallel test execution. This is simply because the base class is

o holding state to the current test runner instance in order to delegate method calls
to this instance. Therefore parallel test method execution is not available.
Fortunately we have added a threadsafe base class implementation that uses
resource injection. Read more about this in test-resource-injection.

5.5. Designer/Runner injection

In the previous sections we have seen the different approaches for test designer and runner
implementations. Up to now the decision which implementation to use was made by extending one
of the base classes:

» com.consol.citrus.dsl.testng.TestNGCitrusTestRunner

» com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner

* com.consol.citrus.dsl.junit.JUnit4CitrusTestRunner

* com.consol.citrus.dsl.junit.JUnit4CitrusTestDesigner
These four classes represent the different designer and runner implementations for TestNG or
JUnit. Now Citrus also provides a resource injection mechanism for both designer and runner
implementations. The classes using this feature are:

* com.consol.citrus.dsl.testng.TestNGCitrusTest

* com.consol.citrus.dsl.junit.JUnit4CitrusTest

So what is the deal with that? It is simple when looking at a first example using resource injection:

@Test
public class InjectionTest extends JUnit4CitrusTest {

@CitrusTest(name = "JUnit4DesignerTest")
public void designerTest(@CitrusResource TestDesigner designer) {
designer.echo("Now working on designer instance");

}

@CitrusTest(name = "JUnit4RunnerTest")
public void runnerTest(@CitrusResource TestRunner runner) {
runner.echo("Now working on runner instance");

The designer or runner instance is injected as Citrus resource to the test method as parameter. This
way we can mix designer and runner in a single test. But this is not the real motivation for the
resource injection. The clear advantage of this approach with injected designer and runner

26

#test-resource-injection

instances is support for multi threading. In case you want to execute the Citrus tests in parallel
using multiple threads you need to use this approach. This is because the usual designer and
runner base classes are not thread safe. This JUnit4CitrusTest base class is because the resources
injected are not kept as state in the base class.

This is our first Citrus resource injection use case. The framework is able to inject other resources,
too. Find out more about this in the next sections.

5.6. Test context injection

When running a test case in Citrus we make use of basic framework components and capabilities.
One of these capabilities is to use test variables, functions and validation matchers. Up to this point
we have not learned about these things. They will be described in the upcoming chapters and
sections in more detail. Right now I want to talk about resource injection in Citrus.

All these feature mentioned above are bound to some important Citrus component: the Citrus test
context. The test context holds all variables and is able to resolve functions and matchers. In
general you as a tester will not need explicit access to this component as the framework is working
with it behind the scenes. In case you need some access for advanced operations with the
framework Citrus provides a resource injection. Lets have a look at this so things are getting more
clear.

public class ResourceInjectionIT extends JUnit4CitrusTestDesigner {

@Test

@CitrusTest

public void resourceInjectionIT(@CitrusResource TestContext context) {
context.setVariable("myVariable", "some value");
echo("${myVariable}");

As you can see we have added a method parameter of type
com.consol.citrus.context.TestContext to the test method. The annotation @CitrusResource tells
Citrus to inject this parameter with the according instance of the object for this test. Now we have
easy access to the context and all its capabilities such as variable management.

Of course the same approach works with TestNG, too. As TestNG also provides resource injection
mechanisms we have to make sure that the different resource injection approaches do not interfere
with each other. So we tell TestNG to not inject this parameter by declaring it as @Optional for
TestNG. In addition to that we need to introduce the parameter to TestNG with the @Parameters
annotation. Otherwise TestNG would complain about not knowing this parameter. The final test
method with Citrus resource injection looks like follows:

27

public class ResourceInjectionIT extends TestNGCitrusTestDesigner {

@Test @Parameters("context")

@CitrusTest

public void resourceInjectionIT(@0ptional @CitrusResource TestContext context) {
context.setVariable("myVariable", "some value");
echo("${myVariable}");

Some more annotations needed but the result is the same. We have access to the Citrus test context.
Of course you can combine the resource injection for different Citrus components. Just add more
some @CitrusResource annotated method parameters to the test method.

5.7.Java DSL test behaviors

When using the Java DSL the concept of behaviors is a good way to reuse test action blocks. By
putting test actions to a test behavior we can instantiate and apply the behavior to different test
cases multiple times. The mechanism is explained best when having a simple sample:

public class FooBehavior extends AbstractTestBehavior {
public void apply() {
variable("foo", "test");

echo("fooBehavior");
}
public class BarBehavior extends AbstractTestBehavior {
public void apply() {

variable("bar", "test");

echo("barBehavior");

The listing above shows two test behaviors that add very specific test actions and test variables to
the test case. As you can see the test behavior is able to use the same Java DSL action methods as a
normal test case would do. Inside the apply method block we define the behaviors test logic. Now
once this is done we can use the behaviors in a test case like this:

28

@CitrusTest

public void behaviorTest() {
description("This is a behavior Test");
author("Christoph");
status(TestCaseMetalnfo.Status.FINAL);

variable("var", "test");

applyBehavior(new FooBehavior());
echo("Successfully applied bar behavior");
applyBehavior(new BarBehavior());

echo("Successfully applied bar behavior");

The behavior is applied to the test case by calling the applyBehavior method. As a result the
behavior is called adding its logic at this point of the test execution. The same behavior can now be
called in multiple test cases so we have a reusable set of test actions.

5.8. Description

In the test examples that we have seen so far you may have noticed that a tester can give a detailed
test description. The test case description clarifies the testing purpose and perspectives. The
description should give a short introduction to the intended use case scenario that will be tested.
The user should get a first impression what the test case is all about as well as special information
to understand the test scenario. You can use free text in your test description no limit to the number
of characters. But be aware of the XML validation rules of well formed XML when using the XML
test syntax (e.g. special character escaping, use of CDATA sections may be required)

5.9. Test Actions

Now we get close to the main part of writing an integration test. A Citrus test case defines a
sequence of actions that will take place during the test. Actions by default are executed sequentially
in the same order as they are defined in the test case definition.

XML DSL

<actions>
<action>[...]</action>
<action>[...]</action>
</actions>

All actions have individual names and properties that define the respective behavior. Citrus offers a
wide range of test actions from scratch, but you are also able to write your own test actions in Java
or Groovy and execute them during a test. actions gives you a brief description of all available

29

#actions

actions that can be part of a test case execution.

The actions are combined in free sequence to each other so that the tester is able to declare a
special action chain inside the test. These actions can be sending or receiving messages, delaying
the test, validating the database and so on. Step-by-step the test proceeds through the action chain.
In case one single action fails by reason the whole test case is red and declared not successful.

5.10. Finally test section

Java developers might be familiar with the concept of doing something in the finally code section.
The finally section contains a list of test actions that will be executed guaranteed at the very end of
the test case even if errors did occur during the execution before. This is the right place to tidy up
things that were previously created by the test like cleaning up the database for instance. The
finally section is described in more detail in finally-section. However here is the basic syntax inside
a test.

XML DSL

<finally>
<echo>
<message>Do finally - regardless of what has happened before</message>
</echo>
</finally>

Java DSL designer

@CitrusTest
public void sampleTest() {
echo("Hello Test Framework");

doFinally(
echo("Do finally - regardless of any error before")

)

Java DSL runner

@CitrusTest
public void sampleTest() {
echo("Hello Test Framework");

doFinally()
.actions(
echo("Do finally - regardless of any error before")

)i

30

#finally-section

5.11. Test meta information

The user can provide some additional information about the test case. The meta-info section at the
very beginning of the test case holds information like author, status or creation date. In detail the
meta information is specified like this:

XML DSL

<testcase name="metalnfoTest">

<meta-info>
<author>Christoph Deppisch</author>
<creationdate>2008-01-11</creationdate>
<status>FINAL</status>
<last-updated-by>Christoph Deppisch</last-updated-by>
<last-updated-on>2008-01-11T710:00:00</1ast-updated-on>

</meta-info>

<description>

</description>
<actions>

</actions>
</testcase>

Java DSL

@CitrusTest

public void sampleTest() {
description("This is a Test");
author("Christoph");
status(Status.FINAL);

echo("Hello Citrus!");

The status allows following values: DRAFT, READY_FOR_REVIEW, DISABLED, FINAL. The meta-data
information to a test is quite important to give the reader a first information about the test. It is also
possible to generate test documentation using this meta-data information. The built-in Citrus
documentation generates HTML or Excel documents that list all tests with their metadata
information and description.

Tests with the status DISABLED will not be executed during a test suite run. So
someone can just start adding planned test cases that are not finished yet in
status DRAFT. In case a test is not runnable yet because it is not finished, someone

0 may disable a test temporarily to avoid causing failures during a test run. Using
these different statuses one can easily set up test plans and review the progress of
test coverage by comparing the number of DRAFT tests to those in the FINAL
state.

31

Now you know the possibilities how to write Citrus test cases in XML or Java. Please choose
whatever code language type you want (Java, XML, Spring bean syntax) in order to write Citrus test
cases. Developers may choose Java, testers without coding experience may run best with the XML
syntax. We are constantly working on even more test writing language support such as Groovy,
Scala, Xtext, and so on. In general you can mix the different language types just as you like within
your Citrus project which gives you the best of flexibility.

32

Chapter 6. Test variables

The usage of test variables is a core concept when writing good maintainable tests. The key
identifiers of a test case should be exposed as test variables at the very beginning of a test. This way
hard coded identifiers and multiple redundant values inside the test can be avoided from scratch.
As a tester you define all test variables at the very beginning of your test.

XML DSL

<variables>
<variable name="text" value="Hello Test Framework"/>
<variable name="customerId" value="123456789"/>
</variables>

Java DSL

variable("text", "Hello Test Framework");
variable("customerId", "123456789");

The concept of test variables is essential when writing complex tests with lots of identifiers and
semantic data. Test variables are valid for the whole test case. You can reference them several times
using a common variable expression "${variable-name}" . It is good practice to provide all
important entities as test variables. This makes the test easier to maintain and more flexible. All
essential entities and identifiers are present right at the beginning of the test, which may also give
the opportunity to easily create test variants by simply changing the variable values for other test
scenarios.

The name of the variable is arbitrary. Feel free to specify any name you can think of. Of course you
need to be careful with special characters and reserved XML entities like '&', '<', ">'. If you are
familiar with Java or any other programming language simply think of the naming rules there and
you will be fine with working on Citrus variables, too. The value of a variable can be any character
sequence. But again be aware of special XML characters like "<" that need to be escaped ("<") when

used in variable values.

The advantage of variables is obvious. Once declared the variables can be referenced many times
in the test. This makes it very easy to vary different test cases by adjusting the variables for
different means (e.g. use different error codes in test cases).

6.1. Global variables

The last section told us to use variables as they are very useful and extend the maintainability of
test cases. Now that every test case defines local variables you can also define global variables. The
global variables are valid in all tests by default. This is a good opportunity to declare constant
values for all tests. As these variables are global we need to add those to the basic Spring
application context file. The following example demonstrates how to add global variables in Citrus:

33

<citrus:global-variables>
<citrus:variable name="projectName" value="Citrus Integration Testing"/>
<citrus:variable name="userName" value="TestUser"/>
</citrus:global-variables>

We add the Spring bean component to the application context file. The component receives a list of
name-value variable elements. You can reference the global variables in your test cases as usual.

Another possibility to set global variables is to load those from external property files. This may
give you more powerful global variables with user specific properties for instance. See how to load
property files as global variables in this example:

<citrus:global-variables>
<citrus:file path="classpath:global-variable.properties"/>
</citrus:global-variables>

We have just added a file path reference to the global variables component. Citrus loads the
property file content as global test variables. You can mix property file and name-value pair
variable definitions in the global variables component.

The global variables can have variable expressions and Citrus functions. It is
possible to use previously defined global variables as values of new variables, like
in this example:

user=Citrus
greeting=Hello ${user}!
date=citrus:currentDate('yyyy-MM-dd")

6.2. Create variables with CDATA

When using th XML test case DSL we can not have XML variable values out of the box. This would
interfere with the XML DSL elements defined in the Citrus testcase XSD schema. You can use CDATA
sections within the variable value element in order to do this though.

34

<variables>
<variable name="persons">

<value>
<data>
<![CDATA[
<persons>
<person>
<name>Theodor</name>
<age>10</age>
</person>
<person>
<name>Alvin</name>
<age>9</age>
</person>
</persons>
11>
</data>
</value>
</variable>
</variables>

That is how you can use XML variable values in the XML DSL. In the Java DSL we do not have these
problems.

6.3. Create variables with Groovy

You can also use a script to create variable values. This is extremely handy when you have very
complex variable values. Just code a small Groovy script for instance in order to define the variable
value. A small sample should give you the idea how that works:

35

<variables>
<variable name="avg">
<value>
<script type="groovy">
<![CDATA[
a=4
b==6
return (a + b) / 2
11>
</seript>
</value>
</variable>
<variable name="sum">
<value>
<script type="groovy">
<![CDATA[
5+5
11>
</seript>
</value>
</variable>
</variables>

We use the script code right inside the variable value definition. The value of the variable is the
result of the last operation performed within the script. For longer script code the use of
"<I[CDATA[]]> " sections is recommended.

Citrus uses the javax ScriptEngine mechanism in order to evaluate the script code. By default
Groovy is supported in any Citrus project. So you can add additional ScriptEngine implementations
to your project and support other script types, too.

6.4. Escaping variables expression

The test variables expression syntax "${variable-name}" is preserved to evaluate to a test variable
within the current test context. However the same syntax may be part of a message content as is. So
you need to somehow escape the syntax from beeing interpreted as test variable syntax. You can do
this by using the variable expression escaping // character sequence wrapping the actual variable
name like this

This is a escaped variable expression ${//escaped//} and should not lead to unknown
variable exceptions within Citrus.

The escaped expression ${//escaped//} above will result in the string ${escaped} where escaped is
not treated as a test variable name but as a normal string in the message payload. This way you are
able to have the same variable syntax in a message content without interfering with the Citrus
variable expression syntax. As a result Citrus will not complain about not finding the test variable
escaped in the current context. The variable syntax escaping characters // are automatically

36

removed when the expression is processed by Citrus. So we will get the following result after
processing.

This is a escaped variable expression ${escaped} and should not lead to unknown
variable exceptions within Citrus.

37

Chapter 7. Running tests

Citrus test cases are nothing but Java classes that get executed within a Java runtime environment.
Each Citrus test therefore relates to a Java class representing a JUnit or TestNG unit test. As optional
add on a Citrus test can have a XML test declaration file. This is for those of you that do not want to
code in Java. In this case the XML part holds all actions to tell Citrus what should happen in the test
case. The Java part will then just be responsible for test execution and is not likely to be changed at
all. In the following sections we concentrate on the Java part and the test execution mechanism.

If you create new test cases in Citrus - for instance via Maven plugin or ANT build script - Citrus
generates both parts in your test directory. For example: if you create a new test named
MyFirstCitrusTest you will find these two files as a result:

src/it/tests/com/consol/citrus/MyFirstCitrusTest.xml
src/it/java/com/consol/citrus/MyFirstCitrusTest.java

If you prefer to just write Java code you can throw away the XML part
immediately and continue working with the Java part only. In case you are

O familiar with writing Java code you may just skip the test template generation via
Maven or ANT and preferably just create new Citrus Java test classes on your
own.

With the creation of this test we have already made a very important decision. During creation,
Citrus asks you which execution framework should be used for this test. There are basically three
options available: testng and junit .

So why is Citrus related to Unit tests although it is intended to be a framework for integration
testing? The answer to this question is quite simple: This is because Citrus wants to benefit from
both JUnit and TestNG for Java test execution. Both the JUnit and TestNG Java APIs offer various
ways of execution and both frameworks are widely supported by other tools (e.g. continuous build,
build lifecycle, development IDE).

Users might already know one of these frameworks and the chances are good that they are familiar
with at least one of them. Everything you can do with JUnit and TestNG test cases you can do with
Citrus tests also. Include them into your Maven build lifecycle. Execute tests from your IDE (Eclipse,
IDEA or NetBeans). Include them into a continuous build tool (e.g. Jenkins). Generate test execution
reports and test coverage reports with Sonar, Cobertura and so on. The possibilities with JUnit and
TestNG are amazing.

So let us have a closer look at the Citrus TestNG and JUnit integration.

7.1. Run with TestNG

TestNG stands for next generation testing and has had a great influence in adding Java annotations
to the unit test community. Citrus is able to generate TestNG Java classes that are executable as test
cases. See the following standard template that Citrus will generate when having new test cases:

38

TestNG Citrus XML test
package com.consol.citrus.samples;

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusXmlTest;
import com.consol.citrus.testng.AbstractTestNGCitrusTest;

@Test

public class SampleIT extends AbstractTestNGCitrusTest {
@CitrusXmlTest(name = "SamplelIT")
public void sampleTest() {}

If you are familiar with TestNG you will see that the generated Java class is nothing but a normal
TestNG test class. We just extend a basic Citrus TestNG class which enables the Citrus test execution
features for us. Besides that we have a usual TestNG @Test annotation placed on our class so all
methods inside the class will be executed as separate test case.

The good news is that we can still use the fantastic TestNG features in our test class. You can think
of parallel test execution, test groups, setup and tear down operations and so on. Just to give an
example we can simply add a test group to our test like this:

@Test(groups = {"long-running"})

For more information on TestNG please visit the official homepage, where you find a complete
reference documentation.

You might have noticed that the example above loads test cases from XML. This is why we are using
the @CitrusXmlTest annotation. Again this approach is for people that want to write no Java code.
The test logic is then provided in the XML test definition. We discuss XML tests in Citrus in more
detail in run-xml-tests. Next lets have a look at a TestNG Java DSL test.

When writing tests in pure Java we have pretty much the exact same logic that applies to executing
Citrus test cases. The Citrus test extends from a TestNG base class and uses the normal @Test
annotations on method or class level. Here is a short sample TestNG Java class for this:

39

#run-xml-tests

TestNG Citrus Java DSL designer test

import org.testng.annotations.Test;
import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class MyFirstTestDesigner extends TestNGCitrusTestDesigner {
@CitrusTest(name = "MyFirstIT")
public void myFirstTest() {
description("First example showing the basic test case definition elements!");

variable("text", "Hello Test Framework");

echo("${test}");

You see the class is quite similar to the XML test variation. Now we extend a Citrus test designer
class which enables the Java DSL features in addition to the TestNG test execution for us. The basic
@Test annotation for TestNG has not changed. We still have a usual TestNG class with the
possibility of several methods each representing a separate unit test.

Now what has changed is the @CitrusTest annotation. Now the Citrus test logic is placed directly as
the method body with using the Java domain specific language features. The XML Citrus test part is
not necessary anymore. If you are wondering about the designer super class and the Java DSL
methods for adding the test logic to your test please be patient we will learn more about the Java
DSL features in this reference guide later on.

Up to now we just concentrate on the TestNG integration that is quite easy isn’t it.

7.2. Using TestNG DataProviders

TestNG as a framework comes with lots of great features such as data providers. Data providers
execute a test case several times. Each test execution gets a specific parameter value. With Citrus
you can use those data provider parameters inside the test as variables. See the next listing on how
to use TestNG data providers in Citrus:

40

TestNG Citrus data provider test

public class DataProviderIT extends AbstractTestNGCitrusTest {

@CitrusXmlTest

@CitrusParameters("message")

@Test(dataProvider = "messageDataProvider")

public void DataProviderIT(ITestContext testContext) {
}

@DataProvider

public Object[][] messageDataProvider() {

return new Object[][] {

{ "Hello World!" },

{ "Hallo Welt!" },

{ "Hi Citrus!" },

Jrs
}

}

Above test case method is annotated with TestNG data provider called messageDataProvider . In
the same class you can write the data provider that returns a list of parameter values. TestNG will
execute the test case several times according to the provided parameter list. Each execution is
shipped with the respective parameter value. According to the @CitrusParameter annotation the
test will have a test variable called message that is accessible as usual.

7.3. Run with JUnit5

JUnit5 is the new major version of the famous unit testing framework. The JUnit platform provides
extension points for other frameworks to integrate with the unit testing execution. Citrus uses these
extensions in order to enable Citrus related dependency injection and parameter resolving.

You can use the Citrus JUnit5 extension on your unit test as follows:

41

JUnit5 Citrus XML test
package com.consol.citrus.samples;

import com.consol.citrus.annotations.CitrusXmlTest;

import com.consol.citrus.junit.jupiter.CitrusBaseExtension;
import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.extension.ExtendWith;

/**
* @author Christoph Deppisch
*/
@ExtendWith(CitrusBaseExtension.class)
public class SampleXmlIT {
@Test
@CitrusXmlTest(name = "SampleXmlIT")
public void test() {}

The class above is using the JUnit5 @Test annotation as a normal unit test would do. In addition to
that we extend with the CitrusBaseExtension. This enables us to use the @CitrusXmlTest annotation
on the test method which automatically loads the XML test case file for execution.

In case you want to use the Citrus Java DSL for writing the test logic you can use the following
setup:

42

JUnit5 Citrus Java DSL designer test

package com.consol.citrus.samples;

import com.
import com.
import com.
import com.
import org.
import org.

/**

consol.citrus.
consol.citrus.
consol.citrus.
consol.citrus.
junit.jupiter.
junit.jupiter.

annotations.CitrusResource;
annotations.CitrusTest;
dsl.design.TestDesigner;
dsl.junit.jupiter.CitrusExtension;
api.Test;
api.extension.ExtendWith;

* @author Christoph Deppisch

*/

@ExtendWith(CitrusExtension.class)
public class SamplelT {

@Test

@CitrusTest

public void test(@CitrusResource TestDesigner designer) {

designer.variable("time", "citrus:currentDate()");
designer.echo("Hello Citrus!");
designer.echo("CurrentTime is: ${time}");

The Java DSL test case is using the CitrusExtension to extend the JUnit5 test with Citrus

functionality. After doing that we can use @CitrusResource annotated method parameters that inject

the test designer. The designer is the entrance to the Java fluent API provided by Citrus. Of course
you can also inject the test runner fluent API.

43

JUnit5 Citrus Java DSL runner test

package com.consol.citrus.samples;

import com.
import com.
import com.
import com.
import org.
import org.

/**

consol.citrus.
consol.citrus.
consol.citrus.
consol.citrus.
junit.jupiter.
junit.jupiter.

annotations.CitrusResource;
annotations.CitrusTest;
dsl.runner.TestRunner;
dsl.junit.jupiter.CitrusExtension;
api.Test;
api.extension.ExtendWith;

* @author Christoph Deppisch

*/

@ExtendWith(CitrusExtension.class)
public class SamplelT {

@Test

@CitrusTest

public void test(@CitrusResource TestRunner runner) {
runner.variable("time", "citrus:currentDate()");
runner.echo("Hello Citrus!");
runner.echo("CurrentTime is: ${time}");

You can also use @TestContext parameter injection in order to get access to the current test context
used by Citrus. Also you can inject Citrus endpoints via @CitrusEndpoint annotated field injection in
your test class. This enabled you to inject endpoint components that are defined in the Citrus Spring

application context configuration.

44

JUnit5 Citrus Java DSL runner test

package com.consol.citrus.samples;

import
import
import
import
import
import
import

/**

com.
com.
com.
com.
org.
org.
org.

* @author

*/

consol.citrus.annotations.*;
consol.citrus.dsl.runner.TestRunner;
consol.citrus.dsl.junit.jupiter.CitrusExtension;
consol.citrus.http.client.HttpClient;
junit.jupiter.api.Test;
junit.jupiter.api.extension.ExtendWith;
springframework.http.HttpStatus;

Christoph Deppisch

@ExtendWith(CitrusExtension.class)
public class SampleIT {

@CitrusEndpoint
private HttpClient httpClient;

@Test
@CitrusTest

public void test(@CitrusResource TestRunner runner) {
runner.http(action -> action.client(httpClient)

.send()
.get("/hello"));

runner.http(action -> action.client(httpClient)

.receive()
.response(HttpStatus.0K));

7.4. Run with JUnit4

JUnit is a very popular unit test framework for Java applications widely accepted and widely

supported by many tools. In general Citrus supports both JUnit and TestNG as test execution
frameworks. Although the TestNG customization features are slightly more powerful than those
offered by JUnit you as a Citrus user should be able to use the framework of your choice. The
complete support for executing test cases with package scans and multiple annotated methods is
given for both frameworks. If you choose junit as execution framework Citrus generates a Java file

that looks like this:

45

JUnit4 Citrus XML test
package com.consol.citrus.samples;

import org.junit.Test;
import com.consol.citrus.annotations.CitrusXmlTest;
import com.consol.citrus.junit.AbstractJUnit4CitrusTest;

public class SampleIT extends AbstractJUnit4CitrusTest {
@Test
@CitrusXmlTest(name = "SamplelIT")
public void sampleTest() {}

JUnit and TestNG as frameworks reveal slight differences, but the idea is the same. We extend a
base JUnit Citrus test class and have one to many test methods that load the XML Citrus test cases
for execution. As you can see the test class can hold several annotated test methods that get
executed as JUnit tests. The fine thing here is that we are still able to use all JUnit features such as
before/after test actions or enable/disable tests.

The Java JUnit classes are simply responsible for loading and executing the Citrus test cases. Citrus
takes care on loading the XML test as a file system resource and to set up the Spring application
context. The test is executed and success/failure state is reported exactly like a usual JUnit unit test
would do. This also means that you can execute this Citrus JUnit class like every other JUnit test,
especially out of any Java IDE, with Maven, with ANT and so on. This means that you can easily
include the Citrus test execution into you software building lifecycle and continuous build.

So now we know both TestNG and JUnit support in Citrus. Which framework
should someone choose? To be honest, there is no easy answer to this question.

Q The basic features are equivalent, but TestNG offers better possibilities for
designing more complex test setup with test groups and tasks before and after a
group of tests. This is why TestNG is the default option in Citrus. But in the end
you have to decide on your own which framework fits best for your project.

The first example seen here is using @CitrusXmlTest annotation in order to load a XML file as test.
The Java part is then just an empty envelope for executing the test with JUnit. This approach is for
those of you that are not familiar with Java at all. You can find more information on loading XML
files as Citrus tests in run-xml-tests. Secondly of course we also have the possibility to use the Citrus
Java DSL with JUnit. See the following example on how this looks like:

46

#run-xml-tests

JUnit4 Citrus Java DSL test
package com.consol.citrus.samples;

import com.consol.citrus.annotations.CitrusTest;
import com.consol.citrus.dsl.JUnit4CitrusTestDesigner;
import org.junit.Test;

public class SampleIT extends JUnit4CitrusTestDesigner {

@Test

@CitrusTest

public void EchoSampleIT() {
variable("time", "citrus:currentDate()");
echo("Hello Citrus!");
echo("CurrentTime is: ${time}");

@Test

@CitrusTest(name = "EchoIT")

public void echoTest() {
echo("Hello Citrus!");

}

The Java DSL test case looks quite familiar as we also use the JUnit4 @Test annotation in order to
mark our test for unit test execution. In addition to that we add a @CitrusTest annotation and
extend from a basic JUnit4 Citrus test designer which enables the Java domain specific language
features. The Citrus test logic goes directly to the method block. There is no need for a XML test file
anymore.

As you can see the @CitrusTest annotation supports multiple test methods in one single class. Each
test is prepared and executed separately just as you know it from JUnit. You can define an explicit
Citrus test name that is used in Citrus test reports. If no explicit test name is given the test method
name will be used as a test name.

If you need to know more details about the test designer and on how to use the Citrus Java DSL just
continue with this reference guide. We will describe the capabilities in detail later on.

7.5. Running XML tests

Now we also use the @CitrusXmlTest annotation in the Java class. This annotation makes Citrus
search for a XML file that represents the Citrus test within your classpath. Later on we will also
discuss another Citrus annotation (@CitrusTest) which stands for defining the Citrus test just with
Java domain specific language features. For now we continue to deal with the XML Citrus test
execution.

The default naming convention requires a XML file with the tests name in the same package that
the Java class is placed in. In the basic example above this means that Citrus searches for a XML test

47

file in com/consol/citrus/samples/SampleIT.xml . You tell Citrus to search for another XML file by
using the @CitrusXmlTest annotation properties. Following annotation properties are valid:

name

List of test case names to execute. Names also define XML file names to look for (.xml file
extension is not needed here).

packageName

Custom package location for the XML files to load

packageScan

List of packages that are automatically scanned for XML test files to execute. For each XML file
found separate test is executed. Note that this performs a Java Classpath package scan so all XML
files in package are assumed to be valid Citrus XML test cases. In order to minimize the amount
of accidentally loaded XML files the scan will only load XML files with **/*Test.xml and
**/*1T.xml file name pattern.

You can also mix the various CitrusXmlTest annotation patterns in a single Java class. So we are
able to have several test cases in one single Java class. Each annotated method represents one or
more Citrus XML test cases. Se the following example to see what this is about.

TestNG Citrus XML test

@Test

public class SampleIT extends AbstractTestNGCitrusTest {
@CitrusXmlTest(name = "SampleIT")
public void sampleTest() {}

@CitrusXmlTest(name = { "SampleIT", "AnotherIT" })
public void multipleTests() {}

@CitrusXmlTest(name = "OtherIT", packageName = "com.other.testpackage")
public void otherPackageTest() {}

@CitrusXmlTest(packageScan = { "com.some.testpackage", "com.other.testpackage" })
public void packageScanTest() {}

You are free to combine these test annotations as you like in your class. As the whole Java class is
annotated with the TestNG @Test annotation each method gets executed automatically. Citrus will
also take care on executing each XML test case as a separate unit test. So the test reports will have
the exact number of executed tests and the JUnit/TestNG test reports do have the exact test outline
for further usage (e.g. in continuous build reports).

When test execution takes place each test method annotation is evaluated in
0 sequence. XML test cases that match several times, for instance by explicit name

reference and a package scan will be executed several times respectively.

The best thing about using the @CitrusXmlTest annotation is that you can continue to use the

48

fabulous TestNG capabilities (e.g. test groups, invocation count, thread pools, data providers, and so
on).

So now we have seen how to execute a Citrus XML test with TestNG.

49

Chapter 8. Configuration

You have several options in customizing the Citrus project configuration. Citrus uses default
settings that can be overwritten to some extend. As a framework Citrus internally works with the
Spring IoC container. So Citrus will start a Spring application context and register several
components as Spring beans. You can customize the behavior of these beans and you can add
custom settings by setting system properties.

8.1. Application environment settings

Citrus as an application reads general settings from system properties and environment variables.
The mechanism used is based on the property placeholder resource management. Application
settings are read on startup by evaluating system properties first. After that environment variables
get consulted for default values. If non of these is set the default value in Citrus sources is used.

This settings mechanism is well suited for both usual Java runtime environment and containerized
runtime environments such as Docker or Kubernetes. Following from that you can overwrite
general Citrus application settings by just providing a system property or environment variable on
your local environment. The following settings do support this kind of environment configuration.

Table 1. System properties
System properties Description

citrus.application.properties File location for application property file that
holds other settings. These properties get loaded
as system properties on startup.
(default="classpath:citrus-
application.properties")

citrus.spring.application.context File location for Spring XML configurations
(default="classpath*:citrus-context.xml")

citrus.spring.java.config Class name for Spring Java config (default=null)

citrus.file.encoding Default file encoding used in Citrus when
reading and writing file content
(default=Charset.defaultCharset())

citrus.default.message.type Default message type for validating payloads
(default="XML")

citrus.test.name.variable Default test name variable that is automatically
created for each test (default="citrus.test.name")

citrus.test.package.variable Default test package variable that is
automatically created for each test
(default="citrus.test.package")

citrus.default.src.directory Default test source directory (default="src/test/")

50

System properties Description

citrus.xml.file.name.pattern File name patterns used for XML test file
package scan
(default="/**/*Test.xml,/**/*IT.xml")

citrus.java.file.name.pattern File name patterns used for Java test sources
package scan
(default="/**/*Test.java,/**/*IT.java")

Same properties are settable via environment variables.

Table 2. Environment variables
Environment variable Description

CITRUS_APPLICATION_PROPERTIES File location for application property file that
holds other settings. These properties get loaded
as system properties on startup.
(default="classpath:citrus-
application.properties")

CITRUS_SPRING_APPLICATION_CONTEXT File location for Spring XML configurations
(default="classpath*:citrus-context.xml")

CITRUS_SPRING_JAVA_CONFIG Class name for Spring Java config (default=null)

CITRUS_FILE_ENCODING Default file encoding used in Citrus when

reading and writing file content
(default=Charset.defaultCharset())

CITRUS_DEFAULT_MESSAGE_TYPE Default message type for validating payloads
(default="XML")

CITRUS_TEST NAME _VARIABLE Default test name variable that is automatically
created for each test (default="citrus.test.name")

CITRUS_TEST_PACKAGE_VARIABLE Default test package variable that is
automatically created for each test
(default="citrus.test.package")

CITRUS_DEFAULT_SRC_DIRECTORY Default test source directory (default="src/test/")

CITRUS_XML_FILE_NAME_PATTERN File name patterns used for XML test file
package scan
(default="/**/*Test.xml,/**/*IT.xml")

CITRUS_JAVA_FILE_NAME_PATTERN File name patterns used for Java test sources
package scan
(default="/**/*Test.java,/**/*IT.java")

8.2. Application property file

As mentioned in the previous section Citrus as a framework references some basic settings from
system environment properties or variables. You can overwrite these settings in a central property
file which is loaded at the very beginning of the Citrus runtime. The properties in that file are

51

automatically loaded as Java system properties. Just add a property file named -citrus-
application.properties to your project classpath. This property file contains customized settings
such as:

citrus.spring.application.context=classpath*:citrus-custom-context.xml
citrus.spring.java.config=com.consol.citrus.config.MyCustomConfig
citrus.file.encoding=UTF-8

citrus.default.message.type=XML
citrus.xml.file.name.pattern=/**/*Test.xml, /**/*IT.xml

Citrus automatically loads these application properties at startup. All properties are also settable
with Java system properties. The location of the citrus-application.properties file is customizable
with the system property citrus.application.properties or environment variable
CITRUS_APPLICATION_PROPERTIES.

System.setProperty("citrus.application.properties”, "file:/custom/path/to/citrus-
application.properties")

Note

You can use classpath: and file: path prefix in order to give locate a classpath or file-system
resource.

8.3. Spring XML application context

Citrus starts a Spring application context and adds some default Spring bean components. By
default Citrus will load some internal Spring Java config classes defining those bean components. At
some point you might add some custom beans to that basic application context. This is why Citrus
will search for custom Spring application context files in your project. These are automatically
loaded.

By default Citrus looks for custom XML Spring application context files in this location:
classpath:citrus-context.xml* . So you can add a file named citrus-context.xml to your project
classpath and Citrus will load all Spring beans automatically.

The location of this file can be customized by setting a System property
citrus.spring.application.context . So you can customize the XML Spring application context file
location. The System property is settable with Maven surefire and failsafe plugin for instance or via
Java before the Citrus framework gets loaded.

See the following sample XML configuration which is a normal Spring bean XML configuration:

52

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:citrus="http://www.citrusframework.org/schema/config"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/config
http://www.citrusframework.org/schema/config/citrus-config.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<citrus:schema-repository id="schemaRepository" />

</beans>

Now you can add some Spring beans and you can use the Citrus XML components such as schema-
repository for adding custom beans and components to your Citrus project. Citrus provides several
namespaces for custom Spring XML components. These are described in more detail in the
respective chapters and sections in this reference guide.

You can also use import statements in this Spring application context in order to

load other configuration files. So you are free to modularize your configuration in
several files that get loaded by Citrus.

8.4. Spring Java config

Using XML Spring application context configuration is the default behavior of Citrus. However
some people might prefer pure Java code configuration. You can do that by adding a System
property citrus.spring.java.config with a custom Spring Java config class as value.

System.setProperty("citrus.spring.java.config", MyCustomConfig.class.getName())

Citrus will load the Spring bean configurations in MyCustomConfig.class as Java config then. See
the following example for custom Spring Java configuration:

53

import com.consol.citrus.TestCase;

import com.consol.citrus.report.*;

import org.s1f4j.Logger;

import org.s1f4j.LoggerFactory;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration
public class MyCustomConfig {

@Bean(name = "customTestListener")
public TestlListener customTestListener() {
return new PlusMinusTestReporter();

}

private static class PlusMinusTestReporter extends AbstractTestlListener implements
TestReporter {

/** Logger */
private Logger log = LoggerFactory.getlLogger(CustomBeanConfig.class);

private StringBuilder testReport = new StringBuilder();

@0verride
public void onTestSuccess(TestCase test) {
testReport.append("+");

}

@0verride
public void onTestFailure(TestCase test, Throwable cause) {
testReport.append("-");

}

@0verride
public void generateTestResults() {
log.info(testReport.toString());

}

@0verride
public void clearTestResults() {
testReport = new StringBuilder();

}

You can also mix XML and Java configuration so Citrus will load both configuration to the Spring
bean application context on startup.

54

Chapter 9. Endpoints

In one of the previous chapters we have discussed the basic test case structure as we introduced
variables and test actions . The <actions> section contains a list of test actions that take place
during the test case. Each test action is executed in sequential order by default. Citrus offers several
built-in test actions that the user can choose from to construct a complex testing workflow without
having to code everything from scratch. In particular Citrus aims to provide all the test actions that
you need as predefined components ready for you to use. The goal is to minimize the coding effort
for you so you can concentrate on the test logic itself.

Exactly the same approach is used in Citrus to provide ready-to-use endpoint component for
connecting to different message transports. There are several ways in an enterprise application to
exchange messages with some other application. We have synchronous interfaces like Http and
SOAP WebServices. We have asynchronous messaging with JMS or file transfer FTP interfaces.

Citrus provides endpoint components as client and server to connect with these typical message
transports. So you as a tester must not care about how to send a message to a JMS queue. The Citrus
endpoints are configured in the Spring application context and receive endpoint specific properties
like endpoint uri or ports or message timeouts as configuration.

The next figure shows a typical message sending endpoint component in Citrus:

send(Message)
Endpoint >

MessageDestination

The endpoint producer publishes messages to a destination. This destination can be a JMS
queue/topic, a SOAP WebService endpoint, a Http URL, a FTP folder destination and so on. The
producer just takes a previously defined message definition (header and payload) and sends it to
the message destination.

Similar to that Citrus defines the several endpoint consumer components to consume messages
from destinations. This can be a simple subscription on message channels and JMS queues/topics.
In case of SOAP WebServices and Http GET/POST things are more complicated as we have to
provide a server component that clients can connect to. We will handle server related
communication in more detail later on. For now the endpoint consumer component in its most
simple way is defined like this:

receive()

-~

MessageDestination

Endpoint

This is all you need to know about Citrus endpoints. We have mentioned that the endpoints are
defined in the Spring application context. Let’s have a simple example that shows the basic idea:

55

<citrus-jms:endpoint id="helloServiceEndpoint"
destination-name="Citrus.HelloService.Request.Queue"
connection-factory="myConnectionFactory"/>

This is a simple JMS endpoint component in Citrus. The endpoint XML bean definition follows a
custom XML namespace and defines endpoint specific properties like the JMS destination name and
the JMS connection factory. The endpoint id is a significant property as the test cases will reference
this endpoint when sending and receiving messages by its identifier.

In the next sections you will learn how a test case uses those endpoint components for producing
and consuming messages.

9.1. Send messages with endpoints

The <send> action in a test case publishes messages to a destination. The actual message transport
connection is defined with the endpoint component. The test case simply defines the message
contents and references a predefined message endpoint component by its identifier. Endpoint
specific configurations are centralized in the Spring bean application context while multiple test
cases can reference the endpoint to actually publish the constructed message to a destination.
There are several message endpoint implementations in Citrus available representing different
transport protocols like JMS, SOAP, HTTP, TCP/IP and many more.

Again the type of transport to use is not specified inside the test case but in the message endpoint
definition. The separation of concerns (test case/message sender transport) gives us a good
flexibility of our test cases. The test case does not know anything about connection factories, queue
names or endpoint uri, connection timeouts and so on. The transport internals underneath a
sending test action can change easily without affecting the test case definition. We will see later in
this document how to create different message endpoints for various transports in Citrus. For now
we concentrate on constructing the message content to be sent.

We assume that the message’s payload will be plain XML format. Citrus uses XML as the default
data format for message payload data. But Citrus is not limited to XML message format though; you
can always define other message data formats such as JSON, plain text, CSV. As XML is still a very
popular message format in enterprise applications and message-based solution architectures we
have this as a default format. Anyway Citrus works best on XML payloads and you will see a lot of
example code in this document using XML. Finally let us have a look at a first example how a
sending action is defined in the test.

56

XML DSL

<testcase name="SendMessageTest">
<description>Basic send message example</description>

<actions>
<send endpoint="helloServiceEndpoint">
<message>
<payload>
<TestMessage>
<Text>Hello!</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="Operation" value="sayHello"/>
</header>
</send>
</actions>
</testcase>

Now lets have a closer look at the sending action. The 'endpoint' attribute might catch your
attention first. This attribute references the message endpoint in Citrus configuration by its
identifier. As previously mentioned the message endpoint definition lives in a separate
configuration file and contains the actual message transport settings. In this example the
"helloServiceEndpoint" is referenced which is a JMS endpoint for sending out messages to a JMS
queue for instance.

The test case is not aware of any transport details, because it does not have to. The advantages are
obvious: On the one hand multiple test cases can reference the message endpoint definition for
better reuse. Secondly test cases are independent of message transport details. So connection
factories, user credentials, endpoint uri values and so on are not present in the test case.

In other words the "endpoint" attribute of the <send> element specifies which message endpoint
definition to use and therefore where the message should go to. Once again all available message
endpoints are configured in a separate Citrus configuration file. Be sure to always pick the right
message endpoint type in order to publish your message to the right destination.

If you do not like the XML language you can also use pure Java code to define the same test. In Java
you would also make use of the message endpoint definition and reference this instance. The same
test as shown above in Java DSL looks like this:

57

Java DSL designer

import org.testng.ITestContext;

import org.testng.annotations.Test;

import com.consol.citrus.annotations.CitrusTest;

import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class SendMessageTestDesigner extends TestNGCitrusTestDesigner {

@CitrusTest(name = "SendMessageTest")
public void sendMessageTest() {
description("Basic send message example");

send("helloServiceEndpoint")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>")
.header ("Operation", "sayHello");

Instead of using the XML tags for send we use methods from TestNGCitrusTestDesigner class. The
same message endpoint is referenced within the send message action. The payload is constructed as
plain Java character sequence which is a bit verbose. We will see later on how we can improve this.
For now it is important to understand the combination of send test action and a message endpoint.

It is good practice to follow naming conventions when defining names for
message endpoints. The intended purpose of the message endpoint as well as the

Q sending/receiving actor should be clear when choosing the name. For instance
messageEndpointl, messageEndpoint2 will not give you much hints to the
purpose of the message endpoint.

This is basically how to send messages in Citrus. The test case is responsible for constructing the
message content while the predefined message endpoint holds transport specific settings. Test cases
reference endpoint components to publish messages to the outside world. This is just the start of
action. Citrus supports a whole package of other ways how to define and manipulate the message
contents. Read more about message sending actions in actions-send.

9.2. Receive messages with endpoints

Now we have a look at the message receiving part inside the test. A simple example shows how it
works.

58

#actions-send

XML DSL

<receive endpoint="helloServiceEndpoint">

<message>
<payload>
<TestMessage>
<Text>Hello!</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="Operation" value="sayHello"/>
</header>
</receive>

If we recap the send action of the previous chapter we can identify some common mechanisms that
apply for both sending and receiving actions. The test action also uses the endpoint attribute for
referencing a predefined message endpoint. This time we want to receive a message from the
endpoint. Again the test is not aware of the transport details such as JMS connections, endpoint uri,
and so on. The message endpoint component encapsulates this information.

Before we go into detail on validating the received message we have a quick look at the Java DSL
variation for the receive action. The same receive action as above looks like this in Java DSL.

Java DSL designer

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>")
.header("Operation", "sayHello");

The receive action waits for a message to arrive. The whole test execution is stopped while waiting
for the message. This is important to ensure the step by step test workflow processing. Of course
you can specify message timeouts so the receiver will only wait a given amount of time before
raising a timeout error. Following from that timeout exception the test case fails as the message did
not arrive in time. Citrus defines default timeout settings for all message receiving tasks.

At this point you know the two most important test actions in Citrus. Sending and receiving actions
will become the main components of your integration tests when dealing with loosely coupled
message based components in a enterprise application environment. It is very easy to create
complex message flows, meaning a sequence of sending and receiving actions in your test case. You
can replicate use cases and test your message exchange with extended message validation
capabilities. See actions-receive for a more detailed description on how to validate incoming
messages and how to expect message contents in a test case.

59

#actions-receive

9.3. Local message store

All messages that are sent and received during a test case are stored in a local memory storage. This
is because we might want to access the message content later on in a test case. We can do so by
using message store functions for loading messages that have been exchanged earlier in the test.
When storing a message in the local storage Citrus uses a message name as identifier key. This
message name is later on used to access the message. You can define the message name in any send
or receive action:

XML DSL

<receive endpoint="helloServiceEndpoint">
<message name="helloMessage">

<payload>
<TestMessage>
<Text>Hello!</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="Operation" value="sayHello"/>
</header>
</receive>

Java DSL designer

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.name("helloMessage")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>")

.header ("Operation", "sayHello");

The receive operation above set the message name to helloMessage. The message received is
automatically stored in the local storage with that name. You can access the message content for
instance by using a function:

<echo>
<message>citrus:message(helloMessage.payload())</message>
</echo>

The function loads the helloMessage and prints the payload information with the echo test action.
In combination with Xpath or JsonPath functions this mechanism is a good way to access the
exchanged message contents later in a test case.

60

0 The storage is for both sent and received messages in a test case. The storage is
per test case and contains all sent and received messages.

When no explicit message name is given the local storage will construct a default message name.
The default name is built from the action (send or receive) plus the endpoint used to exchange the
message. For instance:

send(helloEndpoint)
receive(helloEndpoint)

The names above would be generated by a send and receive operation on the endpoint named
helloEndpoint.

The message store is not able to handle multiple message of the same name in
one test case. So messages with identical names will overwrite existing messages
in the local storage.

Now we have seen the basic endpoint concept in Citrus. The endpoint components represent the
connections to the test boundary systems. This is how we can connect to the system under test for
message exchange. And this is our main goal with this integration test framework. We want to
provide easy access to common message transports on client and server side so that we can test the
communication interfaces on a real message transport exchange.

61

Chapter 10. Message validation

When Citrus receives a message from external applications it is time to verify the message content.
This message validation includes syntax rules as well as semantic values that need to be compared
to an expected behavior. Citrus provides powerful message validation capabilities. Each incoming
message is validated with syntax and semantics. The tester is able to define expected message
headers and payloads. Citrus message validator implementations will compare the messages and
report differences as test failure. With the upcoming sections we have a closer look at message
validation of XML messages with XPath and XML schema validation and further message formats
like JSON and plaintext.

10.1. XML message validation

XML is a very common message format especially in the SOAP WebServices and JMS messaging
world. Citrus provides XML message validator implementations that are able to compare XML
message structures. The validator will notice differences in the XML message structure and
supports XML namespaces, attributes and XML schema validation. The default XML message
validator implementation is active by default and can be overwritten with a custom
implementation using the bean id defaultXmlMessageValidator .

<bean id="defaultXmlMessageValidator"
class="com.consol.citrus.validation.xml.DomXmlMessageValidator"/>

The default XML message validator is very powerful when it comes to compare XML structures. The
validator supports namespaces with different prefixes and attributes als well as namespace
qualified attributes. See the following sections for a detailed description of all capabilities.

10.1.1. XML payload validation

Once Citrus has received a message the tester can validate the message contents in various ways.
First of all the tester can compare the whole message payload to a predefined control message
template.

The receiving action offers following elements for control message templates:

<payload>

Defines the message payload as nested XML message template. The whole message payload is
defined inside the test case.

<data>

Defines an inline XML message template as nested CDATA. Slightly different to the payload
variation as we define the whole message payload inside the test case as CDATA section.

<resource>

Defines an expected XML message template via external file resources. This time the payload is
loaded at runtime from the external file.

62

Both ways inline payload definition or external file resource give us a control message template
that the test case expects to arrive. Citrus uses this control template for extended message
comparison. All elements, namespaces, attributes and node values are validated in this comparison.
When using XML message payloads Citrus will navigate through the whole XML structure
validating each element and its content. Same with JSON payloads.

Only in case received message and control message are equal to each other as expected the
message validation will pass. In case differences occur Citrus gives detailed error messages and the
test case fails.

The control message template is not necessarily very static. Citrus supports various ways to add
dynamic message content on the one side and on the other side Citrus can ignore some elements
that are not part of message comparison (e.g. when generated content or timestamps are part of the
message content). The tester can enrich the expected message template with test variables or ignore
expressions so we get a more robust validation mechanism. We will talk about this in the next
sections to come.

When using the Citrus Java DSL you will face a verbose message payload definition. This is because
Java does not support multiline character sequence values as Strings. We have to use verbose String
concatenation when constructing XML message payload contents for instance. In addition to that
reserved characters like quotes must be escaped and line breaks must be explicitly added. All these
impediments let me suggest to use external file resources in Java DSL when dealing with large
complex message payload data. Here is an example:

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceServer")
.payload(new ClassPathResource
("com/consol/citrus/message/data/TestRequest.xml"))
.header("Operation", "sayHello")
.header ("MessageId", "${messageld}");

10.1.2. XML header validation

Now that we have validated the message payload in various ways we are now interested in
validating the message header. This is simple as you have to define the header name and the
control value that you expect. Just add the following header validation to your receiving action.

XML DSL

<header>
<element name="Operation" value="GetCustomer"/>
<element name="RequestTag" value="${requestTag}"/>
</header>

63

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceServer")
.header ("Operation", "sayHello")
.header("MessageId", "${messageld}");

Message headers are represented as name-value pairs. Each expected header element identified by
its name has to be present in the received message. In addition to that the header value is
compared to the given control value. If a header entry is not found by its name or the value does
not fit accordingly Citrus will raise validation errors and the test case will fail.

Sometimes message headers may not apply to the name-value pair pattern. For
example SOAP headers can also contain XML fragments. Citrus supports these
kind of headers too. Please see the SOAP chapter for more details.

10.2. Ignore XML elements

Some elements in the message payload might not apply for validation at all. Just think of
communication timestamps an dynamic values inside a message:

The timestamp value in our next example will dynamically change from test run to test run and is
hardly predictable for the tester, so lets ignore it in validation.

XML DSL
<message>
<payload>
<TestMessage>
<Messageld>${messageld}</Messageld>
<Timestamp>2001-12-17T09:30:47.0Z</Timestamp>
<VersionId>@ignore@</VersionId>
</TestMessage>
</payload>
<ignore path="/TestMessage/Timestamp"/>
</message>

Although we have given a static timestamp value in the payload data the element is ignored during
validation as the ignore XPath expression matches the element. In addition to that we also ignored
the version id element in this example. This time with an inline @ignore@ expression. This is for
those of you that do not like XPath. As a result the ignored message elements are automatically
skipped when Citrus compares and validates message contents and do not break the test case.

When using the Java DSL the @ignore@ placeholder as well as XPath expressions can be used
seamlessly. Here is an example of that:

64

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceServer")
.payload(new ClassPathResource
("com/consol/citrus/message/data/TestRequest.xml"))
.header ("Operation", "sayHello")
.header ("MessageId", "${messageId}")
.ignore("/TestMessage/Timestamp");

Of course you can use the inline @ignore@ placeholder in an external file resource, too.

10.2.1. Customize XML parser and serializer

When working with XML data format parsing and serializing is a common task. XML structures are
parsed to a DOM (Document Object Model) representation in order to process elements, attributes
and text nodes. Also DOM node objects get serialized to a String message payload representation.
The XML parser and serializer is customizable to a certain level. By default Citrus uses the DOM
Level 3 Load and Save implementation with following settings:

Parser settings
cdata-sections

true

split-cdata-sections

false

validate-if-schema

true

element-content-whitespace

false

Serializer settings
format-pretty-print

true

split-cdata-sections

false

element-content-whitespace

true

The parameters are also described in W3C DOM configuration documentation. We can customize
the default settings by adding a XmlConfigurer Spring bean to the Citrus application context.

65

https://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/
https://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/
https://www.w3.org/TR/DOM-Level-3-Core/core.html#DOMConfiguration

<bean id="xmlConfigurer" class="com.consol.citrus.xml.XmlConfigurer">
<property name="parseSettings">
<map>
<entry key="validate-if-schema" value="false" value-
type="java.lang.Boolean"/>
</map>
</property>
<property name="serializeSettings">
<map>
<entry key="comments" value="false" value-type="java.lang.Boolean"/>
<entry key="format-pretty-print" value="false" value-
type="java.lang.Boolean"/>
</map>
</property>
</bean>

0 This configuration is of global nature. All XML processing operations will be
affected with this configuration.

10.2.2. Groovy XML validation

With the Groovy XmlSlurper you can easily validate XML message payloads without having to deal
directly with XML. People who do not want to deal with XPath may also like this validation
alternative. The tester directly navigates through the message elements and uses simple code
assertions in order to control the message content. Here is an example how to validate messages
with Groovy script:

XML DSL

<receive endpoint="helloServiceClient" timeout="5000">
<message>
<validate>
<script type="groovy">
assert root.children().size() ==
assert root.Messageld.text() == '${messageld}’

assert root.CorrelationId.text() == '${correlationId}’
assert root.User.text() == 'HelloService'
assert root.Text.text() == 'Hello ' + context.getVariable("user")
</script>
</validate>
</message>
<header>

<element name="Operation" value="sayHello"/>
<element name="CorrelationId" value="${correlationId}"/>
</header>
</receive>

66

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceClient")
.validateScript("assert root.Messageld.text() == '${messageld}';" +
"assert root.CorrelationId.text() == '${correlationId}';")

.header ("Operation, "sayHello")
.header("CorrelationId", "${correlationId}")
.timeout(5000L);

The Groovy XmlSlurper validation script goes right into the message-tag instead of a XML control
template or XPath validation. The Groovy script supports Java assert statements for message
element validation. Citrus automatically injects the root element root to the validation script. This
is the Groovy XmlSlurper object and the start of element navigation. Based on this root element you
can access child elements and attributes with a dot notated syntax. Just use the element names
separated by a simple dot. Very easy! If you need the list of child elements use the children()
function on any element. With the text() function you get access to the element’s text-value. The
size() is very useful for validating the number of child elements which completes the basic
validation statements.

As you can see from the example, we may use test variables within the validation script, too. Citrus
has also injected the actual test context to the validation script. The test context object holds all test
variables. So you can also access variables with context.getVariable("user") for instance. On the
test context you can also set new variable values with context.setVariable("user",
"newUserName") .

There is even more object injection for the validation script. With the automatically added object
receivedMessage You have access to the Citrus message object for this receive action. This enables
you to do whatever you want with the message payload or header.

XML DSL

<receive endpoint="helloServiceClient" timeout="5000">
<message>
<validate>
<script type="groovy">
assert receivedMessage.getPayload(String.class).contains("Hello
Citrus!")
assert receivedMessage.getHeader ("Operation") == 'sayHello'

context.setVariable("request_payload",
receivedMessage.getPayload(String.class))
</script>
</validate>
</message>
</receive>

67

The listing above shows some power of the validation script. We can access the message payload,
we can access the message header. With test context access we can also save the whole message
payload as a new test variable for later usage in the test.

In general Groovy code inside the XML test case definition or as part of the Java DSL code is not
very comfortable to maintain. You do not have code syntax assist or code completion. This is why
we can also use external file resources for the validation scripts. The syntax looks like follows:

XML DSL

<receive endpoint="helloServiceClient" timeout="5000">
<message>
<validate>
<script type="groovy" file="classpath:validationScript.groovy"/>
</validate>
</message>
<header>
<element name="Operation" value="sayHello"/>
<element name="CorrelationId" value="${correlationId}"/>
</header>
</receive>

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceClient")
.validateScript(new FileSystemResource("validationScript.groovy"))
.header("Operation, "sayHello")
.header("CorrelationId", "${correlationId}")
.timeout(5000L);

We referenced some external file resource validationScript.groovy . This file content is loaded at
runtime and is used as script body. Now that we have a normal groovy file we can use the code
completion and syntax highlighting of our favorite Groovy editor.

o You can use the Groovy validation script in combination with other validation
types like XML tree comparison and XPath validation.

Q For further information on the Groovy XmlSlurper please see the official Groovy
website and documentation

10.3. JSON message validation

Message formats such as JSON have become very popular, in particular when speaking of RESTful
WebServices and JavaScript using JSON as the message format to go for. Citrus is able to expect and
validate JSON messages as we will see in the next sections.

68

By default Citrus will use XML message formats when sending and receiving
messages. This also reflects to the message validation logic Citrus uses for

o incoming messages. So by default Citrus will try to parse the incoming message as
XML DOM element tree. In case we would like to enable JSON message validation
we have to tell Citrus that we expect a JSON message right now.

And this is quite easy. Citrus has a JSON message validator implementation active by default and
immediately as we mark an incoming message as JSON data this message validator will jump in.

Citrus provides several default message validator implementations for JOSN message format:

JsonMessageValidators
com.consol.citrus.validation.json.JsonTextMessageValidator

Basic JSON message validator implementation compares JSON objects (expected and received).
The order of JSON entries can differ as specified in JSON protocol. Tester defines an expected
control JSON object with test variables and ignored entries. JSONArray as well as nested
JSONODbijects are supported, too.

com.consol.citrus.validation.script.GroovyJsonMessageValidator

Extended groovy message validator provides specific JSON slurper support. With JSON slurper
the tester can validate the JSON message payload with closures for instance.

The JSON validator offers two different modes to operate. By default strict mode
is enabled and the validator will also check the exact amount of object fields to
match in received and control message. No additional fields in received JSON

o data structure will be accepted then. In soft mode the validator allows additional
fields in received JSON data structure so the control JSON object can be a partial
subset in which case only the control fields are validated. Additional fields in the
received JSON data structure are ignored then.

The JSON validation mode (strict or soft) is settable via system property
Q citrus.json.message.validation.strict=false. This will set soft mode to all JSON
text messag validators.

You can also overwrite this default message validators for JSON by placing a bean into the Spring
Application context. The bean uses a default name as identifier. Then your custom bean will
overwrite the default validator:

<bean id="defaultJsonMessageValidator"
class="com.consol.citrus.validation.json.JsonTextMessageValidator"/>

<bean id="defaultGroovylsonMessageValidator"
class="com.consol.citrus.validation.script.GroovyJsonMessageValidator"/>

This is how you can customize the message validators used for JSON message data.

69

We have mentioned before that Citrus is working with XML by default. This is why we have to tell
Citrus that the message that we are receiving uses the JSON message format. We have to tell the test
case receiving action that we expect a different format other than XML.

<receive endpoint="httpMessageEndpoint">
<message type="json">

<data>
{
“type" : "read",
"mbean" : "java.lang:type=Memory",

"attribute" : "HeapMemoryUsage",
"path" : "@equalsIgnoreCase('USED")@",
"value" : "${heapUsage}",

"timestamp" : "@ignore@"

}
</data>

</message>
</receive>

The message receiving action in our test case specifies a message format type type="json" . This
tells Citrus to look for some message validator implementation capable of validating JSON
messages. As we have added the proper message validator to the Spring application context Citrus
will pick the right validator and JSON message validation is performed on this message. As you can
see you we can use the usual test variables and the ignore element syntax here, too. Citrus is able to
handle different JSON element orders when comparing received and expected JSON object. We can
also use JSON arrays and nested objects. The default JSON message validator implementation in
Citrus is very powerful in comparing JSON objects.

Instead of defining an expected message payload template we can also use Groovy validation
scripts. Lets have a look at the Groovy JSON message validator example. As usual the default
Groovy JSON message validator is active by default. But the special Groovy message validator
implementation will only jump in when we used a validation script in our receive message
definition. Let’s have an example for that.

<receive endpoint="httpMessageEndpoint">
<message type="json">

<validate>
<script type="groovy">
<I[CDATAL
assert json.type == 'read'
assert json.mbean == 'java.lang:type=Memory'
assert json.attribute == 'HeapMemoryUsage'
assert json.value == '${heapUsage}’
11>
</seript>
</validate>
</message>
</receive>

70

Again we tell Citrus that we expect a message of type="json" . Now we used a validation script that
is written in Groovy. Citrus will automatically activate the special message validator that executes
our Groovy script. The script validation is more powerful as we can use the full power of the
Groovy language. The validation script automatically has access to the incoming JSON message
object json . We can use the Groovy JSON dot notated syntax in order to navigate through the JSON
structure. The Groovy JSON slurper object json is automatically passed to the validation script. This
way you can access the JSON object elements in your code doing some assertions.

There is even more object injection for the validation script. With the automatically added object
receivedMessage You have access to the Citrus message object for this receive action. This enables
you to do whatever you want with the message payload or header.

XML DSL

<receive endpoint="httpMessageEndpoint">
<message type="json">
<validate>
<script type="groovy">
assert receivedMessage.getPayload(String.class).contains("Hello
Citrus!")
assert receivedMessage.getHeader("Operation") == 'sayHello'

context.setVariable("request_payload",
receivedMessage.getPayload(String.class))
</script>
</validate>
</message>
</receive>

The listing above shows some power of the validation script. We can access the message payload,
we can access the message header. With test context access we can also save the whole message
payload as a new test variable for later usage in the test.

In general Groovy code inside the XML test case definition or as part of the Java DSL code is not
very comfortable to maintain. You do not have code syntax assist or code completion. This is why
we can also use external file resources for the validation scripts. The syntax looks like follows:

XML DSL

<receive endpoint="helloServiceClient" timeout="5000">
<message>
<validate>
<script type="groovy" file="classpath:validationScript.groovy"/>
</validate>
</message>
</receive>

71

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceClient")
.validateScript(new FileSystemResource("validationScript.groovy"));

We referenced some external file resource validationScript.groovy . This file content is loaded at
runtime and is used as script body. Now that we have a normal groovy file we can use the code
completion and syntax highlighting of our favorite Groovy editor.

Using several message validator implementations at the same time in the Spring
application context is also no problem. Citrus automatically searches for all

o available message validators applicable for the given message format and
executes these validators in sequence. So several message validators can coexist
in a Citrus project.

When we have multiple message validators that apply to the message format Citrus will execute all
of them in sequence. In case you need to explicitly choose a message validator implementation you
can do so in the receive action:

<receive endpoint="httpMessageEndpoint">
<message type="json" validator="groovyJsonMessageValidator">

<validate>
<script type="groovy">
<I[CDATA[
assert json.type == 'read'
assert json.mbean == 'java.lang:type=Memory'
assert json.attribute == 'HeapMemoryUsage'
assert json.value == '${heapUsage}’
11>
</script>
</validate>
</message>
</receive>

In this example we use the groovyJsonMessageValidator explicitly in the receive test action. The
message validator implementation was added as Spring bean with id
groovyJsonMessageValidator to the Spring application context before. Now Citrus will only
execute the explicit message validator. Other implementations that might also apply are skipped.

72

By default Citrus will consolidate all available message validators for a message
format in sequence. You can explicitly pick a special message validator in the
receive message action as shown in the example above. In this case all other

Q validators will not take part in this special message validation. But be careful:
When picking a message validator explicitly you are of course limited to this
message validator capabilities. Validation features of other validators are not
valid in this case (e.g. message header validation, XPath validation, etc.)

So much for receiving JSON message data in Citrus. Of course sending JSON messages in Citrus is
also very easy. Just use JSON message payloads in your sending message action.

<send endpoint="httpMessageEndpoint">
<message>
<data>

{
"type" : "read",
"mbean" : "java.lang:type=Memory",
"attribute" : "HeapMemoryUsage",
"path" : "used"

}
</data>

</message>
</send>

10.4. Schema validation

When structured data is transmitted from one system to another, it’s important that the sender and
the receiver understand each other. To ensure this, a contract is required introducing the rules of
communication for both parties. This is mostly done by using schemas. Citrus brings the schema
based validation of messages directly to your integration test environment. This includes the
management, mapping and filtering of schemas in context to your current test case by just defining
some rules in XML configuration or Java DSL. Let’s start with this chapter by introducing some
basic concepts of the schema validation.

10.4.1. Managing schemas

Most complex applications have a lot of schemas that are relevant for different use cases. To
organize these schemas in your test cases, Citrus brings you some structuring capabilities.

10.4.1.1. Schema definitions

<citrus:schema id="bookstore"
location="classpath:com/consol/citrus/xml/BookStore.wsd1"/>

This xml snippet allows you to define a schema identified by its id, located at the given classpath.
Please keep in mind, that the id of the schema has to be unique within the context.

73

10.4.1.2. Schema references

<citrus:schema id="testSchema" location="classpath:com/consol/citrus/xml/test.xsd"/>

<citrus:reference schema="testSchema"/>

Citrus allows you to reuse your schema definition within your context by referencing them. For a
valid reference, the id of the schema and the value of the schema Attribute within the reference
Element have to match.

10.4.1.3. Schema location definitions
<citrus:location path="classpath:citrus/flightbooking/*.xsd"/>

Setting all schemas one by one can be verbose and uncomfortable, especially when dealing with
lots of schema files. Therefore, Citrus offers you schema location patterns which will import all
matching schema files within the given location.

10.4.1.4. Schema repositories

<citrus:schema id="testSchema" location="classpath:com/consol/citrus/xml/test.xsd"/>

<citrus:schema-repository id="xmlSchemaRepository">
<citrus:schemas>
<citrus:schema id="bookstore"
location="classpath:com/consol/citrus/xml/BookStore.wsd1"/>
<citrus:reference schema="testSchema"/>
<citrus:location path="classpath:com/consol/citrus/validation/*"/>
</citrus:schemas>
</citrus:schema-repository>

<citrus:schema-repository type="json" id="jsonSchemaRepository">
<citrus:schemas>
<citrus:schema id="product"
location="classpath:com/consol/citrus/validation/ProductsSchema.json"/>
</citrus:schemas>
</citrus:schema-repository>

Citrus introduces a central schema repository component which holds a set of schema files for a
project disjoint by their type (xml, json, etc.) and identified by its unique id. The default type of a
schema repository is type=xml.

As you can see the schema repository is a simple XML component defined inside the Spring
application context. The repository can hold nested schema definitions, references and location
definitions for all types of schema repositories.

74

In case you have several schema repositories in your project do always define a
default repository (name="schemaRepository"). This helps Citrus to always find at
least one repository to interact with.

10.4.2. Schema definition overruling

Depending on the type of message you want to validate, there are different attempts to find the
correct schema for the given message. There comes a time where you as a tester have to pick the
right schema definition by yourself. You can overrule all schema mapping strategies in Citrus by
directly setting the desired schema in your receiving message action.

<receive endpoint="httpMessageEndpoint">
<message schema="helloSchema">
<validate>
<xpath expression="//ns1:TestMessage/ns1:MessageHeader/ns1:Messageld"
value="${messageId}"/>
<xpath expression="//ns1:TestMessage/ns1:MessageHeader/ns1:CorrelationId”
value="${correlationId}"/>
<namespace prefix="ns1" value="http://citrus.com/namespace"/>
</validate>
</message>
</receive>

<citrus:schema id="helloSchema"
location="classpath:citrus/samples/sayHello.xsd"/>

In the example above the tester explicitly sets a schema definition in the receive action
(schema="helloSchema"). The attribute value refers to named schema bean somewhere in the
application context. This overrules all schema mapping strategies used in the central schema
repository as the given schema is directly used for validation. This feature is helpful when dealing
with different schema versions at the same time where the schema repository can not help you
anymore.

Another possibility would be to set a custom schema repository at this point. This means you can
have more than one schema repository in your Citrus project and you pick the right one by yourself
in the receive action.

75

<receive endpoint="httpMessageEndpoint">
<message schema-repository="mySpecialSchemaRepository">
<validate>
<xpath expression="//ns1:TestMessage/ns1:MessageHeader/ns1:Messageld"
value="${messageld}"/>
<xpath expression="//ns1:TestMessage/ns1:MessageHeader/ns1:CorrelationId”
value="${correlationId}"/>
<namespace prefix="ns1" value="http://citrus.com/namespace"/>
</validate>
</message>
</receive>

The schema-repository attribute refers to a Citrus schema repository component which is defined
somewhere in the Spring application context.

10.4.3. XML schema validation

There are several possibilities to describe the structure of XML documents. The two most popular
ways are DTD (Document type definition) and XSD (XML Schema definition). Once a XML document
has decided to be classified using a schema definition the structure of the document has to fit the
predefined rules inside the schema definition. XML document instances are valid only in case they
meet all these structure rules defined in the schema definition. Currently Citrus can validate XML
documents using the schema languages DTD and XSD.

10.4.3.1. XSD schema repositories

Citrus tries to validate all incoming XML messages against a schema definition in order to ensure
that all rules are fulfilled. As a consequence the message receiving actions in Citrus do have to
know the XML schema definition file resources that belong to our test context.

<citrus:schema-repository id="schemaRepository">
<citrus:schemas>
<citrus:schema id="travelAgencySchema"
location="classpath:citrus/flightbooking/TravelAgencySchema.xsd"/>
<citrus:schema id="royalArilineSchema"
location="classpath:citrus/flightbooking/RoyalAirlineSchema.xsd"/>
<citrus:reference schema="smartArilineSchema"/>
</citrus:schemas>
</citrus:schema-repository>

<citrus:schema id="smartArilineSchema"
location="classpath:citrus/flightbooking/SmartAirlineSchema.xsd"/>

By convention there is a default schema repository component defined in the Citrus Spring
application context with the id schemaRepository. Spring application context is then able to inject
the schema repository into all message receiving test actions at runtime. The receiving test action
consolidates the repository for a matching schema definition file in order to validate the incoming

76

XML document structure.

The connection between incoming XML messages and xsd schema files in the repository is done by
a mapping strategy which we will discuss later in this chapter. By default Citrus picks the right
schema based on the target namespace that is defined inside the schema definition. The target
namespace of the schema definition has to match the namespace of the root element in the
received XML message. With this mapping strategy you will not have to wire XML messages and
schema files manually all is done automatically by the Citrus schema repository at runtime. All you
need to do is to register all available schema definition files regardless of which target namespace
or nature inside the Citrus schema repository.

XML schema validation is mandatory in Citrus. This means that Citrus always
tries to find a matching schema definition inside the schema repository in order
to perform syntax validation on incoming schema qualified XML messages. A

o classified XML message is defined by its namespace definitions. Consequently you
will get validation errors in case no matching schema definition file is found
inside the schema repository. So if you explicitly do not want to validate the XML
schema for some reason you have to disable the validation explicitly in your test
with schema-validation="false".

<receive endpoint="httpMessageEndpoint">
<message schema-validation="false">
<validate>
<xpath expression="//ns1:TestMessage/ns1:MessageHeader/ns1:MessageId"
value="${messageld}"/>
<xpath expression="//ns1:TestMessage/ns1:MessageHeader/ns1:CorrelationId"
value="${correlationId}"/>
<namespace prefix="ns1" value="http://citrus.com/namespace"/>
</validate>
</message>
<header>
<element name="Operation" value="sayHello"/>
<element name="MessageId" value="${messageld}"/>
</header>
</receive>

This mandatory schema validation might sound annoying to you but in our opinion it is very
important to validate the structure of the received XML messages, so disabling the schema
validation should not be the standard for all tests. Disabling automatic schema validation should
only apply to very special situations. So please try to put all available schema definitions to the
schema repository and you will be fine.

10.4.3.2. WSDL schemas

In SOAP WebServices world the WSDL (WebService Schema Definition Language) defines the
structure an nature of the XML messages exchanged across the interface. Often the WSDL files do
hold the XML schema definitions as nested elements. In Citrus you can directly set the WSDL file as
location of a schema definition like this:

77

<citrus:schema id="arilineWsdl"
location="classpath:citrus/flightbooking/AirlineSchema.wsd1"/>

Citrus is able to find the nested schema definitions inside the WSDL file in order to build a valid
schema file for the schema repository. So incoming XML messages that refer to the WSDL file can
be validated for syntax rules.

10.4.3.3. Schema collections

Sometimes a XML schema definition is separated into multiple files. This is a problem for the Citrus
schema repository as the schema mapping strategy then is not able to pick the right file for
validation, in particular when working with target namespace values as key for the schema
mapping strategy. As a solution for this problem you have to put all schemas with the same target
namespace value into a schema collection.

<citrus:schema-collection id="flightbookingSchemaCollection">
<citrus:schemas>
<citrus:schema location="classpath:citrus/flightbooking/BaseTypes.xsd"/>
<citrus:schema location="classpath:citrus/flightbooking/AirlineSchema.xsd"/>
</citrus:schemas>
</citrus:schema-collection>

Both schema definitions BaseTypes.xsd and AirlineSchema.xsd share the same target namespace
and therefore need to be combined in schema collection component. The schema collection can be
referenced in any schema repository as normal schema definition.

<citrus:schema-repository id="schemaRepository">
<citrus:schemas>
<citrus:reference schema="flightbookingSchemaCollection"/>
</citrus:schemas>
</citrus:schema-repository>

10.4.3.4. Schema mapping strategy

The schema repository in Citrus holds one to many schema definition files and dynamically picks
up the right one according to the validated message payload. The repository needs to have some
strategy for deciding which schema definition to choose. See the following schema mapping
strategies and decide which of them is suitable for you.

10.4.3.5. Target Namespace Mapping Strategy

This is the default schema mapping strategy. Schema definitions usually define some target
namespace which is valid for all elements and types inside the schema file. The target namespace is
also used as root namespace in XML message payloads. According to this information Citrus can
pick up the right schema definition file in the schema repository. You can set the schema mapping
strategy as property in the configuration files:

78

<citrus:schema-repository id="schemaRepository"
schema-mapping-strategy="schemaMappingStrategy">
<citrus:schemas>
<citrus:schema id="helloSchema"
location="classpath:citrus/samples/sayHello.xsd"/>
</citrus:schemas>
</citrus:schema-repository>

<bean id="schemaMappingStrateqgy"
class="com.consol.citrus.xml.schema.TargetNamespaceSchemaMappingStrategy"/>

The sayHello.xsd schema file defines a target namespace (http://consol.de/schemas/sayHello.xsd):

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://consol.de/schemas/sayHello.xsd"
targetNamespace="http://consol.de/schemas/sayHello.xsd"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

</xs:schema>

Incoming request messages should also have the target namespace set in the root element and this
is how Citrus matches the right schema file in the repository.

<HelloRequest xmlns="http://consol.de/schemas/sayHello.xsd">
<MessageId>123456789</Messageld>
<CorrelationId>1000</Correlationld>
<User>Christoph</User>
<Text>Hello Citrus</Text>

</HelloRequest>

10.4.3.6. Root QName Mapping Strategy

The next possibility for mapping incoming request messages to a schema definition is via the XML
root element QName. Each XML message payload starts with a root element that usually declares
the type of a XML message. According to this root element you can set up mappings in the schema
repository.

79

http://consol.de/schemas/sayHello.xsd)

<citrus:schema-repository id="schemaRepository"
schema-mapping-strategy="schemaMappingStrategy">
<citrus:schemas>
<citrus:reference schema="helloSchema"/>
<citrus:reference schema="goodbyeSchema"/>
</citrus:schemas>
</citrus:schema-repository>

<bean id="schemaMappingStrateqgy"
class="com.consol.citrus.xml.schema.RootQNameSchemaMappingStrategy">
<property name="mappings">
<map>
<entry key="HelloRequest" value="helloSchema"/>
<entry key="GoodbyeRequest" value="goodbyeSchema"/>
</map>
</property>
</bean>

<citrus:schema id="helloSchema"
location="classpath:citrus/samples/sayHello.xsd"/>

<citrus:schema id="goodbyeSchema"
location="classpath:citrus/samples/sayGoodbye.xsd"/>

The listing above defines two root gname mappings - one for HelloRequest and one for
GoodbyeRequest message types. An incoming message of type <HelloRequest> is then mapped to
the respective schema and so on. With this dedicated mappings you are able to control which
schema is used on a XML request, regardless of target namespace definitions.

10.4.3.7. Schema mapping strategy chain

Let’s discuss the possibility to combine several schema mapping strategies in a logical chain. You
can define more than one mapping strategy that are evaluated in sequence. The first strategy to
find a proper schema definition file in the repository wins.

80

<citrus:schema-repository id="schemaRepository"
schema-mapping-strategy="schemaMappingStrategy">
<citrus:schemas>
<citrus:reference schema="helloSchema"/>
<citrus:reference schema="goodbyeSchema"/>
</citrus:schemas>
</citrus:schema-repository>

<bean id="schemaMappingStrateqgy"
class="com.consol.citrus.xml.schema.SchemaMappingStrategyChain">
<property name="strategies">
<list>
<bean class="com.consol.citrus.xml.schema.RootQNameSchemaMappingStrategy">
<property name="mappings">
<map>
<entry key="HelloRequest" value="helloSchema"/>
</map>
</property>
</bean>
<bean class=
"com.consol.citrus.xml.schema.TargetNamespaceSchemaMappingStrategy"/>
</list>
</property>
</bean>

So the schema mapping chain uses both RootQNameSchemaMappingStrategy and
TargetNamespaceSchemaMappingStrategy in combination. In case the first root qname strategy
fails to find a proper mapping the next target namespace strategy comes in and tries to find a
proper schema.

10.4.3.8. DTD validation

XML DTD (document type definition) is another way to validate the structure of a XML document.
Many people say that DTD is deprecated and XML schema is the much more efficient way to
describe the rules of a XML structure. We do not disagree with that, but we also know that legacy
systems might still use DTD. So in order to avoid validation errors we have to deal with DTD
validation as well.

First thing you can do about DTD validation is to specify an inline DTD in your expected message
template.

81

<receive endpoint="httpMessageEndpoint">
<message schema-validation="false">
<data>
<I[CDATAL
<!DOCTYPE root [
<!ELEMENT root (message)>
<!ELEMENT message (text)>
<!ELEMENT text (#PCDATA)>
1>
<root>
<message>
<text>Hello TestFramework!</text>
</message>
</root>
11>
<data/>
</message>
</receive>

The system under test may also send the message with a inline DTD definition. So validation will
succeed.

In most cases the DTD is referenced as external .dtd file resource. You can do this in your expected
message template as well.

<receive endpoint="httpMessageEndpoint">
<message schema-validation="false">
<data>
<I[CDATAL
<IDOCTYPE root SYSTEM
"com/consol/citrus/validation/example.dtd">
<root>
<message>
<text>Hello TestFramework!</text>
</message>
</root>
11>
<data/>
</message>
</receive>

10.4.4. JSON schema validation

The JSON schema validation in Citrus is based on the drafts provided by json-schema.org. Because
JSON schema is a fast evolving project, only JSON schema V3 and V4 are currently supported.

82

http://json-schema.org/

In contrast to the XML validation, the JSON validation is an optional feature. You

0 have to activate it withing every receive-message action by setting schema-
validation="true"

<http:receive-request server="echoHttpServer">
<http:POST>
<http:body type="json" schema="bookStore" schema-validation="true">
<http:data>

{
"isbn" : "0345391802",
"title": "The Hitchhiker's Guide to the Galaxy",
"author": "Douglas Adams"

}
</http:data>
</http:body>
</http:POST>
</http:receive-request>

This behavior is currently required, to provide downwards compatibility to previous Citrus
versions, because a mandatory validation would cause all previous JSON based test cases to fail,
due to the missing JSON schemas for the messages within the test. That would have forced you to
update all your JSON tests with the proper schema files. This led us the decision to add the JSON
validation as an optional feature initially. Nevertheless we encourage you to add JSON schema
validation to your test cases as soon as possible, because we think that message validation is a
important part of integration testing.

10.4.5. JSON schema repositories

Because Citrus supports different types of schema repositories, it is necessary to declare a JSON
schema repository as type="json". This allows Citrus to collect all JSON schema files for the message
validation.

<citrus:schema-repository type="json" id="jsonSchemaRepository">
<citrus:schemas>
<citrus:schema id="product"
location="classpath:com/consol/citrus/validation/ProductsSchema.json"/>
</citrus:schemas>
</citrus:schema-repository>

10.4.6. JSON schema filtering and validation strategy

In reference to the current JSON schema definition, it is not possible to create a direct reference
between a JSON message and a set of schemas, as it would be possible with XML namespaces.
Because of that, Citrus follows a rule set for choosing the relevant schemas based on the
configuration withing the test case in relation to the given context. The following table assumes that
the JSON schema validation is activated for the test action.

83

Scenario Validation rules

No JSON schema repositories are defined in the No JSON schema validation applies.
context.

There is at least one JSON schema repository The message of the test action must be valid
defined in the context. regarding at least one of the available schemas
within the context.

A schema overruling is configured in the test The configured schema must exist and the
case. message must be valid regarding to the specified
schema.

A schema repository overruling is configured in The configured schema repository must exist

the test case. and the message must be valid regarding at least
one of the schemas within the specified schema
repository.

10.5. XHTML message validation

When Citrus receives plain Html messages we likely want to use the powerful XML validation
capabilities such as XML tree comparison or XPath support. Unfortunately Html messages do not
follow the XML well formed rules very strictly. This implies that XML message validation will fail
because of non well formed Html code.

XHTML closes this gap by automatically fixing the most common Html XML incompatible rule
violations such as missing end tags (e.g.
).

Let’s try this with a simple example. Very first thing for us to do is to add a new library dependency
to the project. Citrus is using the jtidy library in order to prepare the HTML and XHTML messages
for validation. As this 3rd party dependency is optional in Citrus we have to add it now to our
project dependency list. Just add the jtidy dependency to your Maven project POM.

<dependency>
<groupId>net.sf.jtidy</groupId>
<artifactId>jtidy</artifactId>
<version>r938</version>
</dependency>

Please refer to the jtidy project documentation for the latest versions. Now everything is ready. As
usual the Citrus message validator for XHTML is active in background by default. You can overwrite
this default implementation by placing a Spring bean with id defaultXhtmlMessageValidator to
the Citrus application context.

<bean id="defaultXhtmlMessageValidator"
class="com.consol.citrus.validation.xhtml.XhtmlMessageValidator"/>

Now we can tell the test case receiving action that we want to use the XHTML message validation in
our test case.

84

<receive endpoint="httpMessageEndpoint">
<message type="xhtml">
<data>
<![CDATAL
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "org/w3c/xhtml/xhtml1-
strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtm1">
<head>
<title>Citrus Hello World</title>
</head>
<body>
<h1>Hello World!</h1>

<p>This is a test!</p>
</body>
11>
</data>
</message>
</receive>

The message receiving action in our test case has to specify a message format type type="xhtml" .
As you can see the Html message payload get XHTML specific DOCTYPE processing instruction. The
xhtml1-strict.dtd is mandatory in the XHTML message validation. For better convenience all
XHTML dtd files are packaged within Citrus so you can use this as a relative path.

The incoming Html message is automatically converted into proper XHTML code with well formed
XML. So now the XHTML message validator can use the XML message validation mechanism of
Citrus for comparing received and expected data. As usual you can use test variables, ignore
element expressions and XPath expressions.

10.6. Plain text message validation

Plain text message validation is the easiest validation in Citrus that you can think of. This validation
just performs an exact Java String match of received and expected message payloads.

As usual a default message validator for plaintext messages is active by default. Citrus will pick this
message validator for all messages of type="plaintext" . The default message validator
implementation can be overwritten by placing a Spring bean with id
defaultPlaintextMessageValidator to the Spring application context.

<bean id="defaultPlaintextMessageValidator"
class="com.consol.citrus.validation.text.PlainTextMessageValidator"/>

In the test case receiving action we tell Citrus to use plain text message validation.

85

<receive endpoint="httpMessageEndpoint">
<message type="plaintext">
<data>Hello World!</data>
</message>
</receive>

With the message format type type="plaintext" set Citrus performs String equals on the message
payloads (received and expected). Only exact match will pass the test.

By the way sending plain text messages in Citrus is also very easy. Just use the plain text message
payload data in your sending message action.

<send endpoint="httpMessageEndpoint">
<message>
<data>Hello World!</data>
</message>
</send>

Of course test variables are supported in the plain text payloads. The variables are replace by the
referenced values before sending or receiving the message.

<receive endpoint="httpMessageEndpoint">
<message type="plaintext">
<data>${hello} ${world}!</data>
</message>
</receive>

10.6.1. Whitespace characters

Plaintext message payloads may only differ in system-dependent line separator characters (CR, LF,
CRLF). By default the plain text message validation fails because of that differences even if only
whitespace characters are different.

You can disable this default validation behavior and ignore new line types with following system
property or environment variable:

citrus.plaintext.validation.ignore.newline.type=true
CITRUS_PLAINTEXT_VALIDATION_IGNORE_NEWLINE_TYPE=true

In case you need to ignore all whitespaces during plain text validation such as multiple new line
characters or tabs you need to set this system property or environment variable:

citrus.plaintext.validation.ignore.whitespace=true
CITRUS_PLAINTEXT_VALIDATION_IGNORE_WHITESPACE=true

86

This property will not only ignore new line types but also normalize the whitespaces. As a result all
empty lines, tabs and double whitespace characters are filtered before comparison.

Of course you can also set the properties directly on the plain text message validator bean:

<bean id="defaultPlaintextMessageValidator"
class="com.consol.citrus.validation.text.PlainTextMessageValidator">
<property name="1ignoreNewLineType" value="true"/>
<property name="1ignoreWhitespace" value="true"/>
</bean>

10.6.2. Ignoring text parts

By default the plaint text validator performs a String equals operation. Test variables are
automatically replaced before that comparison takes place but what about ignore statements? The
plain text message validator is able to ignore words and character sequences based on their
position in the text value. Given a source plain text value:

Source text

Your current id is "1234567890"

Now in the plain text validation we need to ignore the actual id value due to some reason. Maybe
the id is generated on a foreign system and we simply do not know the actual value at runtime. In
this case we can use the common @ignore@ statement in the control message payload as follows:

Control text

Your current id is "@ignore@"

Citrus and the plain text message validator will ignore the marked part of the text during
validation. This mechanism is based on the fact that the @ignore@ statement is placed at the exact
same position as the actual id value. So this mechanism requires you to know the exact structure of
the plaintext value including all whitespace characters. When Citrus finds the @ignore@ keyword in
the control value the placeholder is replaced with the actual character sequence that is located at
the exact same position in the source message payload that is validated.

The character sequence is defined as sequence of Java word characters. This word sequence is
ending with a non-word character defined in Java (\\W which is a character that is not in [a-zA-Z_0-

9).

Instead of ignoring a single word you can also specify the amount of characters that should be
ignored. This is when you have Java non-word characters that you need to ignore. Let’s have an
example for that, too:

87

Source text

Your current id is "#12345-67890"

Given that text the simple @ignore@ statement will fail because of the non-word characters '#' and '-'
that are located in the id value. This time we ignore the whole id sequence with:

Control text

Your current id is "@ignore(12)@"

This will ignore exactly 12 characters starting from the exact position of the @ignore@ keyword. So
knowing that the id is exactly 12 characters long we can ignore that part.

10.6.3. Creating variables

Instead of just ignoring certain text parts we can also extract those parts into test variables. The
actual character sequence is ignored during validation and in addition to that the actual value is
stored to a new test variable. Given the following text payload:

Source text

Your current id is "1234567890"

And the expected control text:

Control text

Your current id is "@variable('id')@"

The validation will automatically ignore the id part in the text and create a new test variable with
name id that holds the actual value. The name of the variable to create is given in the @variable()@
statement. This enables us to extract dynamic text parts that we are not able to validate. After that
we can access the dynamic text part using the normal test variable syntax:

The id was ${id}

Also notice that the @variable()@ keyword expression has to be placed at the exact same position in
the text as the actual value. The variable extractor will read the variable value from the source
message payload starting from that position. The ending of the variable value is defined by a non-
word Java character. Dashes '-' and dots '." are automatically included in these values, too. So this
will also work for you:

Source text

Today is "2017-12-24"

88

And the expected control text:

Control text

Today is "@variable('date')@"

This results in a new variable called date with value 2017-12-24. Also the European date
representation works fine here as dots and dashes are automatically included:

Source text

Today is "24.12.2017"

10.7. Binary message validation

Binary message validation is not very easy to do especially when it comes to compare data with a
given control message. As a tester you want to validate the binary content. There are basically two
ways in Citrus how to compare binary message content.

10.7.1. Stream message validation

A first approach to validate incoming binary message content is to compare the binary stream data
with an expected stream. This comparison is straight forward as each byte in the binary stream is
compared to an expected stream.

The default message validator for binary messages is active by default. Citrus will pick this message
validator for all messages of type="binary base64" . The default message validator
implementation can be overwritten by placing a Spring bean with id
defaultBinaryBase64MessageValidator to the Spring application context.

<bean id="defaultBinaryMessageValidator"
class="com.consol.citrus.validation.text.BinaryMessageValidator"/>

You can use the binary message type in your receive action in order to enable this stream
comparison during validation.

89

@CitrusTest
public void httpServerBinary() {
http().client("httpClient")
.send()
.get("/imagestream/foo.png")
.accept(ContentType.APPLICATION_OCTET_STREAM.getMimeType());

http().client("httpClient")
.receive()
.response(HttpStatus.0K)
.messageType(MessageType.BINARY)
.message(new DefaultMessage(FileCopyUtils.copyToByteArray(new
ClassPathResource("templates/foo.png").getFile())))
.contentType(ContentType.APPLICATION_OCTET_STREAM.getMimeType());
}

It is very important to set the message type to MessageType.BINARY as this is the message type that is
automatically handled by the binary stream message validator.

10.7.2. Base64 message validation

Another way to validate binary message content is to use base64 String encoding. The binary data is
encoded as base64 character sequence and there fore is comparable with an expected content.

The received message content does not have to be base64 encoded. Citrus is doing this conversion
automatically before validation takes place. The binary data can be anything e.g. images, pdf or
gzip content.

The default message validator for binary messages is active by default. Citrus will pick this message
validator for all messages of type="binary base64" . The default message validator
implementation can be overwritten by placing a Spring bean with id
defaultBinaryBase64MessageValidator to the Spring application context.

<bean id="defaultBinaryBase64MessageValidator"
class="com.consol.citrus.validation.text.BinaryBase64MessageValidator"/>

In the test case receiving action we tell Citrus to use binary base64 message validation.

<receive endpoint="httpMessageEndpoint">
<message type="binary_base64">
<data>citrus:encodeBase64('Hello World!')</data>
</message>
</receive>

With the message format type type="binary_base64" Citrus performs the base64 character
sequence validation. Incoming message content is automatically encoded as base64 String and
compared to the expected data. This way we can make sure that the binary content is as expected.

90

By the way sending binary messages in Citrus is also very easy. Just use the type="binary" message
type in the send operation. Citrus now converts the message payload to a binary stream as payload.

<send endpoint="httpMessageEndpoint">
<message type="binary">
<data>Hello World!</data>
</message>
</send>

Base64 encoding is also supported in outbound messages. Just use the encodeBase64 function in
Citrus. The result is a base64 encoded String as message payload.

<send endpoint="httpMessageEndpoint">
<message>
<data>citrus:encodeBase64(' 'Hello World!')</data>
</message>
</send>

10.8. Gzip message validation

Gzip is a famous message compression library. When dealing with large message content the
compression might be a good way to optimize the message transportation. Citrus is able to handle
gzipped message payloads on send and receive operations. When sending compressed data we just
have to use the message type gzip.

<send endpoint="messageEndpoint">
<message type="gzip">
<data>Hello World!</data>
</message>
</send>

Just use the type="gzip" message type in the send operation. Citrus now converts the message
payload to a gzip binary stream as payload.

When validating gzip binary message content the messages are compared with a given control
message in binary base64 String representation. The gzip binary data is automatically unzipped
and encoded as base64 character sequence in order to compare with an expected content.

The received message content is using gzip format but the actual message content does not have to
be base64 encoded. Citrus is doing this conversion automatically before validation takes place. The
binary data can be anything e.g. images, pdf or plaintext content.

The default message validator for gzip messages is active by default. Citrus will pick this message
validator for all messages of type="gzip_base64" . The default message validator implementation
can be overwritten by placing a Spring bean with id defaultGzipBinaryBase64MessageValidator
to the Spring application context.

91

<bean id="defaultGzipBinaryBase64MessageValidator"
class="com.consol.citrus.validation.text.GzipBinaryBase64MessageValidator"/>

In the test case receiving action we tell Citrus to use gzip message validation.

<receive endpoint="messageEndpoint">
<message type="gzip_baseb64">
<data>citrus:encodeBase64('Hello World!')</data>
</message>
</receive>

With the message format type type="gzip_base64" Citrus performs the gzip base64 character
sequence validation. Incoming message content is automatically unzipped and encoded as base64
String and compared to the expected data. This way we can make sure that the binary content is as
expected.

If you are using http client and server components the gzip compression support
is built in with the underlying Spring and http commons libraries. So in http

o communication you just have to set the header Accept-Encoding=gzip or
Content-Encoding=gzip. The message data is then automatically
zipped/unzipped before Citrus gets the message data for validation. Read more
about this http specific gzip compression in chapter http.

10.9. Java DSL validation callbacks

The Java DSL offers some additional validation tricks and possibilities when dealing with messages
that are sent and received over Citrus. One of them is the validation callback functionality. With
this feature you can marshal/unmarshal message payloads and code validation steps on Java
objects.

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive(bookResponseEndpoint)
.validationCallback(new XmlMarshallingValidationCallback
<AddBookResponseMessage>() {
@0verride
public void validate(AddBookResponseMessage response, MessageHeaders
headers) {
Assert.isTrue(response.isSuccess());
}
1)

By default the validation callback needs some XML unmarshaller implementation for transforming

92

#http-rest

the XML payload to a Java object. Citrus will automatically search for the unmarshaller bean in
your Spring application context if nothing specific is set. Of course you can also set the
unmarshaller instance explicitly.

Java DSL designer

@Autowired
private Unmarshaller unmarshaller;

@CitrusTest
public void receiveMessageTest() {
receive(bookResponseEndpoint)
.validationCallback(new MarshallingValidationCallback<AddBookResponseMessage
>(unmarshaller) {
@0verride
public void validate(AddBookResponseMessage response, MessageHeaders
headers) {
Assert.isTrue(response.isSuccess());
}
1)

Obviously working on Java objects is much more comfortable than using the XML String
concatenation. This is why you can also use this feature when sending messages.

Java DSL designer

@Autowired
private Marshaller marshaller;

@CitrusTest
public void sendMessageTest() {
send(bookRequestEndpoint)
.payload(createAddBookRequestMessage("978-citrus:randomNumber(10)"),
marshaller)
.header (SoapMessageHeaders.SOAP_ACTION, "addBook");
}

private AddBookRequestMessage createAddBookRequestMessage(String isbn) {
AddBookRequestMessage requestMessage = new AddBookRequestMessage();
Book book = new Book();
book.setAuthor("Foo");
book.setTitle("FooTitle");
book.setIsbn(isbn);
book.setYear(2008);
book.setRegistrationDate(Calendar.getInstance());
requestMessage.setBook(book);
return requestMessage;

93

The example above creates a AddBookRequestMessage object and puts this as payload to a send
action. In combination with a marshaller instance Citrus is able to create a proper XML message
payload then.

10.10. Customize message validators

In the previous sections we have already seen some examples on how to overwrite default message
validator implementations in Citrus. By default all message validators can be overwritten by
placing a Spring bean of the same id to the Spring application context. The default implementations
of Citrus are:

defaultXmlMessageValidator

com.consol.citrus.validation.xml.DomXmlMessageValidator

defaultXpathMessageValidator

com.consol.citrus.validation.xml.XpathMessageValidator

default]sonMessageValidator

com.consol.citrus.validation.json.JsonTextMessageValidator

default]sonPathMessageValidator

com.consol.citrus.validation.json.JsonPathMessageValidator

defaultPlaintextMessageValidator

com.consol.citrus.validation.text.PlainTextMessageValidator

defaultMessageHeaderValidator

com.consol.citrus.validation.DefaultMessageHeaderValidator

defaultBinaryBase64MessageValidator

com.consol.citrus.validation.text.BinaryBase64MessageValidator

defaultGzipBinaryBase64MessageValidator

com.consol.citrus.validation.text.GzipBinaryBase64MessageValidator

defaultXhtmlMessageValidator

com.consol.citrus.validation.xhtml.XhtmlMessageValidator

defaultGroovyXmlMessageValidator

com.consol.citrus.validation.script.GroovyXmlMessageValidator

defaultGroovyTextMessageValidator

com.consol.citrus.validation.script.GroovyScriptMessageValidator

defaultGroovyJsonMessageValidator

com.consol.citrus.validation.script.GroovyJsonMessageValidator

Overwriting a single message validator with a custom implementation is then very easy. Just add

94

your custom Spring bean to the application context using one of these default bean identifiers. In
case you want to change the message validator gang by adding or removing a message validator
implementation completely you can place a message validator component in the Spring application
context.

<citrus:message-validators>
<citrus:validator ref="defaultXmlMessageValidator"/>
<citrus:validator ref="defaultXpathMessageValidator"/>
<citrus:validator ref="defaultGroovyXmlMessageValidator"/>
<citrus:validator ref="defaultPlaintextMessageValidator"/>
<citrus:validator ref="defaultMessageHeaderValidator"/>
<citrus:validator ref="defaultBinaryBase64MessageValidator"/>
<citrus:validator ref="defaultGzipBinaryBaseb4MessageValidator"/>
<citrus:validator

class="com.consol.citrus.validation.custom.CustomMessageValidator"/>
<citrus:validator ref="defaultJsonMessageValidator"/>
<citrus:validator ref="defaultJsonPathMessageValidator"/>
<citrus:validator ref="defaultGroovyJsonMessageValidator"/>
<citrus:validator ref="defaultGroovyTextMessageValidator"/>
<citrus:validator ref="defaultXhtmlMessageValidator"/>

</citrus:message-validators>

The listing above adds a custom message validator implementation to the sequence of message
validators in Citrus. We reference default message validators and add a implementation of type
com.consol.citrus.validation.custom.CustomMessageValidator . The custom implementation
class has to implement the basic interface com.consol.citrus.validation.MessageValidator . Now
Citrus will try to match the custom implementation to incoming message types and occasionally
execute the message validator logic. This is how you can add and change the basic message
validator registry in Citrus. You can add custom implementations for new message formats very
easy.

The same approach applies in case you want to remove a message validator implementation by
banning it completely. Just delete the entry in the message validator registry component:

<citrus:message-validators>
<citrus:validator ref="defaultJsonMessageValidator"/>
<citrus:validator ref="defaultJsonPathMessageValidator"/>
<citrus:validator ref="defaultGroovyJsonMessageValidator"/>
<citrus:validator ref="defaultGroovyTextMessageValidator"/>
<citrus:validator ref="defaultMessageHeaderValidator"/>
</citrus:message-validators>

The Citrus message validator component deleted all default implementations except of those
dealing with JSON message format. Now Citrus is only able to validate JSON messages. Be careful as
the complete Citrus project will be affected by this change.

95

Chapter 11. Using XPath

Some time ago in this document we have already seen how XML message payloads are constructed
when sending and receiving messages. Now using XPath is a very powerful way of accessing
elements in complex XML structures. The XPath expression language is very handy when it comes
to save element values as test variables or when validating special elements in a XML message
structure.

XPath is a very powerful technology for walking XML trees. This W3C standard stands for advanced
XML tree handling using a special syntax as query language. Citrus supports the XPath syntax in the
following fields:

message

<message><element path="[XPath-Expression]"></message>

validate

<validate><xpath expression="[XPath-Expression]"/></validate>

extract

<extract><message path="[XPath-Expression]"></extract>

ignore

<ignore path="[XPath-Expression]"/>

The next program listing indicates the power in using XPath with Citrus:

<message>
<validate>
<xpath expression="//User/Name" value="John"/>
<xpath expression="//User/Address[@type="office']/Street" value="Companystreet
21"/>
<xpath expression="//User/Name" value="${userName}"/>
<xpath expression="//User/@isAdmin" value="${isAdmin}"/>
<xpath expression="//User/@isAdmin" value="true" result-type="boolean"/>
<xpath expression="//*[.="search-for']" value="searched-for"/>
<xpath expression="count(//orderStatus[.="success'])" value="3" result-
type="number"/>
</validate>
</message>

Now we describe the XPath usage in Citrus step by step.

11.1. Manipulate with XPath

Some elements in XML message payloads might be of dynamic nature. Just think of generated
identifiers or timestamps. Also we do not want to repeat the same static identifier several times in
our test cases. This is the time where test variables and dynamic message element overwrite come

96

in handy. The idea is simple. We want to overwrite a specific message element in our payload with
a dynamic value. This can be done with XPath or inline variable declarations. Lets have a look at an
example listing showing both ways:

XML DSL

<message>
<payload>
<TestMessage>
<Messageld>${messageld}</Messageld>
<CreatedBy>_</CreatedBy>
<VersionId>${version}</VersionId>

</TestMessage>
</payload>
<element path="/TestMessage/CreatedBy" value="${user}"/>
</message>

The program listing above shows ways of setting variable values inside a message template. First of
all you can simply place variable expressions inside the message (see how ${messageld} is used). In
addition to that you can also use XPath expressions to explicitly overwrite message elements before
validation.

<element path="/TestMessage/CreatedBy" value="${user}"/>

The XPath expression evaluates and searches for the right element in the message payload. The
previously defined variable ${user} replaces the element value. Of course this works with XML
attributes too.

Both ways via XPath or inline variable expressions are equal to each other. With respect to the
complexity of XML namespaces and XPath you may find the inline variable expression more
comfortable to use. Anyway feel free to choose the way that fits best for you. This is how we can
add dynamic variable values to the control template in order to increase maintainability and
robustness of message validation.

Validation matchers put validation mechanisms to a new level offering dynamic
assertion statements for validation. Have a look at the possibilities with assertion
statements in validation-matcher.

11.2. Validate with XPath

We have already seen how to validate whole XML structures with control message templates. All
elements are validated and compared one after another. In some cases this approach might be too
extensive. Imagine the tester only needs to validate a small subset of message elements. The
definition of control templates in combination with several ignore statements is not appropriate in
this case. You would rather want to use explicit element validation.

97

#validation-matcher

XML DSL

<message>
<validate>
<xpath expression="/TestRequest/MessageId" value="${messageId}"/>
<xpath expression="/TestRequest/VersionId" value="2"/>
</validate>
</message>

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceServer")
.validate("/TestRequest/MessageId", "${messageld}")
.validate("//VersionId", "2")
.header ("Operation”, "sayHello");

Instead of comparing the whole message some message elements are validated explicitly via XPath.
Citrus evaluates the XPath expression on the received message and compares the result value to the
control value. The basic message structure as well as all other message elements are not included
into this explicit validation.

O If this type of element validation is chosen neither <payload> nor <data> nor
<resource> template definitions are allowed in Citrus XML test cases.

Citrus offers an alternative dot-notated syntax in order to walk through XML
Q trees. In case you are not familiar with XPath or simply need a very easy way to

find your element inside the XML tree you might use this way. Every element

hierarchy in the XML tree is represented with a simple dot - for example:

TestRequest.VersionId

The expression will search the XML tree for the respective <TestRequest><Versionld> element.
Attributes are supported too. In case the last element in the dot-notated expression is a XML
attribute the framework will automatically find it.

Of course this dot-notated syntax is very simple and might not be applicable for more complex tree
navigation. XPath is much more powerful - no doubt. However the dot-notated syntax might help
those of you that are not familiar with XPath. So the dot-notation is supported wherever XPath
expressions might apply.

The Xpath expressions can evaluate to different result types. By default Citrus is operating on
NODE and STRING result types so that you can validate some element value. But you can also use
different result types such as NODESET and BOOLEAN . See this example how that works:

98

XML DSL

<message>
<validate>
<xpath expression="/TestRequest/Error" value="false" result-type="boolean"/>
<xpath expression="/TestRequest/Status[.="success']" value="3" result-
type="number"/>
<xpath expression="/TestRequest/OrderType" value="[single, multi, multi]" result-
type="node-set"/>
</validate>
</message>

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceServer")
.validate("boolean:/TestRequest/Error", false)
.validate("number:/TestRequest/Status[.="success']", 3)
.validate("node-set:/TestRequest/OrderType", "[single, multi, multi]")
.header ("Operation", "sayHello");

In the example above we use different expression result types. First we want to make sure nor
[TestRequest/Error element is present. This can be done with a boolean result type and false
value. Second we want to validate the number of found elements for the expression
[TestRequest/Status[.='success'] . The XPath expression evaluates to a node list that results in its
list size to be checked. And last not least we evaluate to a node-set result type where all values in
the node list will be translated to a comma delimited string value.

Now lets have a look at some more powerful validation expressions using matcher
implementations. Up to now we have seen that XPath expression results are comparable with
equalTo operations. We would like to add some more powerful validation such as greaterThan,
lessThan, hasSize and much more. Therefore we have introduced Hamcrest validation matcher
support in Citrus. Hamcrest is a very powerful matcher library that provides a fantastic set of
matcher implementations. Lets see how we can add these in our test case:

99

XML DSL

<message>
<validate>
<xpath expression="/TestRequest/Error" value="@assertThat(any0f(empty(),
nullValue()))e"/>
<xpath expression="/TestRequest/Status[.="success']"
value="@assertThat(greaterThan(0.0))@" result-type="number"/>
<xpath expression="/TestRequest/Status[.="failed']"
value="@assertThat(lowerThan(1))@" result-type="integer"/>
<xpath expression="/TestRequest/OrderType" value="@assertThat(hasSize(3))e@"
result-type="node-set"/>
</validate>
</message>

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceServer")

.validate("/TestRequest/Error", anyOf(empty(), nullValue()))
.validate("number:/TestRequest/Status[.="success']", greaterThan(0.0))
.validate("integer:/TestRequest/Status[.="failed']", lowerThan(1))
.validate("node-set:/TestRequest/OrderType", hasSize(3))
.header ("Operation", "sayHello");

XPath uses decimal number type Double by default when evaluating expressions

o with number result type. This means we have to use Double typed expected
values, too. Citrus also provides the result type integer that automatically
converts the XPath expression result to a Integer type.

When using the XML DSL we have to use the assertThat validation matcher syntax for defining the
Hamcrest matcher. You can combine matcher implementation as seen in the anyOf(empty(),
nullValue()) expression. When using the Java DSL you can just add the matcher as expected result
object. Citrus evaluates the matchers and makes sure everything is as expected. This is a very
powerful validation mechanism as it also works with node-sets containing multiple values as list.

This is how you can add very powerful message element validation in XML using XPath
expressions.

11.3. Extract variables with XPath

Imagine you receive a message in your test with some generated message identifier values. You
have no chance to predict the identifier value because it was generated at runtime by a foreign
application. You can ignore the value in order to protect your validation. But in many cases you
might need to return this identifier in the respective response message or somewhat later on in the
test. So we have to save the dynamic message content for reuse in later test steps. The solution is

100

simple and very powerful. We can extract dynamic values from received messages and save those
to test variables. Add this code to your message receiving action.

XML DSL

<extract>

<header name="Operation" variable="operation"/>

<message path="/TestRequest/VersionId" variable="versionId"/>
</extract>

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("helloServiceServer")
.extractFromHeader ("Operation", "operation")
.extractFromPayload("//TestRequest/VersionId", "versionId");

echo("Extracted operation from header is: ${operation}");
echo("Extracted version from payload is: ${versionId}");

As you can see Citrus is able to extract both header and message payload content into test variables.
It does not matter if you use new test variables or existing variables as target. The extraction will
automatically create a new variable in case it does not exist. The time the variable was created all
following test actions can access the test variables as usual. So you can reference the variable
values in response messages or other test steps ahead.

We can also use expression result types in order to manipulate the test variable
outcome. In case we use a boolean result type the existence of elements can be

Q saved to variable values. The result type node-set translates a node list result to a
comma separated string of all values in this node list. Simply use the expression
result type attributes as shown in previous sections.

11.4. XML namespaces in XPath

When it comes to XML namespaces you have to be careful with your XPath expressions. Lets have a
look at an example message that uses XML namespaces:

101

<ns1:TestMessage xmlns:ns1="http://citrus.com/namespace">
<ns1:TestHeader>
<ns1:CorrelationId> </ns1:CorrelationId>
<ns1:Timestamp>2001-12-17T09:30:47.0Z</ns1:Timestamp>
<ns1:VersionId>2</ns1:VersionId>
</ns1:TestHeader>
<ns1:TestBody>
<ns1:Customer>
<ns1:I1d>1</ns1:1d>
</ns1:Customer>
</ns1:TestBody>
</ns1:TestMessage>

Now we would like to validate some elements in this message using XPath

<message>
<validate>
<xpath expression="//TestMessage/TestHeader/VersionId" value="2"/>
<xpath expression="//TestMessage/TestHeader/CorrelationId"
value="${correlationId}"/>
</validate>
</message>

The validation will fail although the XPath expression looks correct regarding the XML tree.
Because the message uses the namespace with its prefix ns1 our XPath expression is not able to
find the elements. The correct XPath expression uses the namespace prefix as defined in the
message.

<message>
<validate>
<xpath expression="//ns1:TestMessage/ns1:TestHeader/ns1:VersionId" value="2"/>
<xpath expression="//ns1:TestMessage/ns1:TestHeader/ns1:CorrelationId"
value="${correlationId}"/>
</message>

Now the expressions work fine and the validation is successful. But this is quite error prone. This is
because the test is now depending on the namespace prefix that is used by some application. As
soon as the message is sent with a different namespace prefix (e.g. ns2) the validation will fail
again.

You can avoid this effect when specifying your own namespace context and your own namespace
prefix during validation.

102

<message>
<validate>
<xpath expression="//pfx:TestMessage/pfx:TestHeader/pfx:VersionId" value="2"/>
<xpath expression="//pfx:TestMessage/pfx:TestHeader/pfx:CorrelationId"
value="${correlationId}"/>
<namespace prefix="pfx" value="http://citrus.com/namespace"/>
</validate>
</message>

Now the test in independent from any namespace prefix in the received message. The namespace
context will resolve the namespaces and find the elements although the message might use
different prefixes. The only thing that matters is that the namespace value
(http://citrus.com/namespace) matches.

Instead of this namespace context on validation level you can also have a global

Q namespace context which is valid in all test cases. We just add a bean in the basic
Spring application context configuration which defines global namespace
mappings.

<namespace-context>
<namespace prefix="def" uri="http://www.consol.de/samples/sayHello"/>
</namespace-context>

Once defined the def namespace prefix is valid in all test cases and all XPath expressions. This
enables you to free your test cases from namespace prefix bindings that might be broken with time.
You can use these global namespace mappings wherever XPath expressions are valid inside a test
case (validation, ignore, extract).

11.5. Default namespaces in XPath

In the previous section we have seen that XML namespaces can get tricky with XPath validation.
Default namespaces can do even more! So lets look at the example with default namespaces:

<TestMessage xmlns="http://citrus.com/namespace">
<TestHeader>
<CorrelationId> </CorrelationId>
<Timestamp>2001-12-17T09:30:47.0Z</Timestamp>
<VersionId>2</VersionId>
</TestHeader>
<TestBody>
<Customer>
<Id>1</1d>
</Customer>
</TestBody>
</TestMessage>

103

http://citrus.com/namespace

The message uses default namespaces. The following approach in XPath will fail due to namespace
problems.

<message>
<validate>
<xpath expression="//TestMessage/TestHeader/VersionId" value="2"/>
<xpath expression="//TestMessage/TestHeader/CorrelationId"
value="${correlationId}"/>
</validate>
</message>

Even default namespaces need to be specified in the XPath expressions. Look at the following code
listing that works fine with default namespaces:

<message>
<validate>
<xpath expression="//:TestMessage/:TestHeader/:VersionId" value="2"/>
<xpath expression="//:TestMessage/:TestHeader/:CorrelationId"
value="${correlationId}"/>
</validate>
</message>

It is recommended to use the namespace context as described in the previous
chapter when validating. Only this approach ensures flexibility and stable test
cases regarding namespace changes.

104

Chapter 12. Using JSONPath

JSONPath is the JSON equivalent to XPath in the XML message world. With JSONPath expressions
you can query and manipulate entries of a JSON message structure. The JSONPath expressions
evaluate against a JSON message where the JSON object structure is represented in a dot notated
syntax.

You will see that JSONPath is a very powerful technology when it comes to find object entries in a
complex JSON hierarchy structure. Also JSONPath can help to do message manipulations before a
message is sent out for instance. Citrus supports JSONPath expressions in various scenarios:

message

<message><element path="[J[SONPath-Expression]"></message>

validate

<validate><json-path expression="[JSONPath-Expression]"/></validate>

extract

<extract><message path="[JSONPath-Expression]"></extract>

ignore

<ignore path="[JSONPath-Expression]"/>

12.1. Manipulate with JSONPath

First thing we want to do with JSONPath is to manipulate a message content before it is actually
sent out. This is very useful when working with message file resources that are reused across
multiple test cases. Each test case can manipulate the message content individually with JSONPath
before sending. Lets have a look at this simple sample:

<message type="json">
<resource file="file:path/to/user.json" />
<element path="$.user.name" value="Admin" />
<element path="$.user.admin" value="true" />
<element path="%..status" value="closed" />
</message>

We use a basic message content file that is called user.json . The content of the file is following
JSON data structure:

105

{ "user":
{
"id": citrus:randomNumber(10),
"name": "Unknown",
"admin": "?",
"projects":
[{
"name": "Project1",
"status": "open"

H
{
"name": "Project2",
"status": "open"
I
{
"name": "Project3",
"status": "closed"
H

Citrus loads the file content and used it as message payload. Before the message is sent out the
JSONPath expressions have the chance to manipulate the message content. All JSONPath
expressions are evaluated and the give values overwrite existing values accordingly. The resulting
message looks like follows:

{ "user":
{
"id": citrus:randomNumber(10),
"name": "Admin",
"admin": "true",
"projects":
[{
"name": "Project1",
"status": "closed"

H
{
"name": "Project2",
"status": "closed"
I
{
"name": "Project3",
"status": "closed"
H

The JSONPath expressions have set the user name to Admin . The admin boolean property was set

106

to true and all project status values were set to closed . Now the message is ready to be sent out. In
case a JSONPath expression should fail to find a matching element within the message structure the
test case will fail.

With this JSONPath mechanism ou are able to manipulate message content before it is sent or
received within Citrus. This makes life very easy when using message resource files that are reused
across multiple test cases.

12.2. Validate with JSONPath

Lets continue to use JSONPath expressions when validating a receive message in Citrus:

XML DSL

<message type="json">
<validate>
<json-path expression="$.user.name" value="Penny"/>
<json-path expression="$['user']['name']" value="${userName}"/>
<json-path expression="$.user.aliases" value="["penny","jenny","nanny"]"/>
<json-path expression="$.user[?(@.admin)].password" value="@startsWith('$%00')@"/>
<json-path expression="$.user.address[?(@.type="office')]"
value="{"city":"Munich","street":"Company Street","type":"office"}"/>
</validate>
</message>

Java DSL

receive(someEndpoint)
.messageType(MessageType.JSON)
.validate("$.user.name", "Penny")
.validate("$['user']["'name']", "${userName}")
.validate("$.user.aliases", "["penny","jenny","nanny"]")
.validate("$.user[?(@.admin)].password", "@startsWith('$%00')e")
.validate("$.user.address[?(@.type="office')]",

"{"city":"Munich","street":"Company Street","type":"office"}");

The above JSONPath expressions will be evaluated when Citrus validates the received message. The
expression result is compared to the expected value where expectations can be static values as well
as test variables and validation matcher expressions. In case a JSONPath expression should not be
able to find any elements the test case will also fail.

JSON is a pretty simple yet powerful message format. Simply put, a JSON message just knows
JSONODbject, JSONArray and JSONValue items. The handling of JSONObject and JSONValue items in
JSONPath expressions is straight forward. We just use a dot notated syntax for walking through the
JSONODbject hierarchy. The handling of JSONArray items is also not very difficult either. Citrus will
try the best to convert JSONArray items to String representation values for comparison.

107

JSONPath expressions will only work on JSON message formats. This is why we
have to tell Citrus the correct message format. By default Citrus is working with

o XML message data and therefore the XML validation mechanisms do apply by
default. With the message type attribute set to json we make sure that Citrus
enables JSON specific features on the message validation such as JSONPath
support.

Now lets get a bit more complex with validation matchers and JSON object functions. Citrus tries to
give you the most comfortable validation capabilities when comparing JSON object values and JSON
arrays. One first thing you can use is object functions like keySet() or size() . This functionality is
not covered by JSONPath out of the box but added by Citrus. See the following example on how to
use it:

XML DSL

<message type="json">
<validate>
<json-path expression="$.user.keySet()" value="[1id,name,admin,projects]"/>
<json-path expression="$.user.aliases.size()" value="3"/>
</validate>
</message>

Java DSL

receive(someEndpoint)
.messageType(MessageType.JSON)
.validate("$.user.keySet()", "[id,name,admin,projects]")
.validate("$.user.aliases.size()", "3");

The object functions do return special JSON object related properties such as the set of keys for an
object or the size of an JSON array.

Now lets get even more comfortable validation capabilities with matchers. Citrus supports
Hamcrest matchers which gives us a very powerful way of validating JSON object elements and
arrays. See the following examples that demonstrate how this works:

XML DSL

<message type="json">
<validate>
<json-path expression="$.user.keySet()"
value="@assertThat(contains(id,name,admin,projects))@"/>
<json-path expression="$.user.aliases.size()"
value="@assertThat(all0f(greaterThan(@), lessThan(5)))e@"/>
</validate>
</message>

108

Java DSL

receive(someEndpoint)
.messageType(MessageType.JSON)
.validate("$.user.keySet()", contains("id","name","admin","projects"))
.validate("$.user.aliases.size()", allOf(greaterThan(@), lessThan(5)));

When using the XML DSL we have to use the assertThat validation matcher syntax for defining the
Hamcrest matchers. You can combine matcher implementation as seen in the
allof(greaterThan(0), lessThan(5)) expression. When using the Java DSL you can just add the
matcher as expected result object. Citrus evaluates the matchers and makes sure everything is as
expected. This is a very powerful validation mechanism as it combines the Hamcrest matcher
capabilities with JSON message validation.

12.3. Extract variables with JSONPath

Citrus is able to save message content to test variables at test runtime. When an incoming message
is passing the message validation the user can extract some values of that received message to new
test variables for later use in the test. This is especially handsome when having to send back some
dynamic values. So lets save some values using JSONPath:

<message type="json">
<data>
{ "user":
{
"name": "Admin",
"password": "secret",
"admin": "true",
"aliases": ["penny","chef","master"]
}
}

</data>
<extract>
<message path="$.user.name" variable="userName"/>
<message path="$.user.aliases" variable="userAliases"/>
<message path="$.user[?(@.admin)].password" variable="adminPassword"/>
</extract>
</message>

With this example we have extracted three new test variables via JSONPath expression evaluation.
The three test variables will be available to all upcoming test actions. The variable values are:

userName=Admin
userAliases=["penny", "chef", "master"]
adminPassword=secret

As you can see we can also extract complex JSONObject items or J[SONArray items. The test variable

109

value is a String representation of the complex object.

12.4. Ignore with JSONPath

The next usage scenario for JSONPath expressions in Citrus is the ignoring of elements during
message validation. As you already know Citrus provides powerful validation mechanisms for XML
and JSON message format. The framework is able to compare received and expected message
contents with powerful validator implementations. Now it this time we want to use a JSONPath
expression for ignoring a very specific entry in the JSON object structure.

<message type="json">

<data>

{
"users":
[{

"name": "Jane",
Iltokenll: Il?ll,
"lastLogin": 0

I,
{
"name": "Penny",
"token": "?",
"lastLogin": 0
I
{
"name": "Mary",
"token": "?",
"lastLogin": 0
H
}
</data>

<ignore expression="$.users[*].token" />
<ignore expression="$..lastLogin" />
</message>

This time we add JSONPath expressions as ignore statements. This means that we explicitly leave
out the evaluated elements from validation. Obviously this mechanism is a good thing to do when
dynamic message data simply is not deterministic such as timestamps and dynamic identifiers. In
the example above we explicitly skip the token entry and all lastLogin values that are obviously
timestamp values in milliseconds.

The JSONPath evaluation is very powerful when it comes to select a set of JSON objects and
elements. This is how we can ignore several elements with one single JSONPath expression which is
very powerful.

110

Chapter 13. Test actions

This chapter gives a brief description to all test actions that a tester can incorporate into the test
case. Besides sending and receiving messages the tester may access these actions in order to build a
more complex test scenario that fits the desired use case.

13.1. Sending messages

In a integration test scenario we want to trigger processes and call interface services on the system
under test. In order to do this we need to be able to send messages to various message transports.
Therefore the send message test action in Citrus is one of the most important test actions. First of all
let us have a look at the Citrus message definition in Citrus:

Message

. N

;. ™

[] | .
Header

. A

4)

. J
| vy

A message consists of a message header (name-value pairs) and a message payload. Later in this
section we will see different ways of constructing a message with payload and header values. But
first of all let’s concentrate on a simple sending message action inside a test case.

111

XML DSL

<testcase name="SendMessageTest">
<description>Basic send message example</description>

<variables>
<variable name="text" value="Hello Citrus!"/>
<variable name="messageId" value="Mx1x123456789"/>
</variables>

<actions>
<send endpoint="helloServiceEndpoint">
<message name="helloMessage">
<payload>
<TestMessage>
<Text>${text}</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="Operation" value="sayHello"/>
<element name="MessageId" value="${messageId}"/>
</header>
</send>
</actions>
</testcase>

The message name is optional and defines the message identifier in the local message store. This
message name is very useful when accessing the message content later on during the test case. The
local message store is handled per test case and contains all exchanged messages. The sample uses
both header and payload as message parts to send. In both parts you can use variable definitions
(see ${text} and ${messageld}). So first of all let us recap what variables do. Test variables are
defined at the very beginning of the test case and are valid throughout all actions that take place in
the test. This means that actions can simply reference a variable by the expression ${variable-
namej} .

Use variables wherever you can! At least the important entities of a test should be
defined as variables at the beginning. The test case improves maintainability and
flexibility when using variables.

Now lets have a closer look at the sending action. The 'endpoint' attribute might catch your
attention first. This attribute references a message endpoint in Citrus configuration by name. As
previously mentioned the message endpoint definition lives in a separate configuration file and
contains the actual message transport settings. In this example the "helloServiceEndpoint" is
referenced which is a message endpoint for sending out messages via JMS or HTTP for instance.

The test case is not aware of any transport details, because it does not have to. The advantages are
obvious: On the one hand multiple test cases can reference the message endpoint definition for
better reuse. Secondly test cases are independent of message transport details. So connection

112

factories, user credentials, endpoint uri values and so on are not present in the test case.

In other words the "endpoint" attribute of the <send> element specifies which message endpoint
definition to use and therefore where the message should go to. Once again all available message
endpoints are configured in a separate Citrus configuration file. We will come to this later on. Be
sure to always pick the right message endpoint type in order to publish your message to the right
destination.

If you do not like the XML language you can also use pure Java code to define the same test. In Java
you would also make use of the message endpoint definition and reference this instance. The same
test as shown above in Java DSL looks like this:

Java DSL designer

import org.testng.ITestContext;

import org.testng.annotations.Test;

import com.consol.citrus.annotations.CitrusTest;

import com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public class SendMessageTestDesigner extends TestNGCitrusTestDesigner {

@CitrusTest(name = "SendMessageTest")
public void sendMessageTest() {
description("Basic send message example");

variable("text", "Hello Citrus!");
variable("messageld", "Mx1x123456789");

send("helloServiceEndpoint")
.name("helloMessage")
.payload("<TestMessage>" +
"<Text>${text}</Text>" +
"</TestMessage>")
.header("Operation", "sayHello")
.header ("RequestTag", "${messageld}");

113

Java DSL runner

import org.testng.ITestContext;

import org.testng.annotations.Test;

import com.consol.citrus.annotations.CitrusTest;

import com.consol.citrus.dsl.testng.TestNGCitrusTestRunner;

@Test
public class SendMessageTestRunner extends TestNGCitrusTestRunner {

@CitrusTest(name = "SendMessageTest")

public void sendMessageTest() {
variable("text", "Hello Citrus!");
variable("messageId", "Mx1x123456789");

send(action -> action.endpoint("helloServiceEndpoint")
.name("helloMessage")
.payload("<TestMessage>" +
"<Text>${text}</Text>" +
"</TestMessage>")
.header("Operation", "sayHello")
.header("RequestTag", "${messageId}"));

Instead of using the XML tags for send we use methods from TestNGCitrusTestDesigner class. The
same message endpoint is referenced within the send message action.

Now that the message sender pattern is clear we can concentrate on how to specify the message
content to be sent. There are several possibilities for you to define message content in Citrus:

message

This element constructs the message to be sent. There are several child elements available:

payload
Nested XML payload as direct child node.

data
Inline CDATA definition of the message payload

resource

External file resource holding the message payload The syntax would be: <resource
file="classpath:com/consol/citrus/messages/TestRequest.xml" /> The file path prefix indicates
the resource type, so the file location is resolved either as file system resource (file:) or classpath
resource (classpath:).

element

Explicitly overwrite values in the XML message payload using XPath. You can replace message
content with dynamic values before sending. Each <element> entry provides a "path" and

114

"value" attribute. The "path" gives a XPath expression evaluating to a XML node element or
attribute in the message. The "value" can be a variable expression or any other static value.
Citrus will replace the value before sending the message.

header

Defines a header for the message (e.g. JMS header information or SOAP header):

element

Each header receives a "name" and "value". The "name" will be the name of the header entry
and "value" its respective value. Again the usage of variable expressions as value is supported
here, too.

XML DSL

<send endpoint="helloServiceEndpoint">
<message>
<payload>
<!-- message payload as XML -->
</payload>
</message>
</send>

<send endpoint="helloServiceEndpoint">
<message>
<data>
<![CDATAL
<!-- message payload as XML -->
11>
</data>
</message>
</send>

<send endpoint="helloServiceEndpoint">
<message>
<resource file="classpath:com/consol/citrus/messages/TestRequest.xml" />
</message>
</send>

The most important thing when dealing with sending actions is to prepare the message payload and
header. You are able to construct the message payload either by nested XML child nodes (payload),
as inline CDATA (<data>) or external file (<resource>).

115

Sometimes the nested XML message payload elements may cause XSD schema
validation rule violations. This is because of variable values not fitting the XSD
O schema rules for example. In this scenario you could also use simple CDATA
sections as payload data. In this case you need to use the “<data>" element in
contrast to the “<payload>" element that we have used in our examples so far.

With this alternative you can skip the XML schema validation from your IDE at design time.
Unfortunately you will loose the XSD auto completion features many XML editors offer when
constructing your payload.

The The same possibilities apply to the Citrus Java DSL.

Java DSL designer

@CitrusTest
public void messagingTest() {
send("helloServiceEndpoint")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>");

@CitrusTest
public void messagingTest() {
send("helloServiceEndpoint")
.payload(new ClassPathResource("com/consol/citrus/messages/TestRequest.xml"));

@CitrusTest
public void messagingTest() {
send("helloServiceEndpoint")
.payloadModel(new TestRequest("Hello Citrus!"));

@CitrusTest
public void messagingTest() {
send("helloServiceEndpoint")
.message(new DefaultMessage("Hello World!")));

Besides defining message payloads as normal Strings and via external file resource (classpath and
file system) you can also use model objects as payload data in Java DSL. This model object payload
requires a proper message marshaller that should be available as Spring bean inside the
application context. By default Citrus is searching for a bean of type
org.springframework.oxm.Marshaller .

116

In case you have multiple message marshallers in the application context you have to tell Citrus
which one to use in this particular send message action.

@CitrusTest
public void messagingTest() {
send("helloServiceEndpoint")
.payloadModel(new TestRequest("Hello Citrus!"), "myMessageMarshallerBean");

Now Citrus will marshal the message payload with the message marshaller bean named
myMessageMarshallerBean . This way you can have multiple message marshaller
implementations active in your project (XML, JSON, and so on).

Last not least the message can be defined as Citrus message object. Here you can choose one of the
different message implementations used in Citrus for SOAP, Http or JMS messages. Or you just use
the default message implementation or maybe a custom implementation.

Before sending takes place you can explicitly overwrite some message values in payload. You can
think of overwriting specific message elements with variable values. Also you can overwrite values
using XPath (xpath) or JSONPath (json-path) expressions.

The message header is part of our duty of defining proper messages, too. So Citrus uses name-value
pairs like "Operation" and "Messageld" in the next example to set message header entries.
Depending on what message endpoint is used and which message transport underneath the header
values will be shipped in different ways. In JMS the headers go to the header section of the message,
in Http we set mime headers accordingly, in SOAP we can access the SOAP header elements and so
on. Citrus aims to do the hard work for you. So Citrus knows how to set headers on different
message transports.

XML DSL

<send endpoint="helloServiceEndpoint">

<message>
<payload>
<TestMessage>
<Text>Hello!</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="Operation" value="sayHello"/>
</header>
</receive>

The message headers to send are defined by a simple name and value pair. Of course you can use
test variables in header values as well. Let’s see how this looks like in Java DSL:

117

#xpath
#json-path

Java DSL designer

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>")
.header("Operation", "sayHello");

Java DSL runner

@CitrusTest
public void messagingTest() {
receive(action -> action.endpoint("helloServiceEndpoint")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>")
.header("Operation", "sayHello"));

This is basically how to send messages in Citrus. The test case is responsible for constructing the
message content while the predefined message endpoint holds transport specific settings. Test cases
reference endpoint components to publish messages to the outside world. The variable support in
message payload and message header enables you to add dynamic values before sending out the
message.

13.2. Recelve messages

Just like sending messages the receiving part is a very important action in an integration test.
Honestly the receive action is even more important in Citrus as we also want to validate the
incoming message contents. We are writing a test so we also need assertions and checks that
everything works as expected.

As already mentioned before a message consists of a message header (name-value pairs) and a
message payload. Later in this document we will see how to validate incoming messages with
payload and header values. We start with a very simple example:

118

XML DSL

<receive endpoint="helloServiceEndpoint">
<message name="helloRequest">
<payload>
<TestMessage>
<Text>${text}</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="Operation" value="sayHello"/>
<element name="MessageId" value="${messageld}"/>
</header>
</receive>

Overall the receive message action looks quite similar to the send message action. Concepts are
identical as we define the message content with payload and header values. The message name is
optional and defines the message identifier in the local message store. This message name is very
useful when accessing the message content later on during the test case. The local message store is
handled per test case and contains all exchanged messages.

We can use test variables in both message payload an headers. Now let us have a look at the Java
DSL representation of this simple example:

Java DSL designer

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.name("helloRequest")
.payload("<TestMessage>" +
"<Text>${text}</Text>" +
"</TestMessage>")
.header ("Operation", "sayHello")
.header("MessageId", "${messageld}");

119

Java DSL runner

@CitrusTest
public void messagingTest() {
receive(action -> action.endpoint("helloServiceEndpoint")
.name("helloRequest")
.payload("<TestMessage>" +
"<Text>${text}</Text>" +
"</TestMessage>")

.header("Operation", "sayHello")
.header ("MessageId", "${messageld}"));

The receive action waits for a message to arrive. The whole test execution is stopped while waiting
for the message. This is important to ensure the step by step test workflow processing. Of course
you can specify message timeouts so the receiver will only wait a given amount of time before
raising a timeout error. Following from that timeout exception the test case fails as the message did
not arrive in time. Citrus defines default timeout settings for all message receiving tasks.

In a good case scenario the message arrives in time and the content can be validated as a next step.
This validation can be done in various ways. On the one hand you can specify a whole XML
message that you expect as control template. In this case the received message structure is
compared to the expected message content element by element. On the other hand you can use
explicit element validation where only a small subset of message elements is included into
validation.

Besides the message payload Citrus will also perform validation on the received message header
values. Test variable usage is supported as usual during the whole validation process for payload
and header checks.

In general the validation component (validator) in Citrus works hand in hand with a message
receiving component as the following figure shows:

validate(Message)
/alidator j = [

receive()
Endpoint | -

MessageDestinat

essage) receive()
— [Endpoint])

MessageDestination

The message receiving component passes the message to the validator where the individual
validation steps are performed. Let us have a closer look at the validation options and features step
by step.

120

13.2.1. Validate message payloads

The most detailed validation of incoming messages is to define some expected message payload.
The Citrus message validator will then perform a detailed message payload comparison. The
incoming message has to match exactly to the expected message payload. The different message
validator implementations in Citrus provide deep comparison of message structures such as XML,
JSON and so on

So by defining an expected message payload we validate the incoming message in syntax and
semantics. In case a difference is identified by the message validator the validation and the test case
fails with respective exceptions. This is how you can define message payloads in receive action:

XML DSL

<receive endpoint="helloServiceEndpoint">
<message>
<payload>
<!-- message payload as XML -->
</payload>
</message>
</receive>

<receive endpoint="helloServiceEndpoint">
<message>
<data>
<![CDATA[
<!-- message payload as XML -->
11>
</data>
</message>
</receive>

<receive endpoint="helloServiceEndpoint">
<message>
<resource file="classpath:com/consol/citrus/messages/TestRequest.xml" />
</message>
</receive>

The three examples above represent three different ways of defining the message payload in a
receive message action. On the one hand we can use inline message payloads as nested XML or
CDATA sections in the test. On the other hand we can load the message content from external file
resource.

121

Sometimes the nested XML message payload elements may cause XSD schema
validation rule violations. This is because of variable values not fitting the XSD
O schema rules for example. In this scenario you could also use simple CDATA
sections as payload data. In this case you need to use the “<data>" element in
contrast to the “<payload>" element that we have used in our examples so far.

With this alternative you can skip the XML schema validation from your IDE at design time.
Unfortunately you will loose the XSD auto completion features many XML editors offer when
constructing your payload.

In Java DSL we also have multiple options for specifying the message payloads:

Java DSL designer

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>");

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.payload(new ClassPathResource("com/consol/citrus/messages/TestRequest.xml"));

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.payloadModel(new TestRequest("Hello Citrus!"));

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.message(new DefaultMessage("Hello World!")));

The examples above represent the basic variations of how to define message payloads in Citrus
Java DSL. The payload can be a simple String or a Spring file resource (classpath or file system). In
addition to that we can use a model object. When using model objects as payloads we need a proper
message marshaller implementation in the Spring application context. By default this is a
marshaller bean of type org.springframework.oxm.Marshaller that has to be present in the

122

Spring application context. You can add such a bean for XML and JSON message marshalling for
instance.

In case you have multiple message marshallers in the application context you have to tell Citrus
which one to use in this particular send message action.

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.payloadModel(new TestRequest("Hello Citrus!"), "myMessageMarshallerBean");

Now Citrus will marshal the message payload with the message marshaller bean named
myMessageMarshallerBean . This way you can have multiple message marshaller
implementations active in your project (XML, JSON, and so on).

Last not least the message can be defined as Citrus message object. Here you can choose one of the
different message implementations used in Citrus for SOAP, Http or JMS messages. Or you just use
the default message implementation or maybe a custom implementation.

In general the expected message content can be manipulated using XPath (xpath) or JSONPath
(json-path). In addition to that you can ignore some elements that are skipped in comparison. We
will describe this later on in this section. Now lets continue with message header validation.

13.2.2. Validate message headers

Message headers are used widely in enterprise messaging solution: The message headers are part
of the message semantics and need to be validated, too. Citrus can validate message header by
name and value.

XML DSL

<receive endpoint="helloServiceEndpoint">
<message>
<payload>
<TestMessage>
<Text>Hello!</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="Operation" value="sayHello"/>
</header>
</receive>

The expected message headers are defined by a name and value pair. Citrus will check that the
expected message header is present and will check the value. In case the message header is not
found or the value does not match Citrus will raise an exception and the test fails. You can use

123

#xpath
#json-path

validation matchers (validation-matcher) for a more powerful validation of header values, too.
Let’s see how this looks like in Java DSL:

Java DSL designer

@CitrusTest
public void messagingTest() {
receive("helloServiceEndpoint")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>")
.header("Operation", "sayHello");

Java DSL runner

@CitrusTest
public void messagingTest() {
receive(action -> action.endpoint("helloServiceEndpoint")
.payload("<TestMessage>" +
"<Text>Hello!</Text>" +
"</TestMessage>")
.header("Operation", "sayHello"));

Header definition in Java DSL is straight forward as we just define name and value as usual. This
completes the message validation when receiving a message in Citrus. The message validator
implementations may add additional validation capabilities such as XML schema validation or
XPath and JSONPath validation. Please refer to the respective chapters in this guide to learn more
about that.

13.2.3. Message selectors

The <selector> element inside the receiving action defines key-value pairs in order to filter the
messages being received. The filter applies to the message headers. This means that a receiver will
only accept messages matching a header element value. In messaging applications the header
information often holds message ids, correlation ids, operation names and so on. With this
information given you can explicitly listen for messages that belong to your test case. This is very
helpful to avoid receiving messages that are still available on the message destination.

Lets say the tested software application keeps sending messages that belong to previous test cases.
This could happen in retry situations where the application error handling automatically tries to
solve a communication problem that occurred during previous test cases. As a result a message
destination (e.g. a JMS message queue) contains messages that are not valid any more for the
currently running test case. The test case might fail because the received message does not apply to
the actual use case. So we will definitely run into validation errors as the expected message control
values do not match.

124

#validation-matcher

Now we have to find a way to avoid these problems. The test could filter the messages on a
destination to only receive messages that apply for the use case that is being tested. The Java
Messaging System (JMS) came up with a message header selector that will only accept messages
that fit the expected header values.

Let us have a closer look at a message selector inside a receiving action:

XML DSL

<selector>
<element name="correlationId" value="Cx1x123456789"/>
<element name="operation" value="getOrders"/>
</selector>

Java DSL designer

@CitrusTest
public void receiveMessageTest() {
receive("testServiceEndpoint")
.selector("correlationId="Cx1x123456789" AND operation="getOrders'");

Java DSL runner

@CitrusTest
public void receiveMessageTest() {
receive(action -> action.endpoint("testServiceEndpoint")
.selector("correlationId="Cx1x123456789" AND operation="getOrders'"));

This example shows how message selectors work. The selector will only accept messages that meet
the correlation id and the operation in the header values. All other messages on the message
destination are ignored. The selector elements are automatically associated to each other using the
logical AND operator. This means that the message selector string would look like this:
correlationld = 'Cx1x123456789' AND operation = 'getOrders' .

Instead of using several elements in the selector you can also define a selector string directly which
gives you more power in constructing the selection logic yourself. This way you can use AND logical
operators yourself.

<selector>
<value>
correlationId = 'Cx1x123456789"' AND operation = 'getOrders'
</value>
</selector>

125

In case you want to run tests in parallel message selectors become essential in
o your test cases. The different tests running at the same time will steal messages
from each other when you lack of message selection mechanisms.

Previously only JMS message destinations offered support for message selectors!
0 With Citrus version 1.2 we introduced message selector support for Spring
Integration message channels, too (see message-channel-selector-support).

13.2.4. Groovy MarkupBuilder

With the Groovy MarkupBuilder you can build XML message payloads in a simple way, without
having to write the typical XML overhead. For example we use a Groovy script to construct the XML
message to be sent out. Instead of a plain CDATA XML section or the nested payload XML data we
write a Groovy script snippet. The Groovy MarkupBuilder generates the XML message payload with
exactly the same result:

XML DSL

<send endpoint="helloServiceEndpoint">
<message>
<builder type="groovy">
markupBuilder.TestMessage {

MessageId('${messageld}")
Timestamp('?")
VersionId('2")
Text('Hello Citrus!")

}

</builder>

<element path="/TestMessage/Timestamp"

value="${createDate}"/>

</message>

<header>
<element name="Operation" value="sayHello"/>
<element name="MessageId" value="${messageld}"/>

</header>

</send>

We use the builder element with type groovy and the MarkupBuilder code is directly written to
this element. As you can see from the example above, you can mix XPath and Groovy markup
builder code. The MarkupBuilder syntax is very easy and follows the simple rule:
markupBuilder. ROOT-ELEMENT{ CHILD-ELEMENTS } . However the tester has to follow some
simple rules and naming conventions when using the Citrus MarkupBuilder extension:

* The MarkupBuilder is accessed within the script over an object named markupBuilder. The
name of the custom root element follows with all its child elements.

* Child elements may be defined within curly brackets after the root-element (the same applies
for further nested child elements)

126

#message-channel-selector-support

o Attributes and element values are defined within round brackets, after the element name

 Attribute and element values have to stand within apostrophes (e.g. attribute-name: 'attribute-
value')

The Groovy MarkupBuilder script may also be used within receive actions as shown in the
following listing:

XML DSL

<send endpoint="helloServiceEndpoint">
<message>
<builder type="groovy"
file="classpath:com/consol/citrus/groovy/helloRequest.groovy"/>
</message>
</send>

<receive endpoint="helloServiceEndpoint" timeout="5000">
<message>
<builder type="groovy">
markupBuilder.TestResponse(xmlns:

"http://www.consol.de/schemas/samples/sayHello.xsd"){
MessageId('${messageld}")
CorrelationId('${correlationId}")
User('HelloService')
Text('Hello ${user}')

}
</builder>
</message>
</receive>

As you can see it is also possible to define the script as external file resource. In addition to that
namespace support is given as normal attribute definition within the round brackets after the
element name.

The MarkupBuilder implementation in Groovy offers great possibilities in defining message
payloads. We do not need to write XML tag overhead and we can construct complex message
payloads with Groovy logic like iterations and conditional elements. For detailed MarkupBuilder
descriptions please see the official Groovy documentation.

13.3. Database actions

In many cases it is necessary to access the database during a test. This enables a tester to also
validate the persistent data in a database. It might also be helpful to prepare the database with
some test data before running a test. You can do this using the two database actions that are
described in the following sections.

In general Citrus handles SELECT statements differently to other statements like INSERT, UPDATE
and DELETE. When executing a SQL query with SELECT you are able to add validation steps on the
result sets returned from the database. This is not allowed when executing update statements like

127

INSERT, UPDATE, DELETE.

Do not mix statements of type SELECT with others in a single sql test action. This
will lead to errors because validation steps are not valid for statements other
than SELECT. Please use separate test actions for update statements.

13.3.1. SQL update, insert, delete

The <sql> action simply executes a group of SQL statements in order to change data in a database.
Typically the action is used to prepare the database at the beginning of a test or to clean up the
database at the end of a test. You can specify SQL statements like INSERT, UPDATE, DELETE, CREATE
TABLE, ALTER TABLE and many more.

On the one hand you can specify the statements as inline SQL or stored in an external SQL resource
file as shown in the next two examples.

XML DSL

<actions>
<sql datasource="someDataSource">
<statement>DELETE FROM CUSTOMERS</statement>
<statement>DELETE FROM ORDERS</statement>
</sql>

<sql datasource="myDataSource">
<resource file="file:tests/unit/resources/script.sql"/>
</sql>
</actions>

Java DSL designer

@Autowired
@Qualifier("myDataSource")
private DataSource dataSource;

@CitrusTest
public void sqlTest() {
sql(dataSource)
.statement("DELETE FROM CUSTOMERS")
.statement("DELETE FROM ORDERS");

sql(dataSource)
.sqlResource("file:tests/unit/resources/script.sql");

128

Java DSL runner

@Autowired
@Qualifier("myDataSource")
private DataSource dataSource;

@CitrusTest
public void sqlTest() {
sql(action -> action.dataSource(dataSource)
.statement("DELETE FROM CUSTOMERS")
.statement("DELETE FROM ORDERS"));

sql(action -> action.dataSource(dataSource)
.sqlResource("file:tests/unit/resources/script.sql"));

The first action uses inline SQL statements defined directly inside the test case. The next action uses
an external SQL resource file instead. The file resource can hold several SQL statements separated
by new lines. All statements inside the file are executed sequentially by the framework.

o You have to pay attention to some rules when dealing with external SQL
resources.

* Each statement should begin in a new line
* Itis not allowed to define statements with word wrapping

* Comments begin with two dashes "-"

0 The external file is referenced either as file system resource or class path
resource, by using the "file:" or "classpath:" prefix.

Both examples use the "datasource" attribute. This value defines the database data source to be
used. The connection to a data source is mandatory, because the test case does not know about user
credentials or database names. The 'datasource’ attribute references predefined data sources that
are located in a separate Spring configuration file.

13.3.2. SQL query

The <sql> query action is specially designed to execute SQL queries (SELECT * FROM). So the test is
able to read data from a database. The query results are validated against expected data as shown
in the next example.

129

XML DSL

<sql datasource="testDataSource">
<statement>select NAME from CUSTOMERS where ID='${customerId}'</statement>
<statement>select count(*) from ERRORS</statement>
<statement>select ID from ORDERS where DESC LIKE 'Def%'</statement>
<statement>select DESCRIPTION from ORDERS where ID='${id}'</statement>

<validate column="ID" value="1"/>

<validate column="NAME" value="Christoph"/>

<validate column="COUNT(*)" value="${rowsCount}"/>

<validate column="DESCRIPTION" value="null"/>
</sql>

Java DSL designer

@Autowired
@Qualifier("testDataSource")
private DataSource dataSource;

@CitrusTest
public void databaseQueryTest() {
query(dataSource)

.statement("select NAME from CUSTOMERS where CUSTOMER_ID='${customerId}'")
.statement("select COUNT(1) as overall_cnt from ERRORS")
.statement("select ORDER_ID from ORDERS where DESCRIPTION LIKE 'Migrate%'")
.statement("select DESCRIPTION from ORDERS where ORDER_ID = 2")
.validate("ORDER_ID", "1")
.validate("NAME", "Christoph")
.validate("OVERALL _CNT", "${rowsCount}")
.validate("DESCRIPTION", "NULL");

130

Java DSL runner

@Autowired
@Qualifier("testDataSource")
private DataSource dataSource;

@CitrusTest
public void databaseQueryTest() {
query(action -> action.dataSource(dataSource)

.statement("select NAME from CUSTOMERS where CUSTOMER_ID='${customerId}'")
.statement("select COUNT(1) as overall _cnt from ERRORS")
.statement("select ORDER_ID from ORDERS where DESCRIPTION LIKE

'Migrate%'")
.statement("select DESCRIPTION from ORDERS where ORDER_ID = 2")
.validate("ORDER_ID", "1")
.validate("NAME", "Christoph")
.validate("OVERALL _CNT", "${rowsCount}")
.validate("DESCRIPTION", "NULL"));

The action offers a wide range of validating functionality for database result sets. First of all you
have to select the data via SQL statements. Here again you have the choice to use inline SQL
statements or external file resource pattern.

The result sets are validated through <validate> elements. It is possible to do a detailed check on
every selected column of the result set. Simply refer to the selected column name in order to
validate its value. The usage of test variables is supported as well as database expressions like
count(), avg(), min(), max().

You simply define the <validate> entry with the column name as the "column" attribute and any
expected value expression as expected "value". The framework then will check the column to fit the
expected value and raise validation errors in case of mismatch.

Looking at the first SELECT statement in the example you will see that test variables are supported
in the SQL statements. The framework will replace the variable with its respective value before
sending it to the database.

In the validation section variables can be used too. Look at the third validation entry, where the
variable "${rowsCount}" is used. The last validation in this example shows, that NULL values are
also supported as expected values.

If a single validation happens to fail, the whole action will fail with respective validation errors.

The validation with "<validate column="..." value="..."/>" meets single row

0 result sets as you specify a single column control value. In case you have multiple
rows in a result set you rather need to validate the columns with multiple control
values like this:

131

<validate column="someColumnName">
<values>
<value>Value in 1st row</value>
<value>Value in 2nd row</value>
<value>Value in 3rd row</value>
<value>Value in x row</value>
</values>
</validate>

Within Java you can pass a variable argument list to the validate method like this:

query(dataSource)
.statement("select NAME from WEEKDAYS where NAME LIKE 'S%'")
.validate("NAME", "Saturday", "Sunday")

Next example shows how to work with multiple row result sets and multiple values to expect
within one column:

<sql datasource="testDataSource">
<statement>select WEEKDAY as DAY, DESCRIPTION from WEEK</statement>
<validate column="DAY">
<values>
<value>Monday</value>
<value>Tuesday</value>
<value>Wednesday</value>
<value>Thursday</value>
<value>Friday</value>
<value>@ignore@</value>
<value>@ignore@</value>
</values>
</validate>
<validate column="DESCRIPTION">
<values>
<value>I hate Mondays!</value>
<value>Tuesday is sports day</value>
<value>The mid of the week</value>
<value>Thursday we play chess</value>
<value>Friday, the weekend is near!</value>
<value>@ignore@</value>
<value>@ignore@</value>
</values>
</validate>
</sql>

For the validation of multiple rows the “<validate>" element is able to host a list of control values
for a column. As you can see from the example above, you have to add a control value for each row
in the result set. This also means that we have to take care of the total number of rows. Fortunately

132

we can use the ignore placeholder, in order to skip the validation of a specific row in the result set.
Functions and variables are supported as usual.

It is important, that the control values are defined in the correct order, because
they are compared one on one with the actual result set coming from database

o query. You may need to add "order by" SQL expressions to get the right order of
rows returned. If any of the values fails in validation or the total number of rows
is not equal, the whole action will fail with respective validation errors.

13.3.3. Transaction management

By default no transactions are used when Citrus executes SQL statements on a datasource. You can
enable transaction management by selecting a transaction manager.

XML DSL

<actions>
<sql datasource="someDataSource"
transaction-manager="someTransactionManager"
transaction-timeout="15000"
transaction-isolation-level="ISOLATION READ COMMITTED">
<statement>DELETE FROM CUSTOMERS</statement>
<statement>DELETE FROM ORDERS</statement>
</sql>
</actions>

Java DSL

@Autowired
@Qualifier("myDataSource")
private DataSource dataSource;

@CitrusTest
public void sqlTest() {
sql(dataSource)

.transactionManager(transactionManager)
.transactionTimeout(15000)
.transactionIsolationlLevel("ISOLATION READ COMMITTED")
.statement ("DELETE FROM CUSTOMERS")
.statement("DELETE FROM ORDERS");

The transaction-manager attribute references a Spring bean of type
"org.springframework.transaction.PlatformTransactionManager". You can add this transaction
manager to the Spring bean configuration:

133

<bean id="someTransactionManager"

class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<constructor-arg ref="someDataSource"/>

</bean>

The transaction isolation level as well as the transaction timeout get set on the transaction
definition used during SQL statement execution. The isolation level should evaluate to one of the
constants given in "org.springframework.transaction.TransactionDefinition". Valid isolation level
are:

ISOLATION_DEFAULT

ISOLATION_READ_UNCOMMITTED

ISOLATION_READ_COMMITTED

ISOLATION_REPEATABLE_READ

ISOLATION_SERIALIZABLE

13.3.4. Groovy SQL result set validation

Groovy provides great support for accessing Java list objects and maps. As a Java SQL result set is
nothing but a list of map representations, where each entry in the list defines a row in the result set
and each map entry represents the columns and values. So with Groovy’s list and map access we
have great possibilities to validate a SQL result set - out of the box.

XML DSL

<sql datasource="testDataSource">
<statement>select ID from CUSTOMERS where NAME='${customerName}'</statement>
<statement>select ORDERTYPE, STATUS from ORDERS where ID='${orderId}'</statement>

<validate-script type="groovy">
assert rows.size() ==
assert rows[0].ID == '1'
assert rows[1].STATUS == "in progress'
assert rows[1] == [ORDERTYPE: 'SampleOrder', STATUS:'in progress']
</validate-script>
</sql>

Java DSL designer

query(dataSource)
.statement("select ORDERTYPE, STATUS from ORDERS where ID='${orderId}'")
.validateScript("assert rows.size == 2;" +

"assert rows[0].ID == '1";" +
"assert rows[@].STATUS == "in progress';", "groovy");

134

Java DSL runner

query(action -> action.dataSource(dataSource)
.statement("select ORDERTYPE, STATUS from ORDERS where ID='${orderId}'")
.validateScript("assert rows.size == 2;" +
"assert rows[0].ID == "1";" +
"assert rows[@].STATUS == "in progress';", "groovy"));

As you can see Groovy provides fantastic access methods to the SQL result set. We can browse the
result set with named column values and check the size of the result set. We are also able to search
for an entry, iterate over the result set and have other helpful operations. For a detailed description
of the list and map handling in Groovy my advice for you is to have a look at the official Groovy
documentation.

In general other script languages do also support this kind of list and map access.
For now we just have implemented the Groovy script support, but the framework

O is ready to work with all other great script languages out there, too (e.g. Scala,
Clojure, Fantom, etc.). So if you prefer to work with another language join and
help us implement those features.

13.3.5. Save result set values

Now the validation of database entries is a very powerful feature but sometimes we simply do not
know the persisted content values. The test may want to read database entries into test variables
without validation. Citrus is able to do that with the following <extract> expressions:

XML DSL

<sql datasource="testDataSource">
<statement>select ID from CUSTOMERS where NAME='${customerName}'</statement>
<statement>select STATUS from ORDERS where ID='${orderId}'</statement>

<extract column="ID" variable="${customerId}"/>

<extract column="STATUS" variable="${orderStatus}"/>
</sql>

Java DSL designer

query(dataSource)
.statement("select STATUS from ORDERS where ID='${orderId}'")
.extract("STATUS", "orderStatus");

Java DSL runner

query(action -> action.dataSource(dataSource)
.statement("select STATUS from ORDERS where ID='${orderId}'")
.extract("STATUS", "orderStatus"));

135

We can save the database column values directly to test variables. Of course you can combine the
value extraction with the normal column validation described earlier in this chapter. Please keep in
mind that we can not use these operations on result sets with multiple rows. Citrus will always use
the first row in a result set.

13.4. Sleep

This action shows how to make the test framework sleep for a given amount of time. The attribute
'time' defines the amount of time to wait in seconds. As shown in the next example decimal values
are supported too. When no waiting time is specified the default time of 50000 milliseconds applies.

XML DSL

<testcase name="sleepTest">
<actions>
<sleep seconds="3.5"/>

<sleep milliseconds="500"/>

<sleep/>
</actions>
</testcase>

Java DSL

@CitrusTest
public void sleepTest() {
sleep(500); // sleep 500 milliseconds

sleep(); // sleep default time

When should somebody use this action? To us this action was always very useful in case the test
needed to wait until an application had done some work. For example in some cases the application
took some time to write some data into the database. We waited then a small amount of time in
order to avoid unnecessary test failures, because the test framework simply validated the database
too early. Or as another example the test may wait a given time until retry mechanisms are
triggered in the tested application and then proceed with the test actions.

13.5. Java

The test framework is written in Java and runs inside a Java virtual machine. The functionality of
calling other Java objects and methods in this same Java VM through Java Reflection is self-evident.
With this action you can call any Java API available at runtime through the specified Java classpath.

The action syntax looks like follows:

136

<java class="com.consol.citrus.test.util.InvocationDummy">
<constructor>
<argument type=
</constructor>
<method name="1invoke">
<argument type="String[]">1,2</argument>
</method>
</java>

>Test Invocation</argument>

<java class="com.consol.citrus.test.util.InvocationDummy">
<constructor>
<argument type=
</constructor>
<method name="1invoke">
<argument type="int">4</argument>
<argument type="String">Test Invocation</argument>
<argument type="boolean">true</argument>
</method>
</java>

>Test Invocation</argument>

<java class="com.consol.citrus.test.util.InvocationDummy">
<method name="main">
<argument type="String[]">4,Test,true </argument>
</method>
</java>

The Java class is specified by fully qualified class name. Constructor arguments are added using the
<constructor> element with a list of <argument> child elements. The type of the argument is
defined within the respective attribute "type". By default the type would be String.

The invoked method on the Java object is simply referenced by its name. Method arguments do not
bring anything new after knowing the constructor argument definition, do they?.

Method arguments support data type conversion too, even string arrays (useful when calling CLISs).
In the third action in the example code you can see that colon separated strings are automatically
converted to string arrays.

Simple data types are defined by their name (int, boolean, float etc.). Be sure that the invoked
method and class constructor fit your arguments and vice versa, otherwise you will cause errors at
runtime.

Besides instantiating a fully new object instance for a class how about reusing a bean instance
available in Spring bean container. Simply use the ref attribute and refer to an existing bean in
Spring application context.

137

<java ref="invocationDummy">
<method name="1invoke">
<argument type="int">4</argument>
<argument type="String">Test Invocation</argument>
<argument type="boolean">true</argument>
</method>
</java>

<bean id="invocationDummy" class="com.consol.citrus.test.util.InvocationDummy"/>

The method is invoked on the Spring bean instance. This is very useful as you can inject other
objects (e.g. via Autowiring) to the Spring bean instance before method invocation in test takes
place. This enables you to execute any Java logic inside a test case.

13.6. Receive timeout

In some cases it might be necessary to validate that a message is not present on a destination. This
means that this action expects a timeout when receiving a message from an endpoint destination.
For instance the tester intends to ensure that no message is sent to a certain destination in a time
period. In that case the timeout would not be a test aborting error but the expected behavior. And
in contrast to the normal behavior when a message is received in the time period the test will fail
with error.

In order to validate such a timeout situation the action <expectTimout> shall help. The usage is very
simple as the following example shows:

XML DSL

<testcase name="receiveIMSTimeoutTest">
<actions>
<expect-timeout endpoint="myEndpoint" wait="500"/>
</actions>
</testcase>

Java DSL designer

@Autowired
@Qualifier("myEndpoint")
private Endpoint myEndpoint;

@CitrusTest
public void receiveTimeoutTest() {
receiveTimeout(myEndpoint)
.timeout(500);

138

Java DSL runner

@Autowired
@Qualifier("myEndpoint")
private Endpoint myEndpoint;

@CitrusTest
public void receiveTimeoutTest() {
receiveTimeout(action -> action.endpoint(myEndpoint)
.timeout(500));

The action offers two attributes:

endpoint

Reference to a message endpoint that will try to receive messages.

wait/timeout

Time period to wait for messages to arrive

Sometimes you may want to add some selector on the timeout receiving action. This way you can
very selective check on a message to not be present on a message destination. This is possible with
defining a message selector on the test action as follows.

XML DSL

<expect-timeout endpoint="myEndpoint" wait="500">
<select>Messageld="123456789'<select/>
<expect-timeout/>

Java DSL designer

@CitrusTest
public void receiveTimeoutTest() {
receiveTimeout(myEndpoint)
.selector("Messageld = '123456789"'")
.timeout(500);

Java DSL runner

@CitrusTest
public void receiveTimeoutTest() {
receiveTimeout(action -> action.endpoint(myEndpoint)
.selector("Messageld = '123456789"'")
.timeout(500));

139

13.7. Echo

The <echo> action prints messages to the console/logger. This functionality is useful when
debugging test runs. The property "message" defines the text that is printed. Tester might use it to
print out debug messages and variables as shown the next code example:

XML DSL

<testcase name="echoTest">

<variables>

<variable name="date" value="citrus:currentDate()"/>
</variables>
<actions>

<echo>

<message>Hello Test Framework</message>
</echo>

<echo>
<message>Current date is: ${date}</message>
</echo>
</actions>
</testcase>

Java DSL

@CitrusTest
public void echoTest() {
variable("date", "citrus:currentDate()");

echo("Hello Test Framework");
echo("Current date is: ${date}");

Result on the console:

Hello Test Framework
Current time is: ©05.08.2008

13.8. Stop time

Time measurement during a test can be very helpful. The <trace-time> action creates and monitors
multiple time lines. The action offers the attribute id to identify a time line. The tester can of course
use more than one time line with different ids simultaneously.

Read the next example and you will understand the mix of different time lines:

140

XML DSL

<testcase name="StopTimeTest">
<actions>
<trace-time/>

<trace-time id="time_line_id"/>
<sleep seconds="3.5"/>
<trace-time id=" time_line_id "/>
<sleep milliseconds="5000"/>
<trace-time/>

<trace-time id=" time_line_id "/>
</actions>
</testcase>

Java DSL

@CitrusTest

public void stopTimeTest() {
stopTime();
stopTime("time_line_id");
sleep(3.5); // do something
stopTime("time_line_id");
sleep(5000); // do something
stopTime();
stopTime("time_line_id");

The test output looks like follows:

Starting TimeWatcher:

Starting TimeWatcher: time_line_id

TimeWatcher time_line_id after 3500 milliseconds
TimeWatcher after 8500 seconds

TimeWatcher time_line_id after 8500 milliseconds

o Time line ids should not exist as test variables before the action is called for the

first time. This would break the time line initialization.

141

In case no time line id is specified the framework will measure the time for a
default time line. To print out the current elapsed time for a time line you simply

o have to place the ’<trace-time> action into the action chain again and again,
using the respective time line identifier. The elapsed time will be printed out to
the console every time.

Each time line is stored as test variable in the test case. By default you will have the following test
variables set for each time line:

CITRUS_TIMELINE

first timestamp of time line

CITRUS_TIMELINE_VALUE

latest time measurement value (time passed since first timestamp in milliseconds)

According to your time line id you will get different test variable names. Also you can customize the
time value suffix (default: "VALUE):

XML DSL

<trace-time id="custom_watcher" suffix="_1st"/>
<sleep/>
<trace-time id="custom_watcher" suffix="_2nd"/>

Java DSL

@CitrusTest
stopTime("custom_watcher", "_1st");
sleep();

stopTime("custom_watcher", "_2nd");

You will get following test variables set:

custom_watcher

first timestamp of time line

custom_watcher_1st

time passed since start

custom_watcher_2nd

time passed since start

Of course using the same suffix multiple times will overwrite the timestamps in test variables.

13.9. Create variables

As you know variables usually are defined at the beginning of the test case (test-variables). It might
also be helpful to reset existing variables as well as to define new variables during the test. The

142

#test-variables

action <create-variables> is able to declare new variables or overwrite existing ones.

XML DSL

<testcase name="createVariablesTest">

<variables>
<variable name="myVariable" value="12345"/>
<variable name="id" value="54321"/>

</variables>

<actions>
<echo>

<message>Current variable value: ${myVariable}</message>

</echo>

<create-variables>

<variable name="myVariable" value="${id}"/>

<variable name="newVariable" value="'this is a test'"/>
</create-variables>

<echo>
<message>Current variable value: ${myVariable} </message>
</echo>

<echo>
<message>
New variable 'newVariable' has the value: ${newVariable}
</message>
</echo>
</actions>
</testcase>

Java DSL
@CitrusTest
public void createVariableTest() {
variable("myVariable", "12345");
Var_iab-l-e(llidll' Il5432—|||);

echo("Current variable value: ${myVariable}");

createVariable("myVariable", "${id}");
createVariable("newVariable", "this is a test");

echo("Current variable value: ${myVariable}");

echo("New variable 'newVariable' has the value: ${newVariable}");

143

Please note the difference between the variable()) method and the
createVariable() method. The first initializes the test case with the test variables.

o So all variables defined with this method are valid from the very beginning of the
test. In contrary to that the createVariable() is executed within the test action
chain. The newly created variables are then valid for the rest of the test. Trailing
actions can reference the variables as usual with the variable expression.

13.10. Trace variables

You already know the <echo> action that prints messages to the console or logger. The <trace-
variables> action is specially designed to trace all currently valid test variables to the console. This
was mainly used by us for debug reasons. The usage is quite simple:

XML DSL

<testcase name="traceVariablesTest">
<variables>
<variable name="myVariable" value="12345"/>
<variable name="nextVariable" value="54321"/>
</variables>
<actions>
<trace-variables>
<variable name="myVariable"/>
<variable name="nextVariable"/>
</trace-variables>

<trace-variables/>
</actions>
</testcase>

Java DSL

@CitrusTest

public void traceTest() {
variable("myVariable", "12345");
variable("nextVariable", "54321");

traceVariables("myVariable", "nextVariable");
traceVariables();

Simply add the <trace-variables> action to your action chain and all variables will be printed out to
the console. You are able to define a special set of variables by using the <variable> child elements.
See the output that was generated by the test example above:

Current value of variable myVariable = 12345
Current value of variable nextVariable = 54321

144

13.11. Transform

The “<transform>" action transforms XML fragments with XSLT in order to construct various XML
representations. The transformation result is stored into a test variable for further usage. The
property xml-data defines the XML source, that is going to be transformed, while xslt-data defines
the XSLT transformation rules. The attribute variable specifies the target test variable which
receives the transformation result. The tester might use the action to transform XML messages as

shown in the next code example:

XML DSL

<testcase name="transformTest">
<actions>
<transform variable="result">
<xml-data>
<![CDATA[
<TestRequest>
<Message>Hello World!</Message>
</TestRequest>
11>
</xml-data>
<xslt-data>
<I[CDATA[
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<body>
<h2>Test Request</h2>
<p>Message: <xsl:value-of
select="TestRequest/Message"/></p>
</body>
</html>
</xsl:template>
</xsl:stylesheet>
11>
</xslt-data>
</transform>
<echo>
<message>${result}</message>
</echo>
</actions>
</testcase>

The transformation above results to:

145

<html>
<body>
<h2>Test Request</h2>
<p>Message: Hello World!</p>
</body>
</html>

In the example we used CDATA sections to define the transformation source as well as the XSL
transformation rules. As usual you can also use external file resources here. The transform action
with external file resources looks like follows:

<transform variable="result">
<xml-resource file="classpath:transform-source.xml"/>
<xslt-resource file="classpath:transform.xslt"/>
</transform>

The Java DSL alternative for transforming data via XSTL in Citrus looks like follows:

146

Java DSL designer

@CitrusTest
public void transformTest() {
transform()
.source("<TestRequest>" +
"<Message>Hello World!</Message>" +
"</TestRequest>")
xslt("<xsl:stylesheet version=\"1.0\"
xmlns:xs1=\"http://www.w3.0rg/1999/XSL/Transform\">\n" +
"<xsl:template match=\"/\">\n" +
"<html>\n" +
"<body>\n" +
"<h2>Test Request</h2>\n" +
"<p>Message: <xsl:value-of
select=\"TestRequest/Message\"/></p>\n" +
"</body>\n" +
"</html>\n" +
"</xsl:template>\n" +
"</xsl:stylesheet>")
.result("result");

echo("${result}");
transform()
.source(new ClassPathResource("com/consol/citrus/actions/transform-
source.xml"))
.Xslt(new ClassPathResource("com/consol/citrus/actions/transform.xslt"))

.result("result");

echo("${result}");

147

Java DSL runner

@CitrusTest
public void transformTest() {
transform(action ->
action.source("<TestRequest>" +
"<Message>Hello World!</Message>" +
"</TestRequest>")
xslt("<xsl:stylesheet version=\"1.0\"
xmlns:xs1=\"http://www.w3.0rg/1999/XSL/Transform\">\n" +
"<xsl:template match=\"/\">\n" +
"<html>\n" +
"<body>\n" +
"<h2>Test Request</h2>\n" +
"<p>Message: <xsl:value-of
select=\"TestRequest/Message\"/></p>\n" +
"</body>\n" +
"</html>\n" +
"</xsl:template>\n" +
"</xsl:stylesheet>")
.result("result"));

echo("${result}");

transform(action ->
action.source(new ClassPathResource("com/consol/citrus/actions/transform-
source.xml"))
.xslt(new ClassPathResource("com/consol/citrus/actions/transform.xslt"))
.result("result"));

echo("${result}");

Defining multi-line Strings with nested quotes is no fun in Java. So you may want to use external
file resources for your scripts as shown in the second part of the example. In fact you could also use
script languages like Groovy or Scala that have much better support for multi-line Strings.

13.12. Groovy script execution

Groovy is an agile dynamic language for the Java Platform. Groovy ships with a lot of very powerful
features and fits perfectly with Java as it is based on Java and runs inside the JVM.

The Citrus Groovy support might be the entrance for you to write customized test actions. You can
easily execute Groovy code inside a test case, just like a normal test action. The whole test context
with all variables is available to the Groovy action. This means someone can change variable values
or create new variables very easily.

Let’s have a look at some examples in order to understand the possible Groovy code interactions in
Citrus:

148

XML DSL

<testcase name="groovyTest">
<variables>
<variable name="time" value="citrus:currentDate()"/>
</variables>
<actions>
<groovy>
println 'Hello Citrus'
</groovy>
<groovy>
println 'The variable is: ${time}’
</groovy>
<groovy resource="classpath:com/consol/citrus/script/example.groovy"/>
</actions>
</testcase>

Java DSL designer

@CitrusTest

public void groovyTest() {
groovy("println 'Hello Citrus'");
groovy("println 'The variable is: ${time}'");

groovy(new ClassPathResource("com/consol/citrus/script/example.groovy"));

Java DSL runner

@CitrusTest

public void groovyTest() {
groovy(action -> action.script("println 'Hello Citrus'"));
groovy(action -> action.script("println 'The variable is: ${time}'"));

groovy(action -> action.script(new ClassPathResource
("com/consol/citrus/script/example.groovy")));

}

As you can see it is possible to write Groovy code directly into the test case. Citrus will interpret and
execute the Groovy code at runtime. As usual nested variable expressions are replaced with
respective values. In general this is done in advance before the Groovy code is interpreted. For
more complex Groovy code sections which grow in lines of code you can also reference external file
resources.

After this basic Groovy code usage inside a test case we might be interested accessing the whole
TestContext. The TestContext Java object holds all test variables and function definitions for the test
case and can be referenced in Groovy code via simple naming convention. Just access the object
reference 'context' and you are able to manipulate the TestContext (e.g. setting a new variable

149

which is directly ready for use in following test actions).

XML DSL

<testcase name="groovyTest">
<actions>
<groovy>
context.setVariable("greetingText","Hello Citrus")
println context.getVariable("greetingText")
</groovy>
<echo>
<message>New variable: ${greetingText}</message>
</echo>
</actions>
</testcase>

The implicit TestContext access that was shown in the previous sample works
0 with a default Groovy script template provided by Citrus. The Groovy code you

write in the test case is automatically surrounded with a Groovy script which

takes care of handling the TestContext. The default template looks like follows:

import com.consol.citrus.*

import com.consol.citrus.variable.*

import com.consol.citrus.context.TestContext

import com.consol.citrus.script.GroovyAction.ScriptExecutor

public class GScript implements ScriptExecutor {
public void execute(TestContext context) {
@SCRIPTBODY@

}

Your code is placed in substitution to the @SCRIPTBODY@ placeholder. Now you might understand
how Citrus handles the context automatically. You can also write your own script templates making
more advanced usage of other Java APIs and Groovy code. Just add a script template path to the test
action like this:

<groovy script-template="classpath:my-custom-template.groovy">

[...]

</groovy>
On the other hand you can disable the automatic script template wrapping in your action at all:

<groovy use-script-template="false">
println "Just use some Groovy code'
</groovy>

150

The next example deals with advanced Groovy code and writing whole classes. We write a new
Groovy class which implements the ScriptExecutor interface offered by Citrus. This interface
defines a special execute method and provides access to the whole TestContext for advanced test
variables access.

<testcase name="groovyTest">
<variables>
<variable name="time" value="citrus:currentDate()"/>
</variables>
<actions>
<groovy>
<I[CDATA[
import com.consol.citrus.*
import com.consol.citrus.variable.*
import com.consol.citrus.context.TestContext
import com.consol.citrus.script.GroovyAction.ScriptExecutor

public class GScript implements ScriptExecutor {
public void execute(TestContext context) {
println context.getVariable("time")

}
}
11>
</groovy>
</actions>
</testcase>

Implementing the ScriptExecutor interface in a custom Groovy class is applicable for very special
test context manipulations as you are able to import and use other Java API classes in this code.

13.13. Failing the test

The fail action will generate an exception in order to terminate the test case with error. The test
case will therefore not be successful in the reports.

The user can specify a custom error message for the exception in order to describe the error cause.
Here is a very simple example to clarify the syntax:

XML DSL

<testcase name="failTest">
<actions>
<fail message="Test will fail with custom message"/>
</actions>
</testcase>

Test results:

151

Execution of test: failTest failed! Nested exception is:
com.consol.citrus.exceptions.CitrusRuntimeException:
Test will fail with custom message

[...]
CITRUS TEST RESULTS
failTest : failed - Exception is: Test will fail with custom message

Found 1 test cases to execute

Skipped @ test cases (0.0%)

Executed 1 test cases, containing 3 actions
Tests failed: 1 (100.0%)

Tests successfully: @ (0.0%)

While using the Java DSL tester might want to raise some Java exceptions in the middle of
configuring the test case. But this is not possible as we have to separate the design time and the
execution time of the test case. The @CitrusTest annotated configuration method is called for
building up the whole test case. After this method was processed the test gets executed in runtime
oth the test. If you specify a throws exception statement in the configuration method this will not be
done at runtime but at design time. This is why you have to use the special fail test action which
raises a Java exception during the runtime of the test. The next example will not work as expected:

Java DSL

@CitrusTest
public void wrongUsageSample() {
// some test actions

throw new ValidationException("This test should fail now"); // does not work as
expected

}

The validation exception above is directly raised before the test is able to start as the @CitrusTest
annotated method does not represent the test runtime. Instead of this we have to use the fail action
as follows:

Java DSL

@CitrusTest
public void failTest() {
// some test actions

fail("This test should fail now"); // fails at test runtime as expected

Now the test fails at runtime as the fail action is raised during the test execution as expected.

152

13.14. Input

During the test case execution it is possible to read some user input from the command line. The
test execution will stop and wait for keyboard inputs over the standard input stream. The user has
to type the input and end it with the return key.

The user input is stored to the respective variable value.

XML DSL

<testcase name="inputTest">

<variables>
<variable name="userinput" value=""></variable>
<variable name="userinput1" value=""></variable>
<variable name="userinput2" value="y"></variable>
<variable name="userinput3" value="yes"></variable>
<variable name="userinput4" value=""></variable>

</variables>

<actions>
<input/>
<echo><message>user input was: ${userinput}</message></echo>

<input message="Now press enter:" variable="userinput1"/>
<echo><message>user input was: ${userinputl1}</message></echo>

<input message="Do you want to continue?"
valid-answers="y/n" variable="userinput2"/>
<echo><message>user input was: ${userinput2}</message></echo>

<input message="Do you want to continue?"
valid-answers="yes/no" variable="userinput3"/>
<echo><message>user input was: ${userinput3}</message></echo>

<input variable="userinput4"/>
<echo><message>user input was: ${userinputd}</message></echo>
</actions>
</testcase>

As you can see the input action is customizable with a prompt message that is displayed to the user
and some valid answer possibilities. The user input is stored to a test variable for further use in the
test case. In detail the input action offers following attributes:

message

message displayed to the user

valid-answers

possible valid answers separated with '/' character

variable

153

result variable name holding the user input (default = ${userinput})

The same action in Java DSL now looks quite familiar to us although attribute naming is slightly
different:

Java DSL designer

@CitrusTest

public void inputActionTest() {
variable("userinput”, "");
variable("userinput1", "");
variable("userinput2", "y");
variable("userinput3", "yes");
variable("userinput4", "");

input();

echo("user input was: ${userinput}");

input().message("Now press enter:").result("userinput1");

echo("user input was: ${userinput1}");

input().message("Do you want to continue?").answers("y", "n").result(
"userinput2");

echo("user input was: ${userinput2}");

input().message("Do you want to continue?").answers("yes", "no").result
("userinput3");

echo("user input was: ${userinput3}");

input().result("userinput4");

echo("user input was: ${userinputd}");

154

Java DSL runner

@CitrusTest

public void inputActionTest() {
variable("userinput", "");
variable("userinput1”, "");
variable("userinput2", "y");
variable("userinput3", "yes");
variable("userinput4", "");

input(action -> {});

echo("user input was: ${userinput}");

input(action -> action.message("Now press enter:").result("userinput1"));

echo("user input was: ${userinput1}");

input(action -> action.message("Do you want to continue?").answers("y", "n"
).result("userinput2"));

echo("user input was: ${userinput2}");

input(action -> action.message("Do you want to continue?").answers("yes", "no"
).result("userinput3"));

echo("user input was: ${userinput3}");

input(action -> action.result("userinputd"));

echo("user input was: ${userinputd}");

When the user input is restricted to a set of valid answers the input validation of course can fail
due to mismatch. This is the case when the user provides some input not matching the valid
answers given. In this case the user is again asked to provide valid input. The test action will
continue to ask for valid input until a valid answer is given.

User inputs may not fit to automatic testing in terms of continuous integration
testing where no user is present to type in the correct answer over the keyboard.

0 In this case you can always skip the user input in advance by specifying a
variable that matches the user input variable name. As the user input variable is
then already present the user input is missed out and the test proceeds
automatically.

13.15. Load

You are able to load properties from external property files and store them as test variables. The
action will require a file resource either from class path or file system in order to read the property
values.

Let us look at an example to get an idea about this action:

Content of load.properties

username=Mickey Mouse
greeting.text=Hello Test Framework

155

XML DSL

<testcase name="loadPropertiesTest">
<actions>
<load>
<properties file="file:tests/resources/load.properties"/>
</load>

<trace-variables/>
</actions>
</testcase>

Java DSL

@CitrusTest
public void loadPropertiesTest() {
load("file:tests/resources/load.properties”);

traceVariables();

Output

Current value of variable username = Mickey Mouse
Current value of variable greeting.text = Hello Test Framework

The action will load all available properties in the file load.properties and store them to the test
case as local variables.

0 Please be aware of the fact that existing variables are overwritten!

13.16. Wait

With this action you can make your test wait until a certain condition is satisfied. The attribute
seconds defines the amount of time to wait in seconds. You can also use the milliseconds attribute
for a more fine grained time value. The attribute interval defines the amount of time to wait
between each check. The interval is always specified as millisecond time interval.

If the check does not exceed within the defined overall waiting time then the test execution fails
with an appropriate error message. There are different types of conditions to check.

http

This condition is based on a Http request call on a server endpoint. Citrus will wait until the Http
response is as defined (e.g. Http 200 OK). This is useful when you want to wait for a server to
start.

file

156

This condition checks for the existence of a file on the local file system. Citrus will wait until the
file is present.

message

This condition checks for the existence of a message in the local message store of the current test
case. Citrus will wait until the message with the given name is present.

Next let us have a look at a simple example:

XML DSL

<testcase name="waitTest">
<actions>
<wait seconds="10" interval="2000" >

<http url="http://sample.org/resource" statusCode="200" timeout="2000" />
<wait/>

</actions>
</testcase>

Java DSL

@CitrusTest
public void waitTest() {

waitFor().http("http://sample.org/resource").seconds(10L).interval(2000L);
}

The example waits for some Http server resource to be available with Http 200 OK response. Citrus

will use HEAD request method by default. You can set the request method with the method
attribute on the Http condition.

Next let us have a look at the file condition usage:

XML DSL

<testcase name="waitTest">
<actions>
<wait seconds="10" interval="2000" >
<file path="path/to/resource/file.txt" />
wait/>
</actions>
</testcase>

Java DSL

@CitrusTest
public void waitTest() {

waitFor().file("path/to/resource/file.txt");
}

157

Citrus checks for the file to exist under the given path. Only if the file exists the test will continue
with further test actions.

Next let us have a look at the message condition usage:

XML DSL

<testcase name="waitTest">
<actions>
<wait seconds="10" interval="2000" >
<message name="helloRequest" />
<wait/>
</actions>
</testcase>

Java DSL

@CitrusTest
public void waitTest() {
waitFor().message("helloRequest");

Citrus checks for the message with the name helloRequest in the local message store. Only if the
message with the given name is found the test will continue with further test actions. The local
message store is automatically filled with all exchanged messages (send or receive) in a test case.
The message names are defined in the respective send or receive operations in the test.

When should somebody use this action? This action is very useful when you want your test to wait
for a certain event to occur before continuing with the test execution. For example if you wish that
your test waits until a Docker container is started or for an application to create a log file before
continuing, then use this action. You can also create your own condition statements and bind it to
the test action.

13.17. Purging JMS destinations

Purging JMS destinations during the test run is quite essential. Different test cases can influence
each other when sending messages to the same JMS destinations. A test case should only receive
those messages that actually belong to it. Therefore it is a good idea to purge all JMS queue
destinations between the test cases. Obsolete messages that are stuck in a JMS queue for some
reason are then removed so that the following test case is not offended.

Citrus provides special support for JMS related features. We have to activate those

JMS features in our test case by adding a special "jms" namespace and schema
definition location to the test case XML.

158

<spring:beans xmlns="http://www.citrusframework.org/schema/testcase"
xmlns:spring="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jms="http://www.citrusframework.org/schema/jms/testcase"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/testcase
http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd
http://www.citrusframework.org/schema/jms/testcase
http://www.citrusframework.org/schema/jms/testcase/citrus-jms-testcase.xsd">

[...]

</beans>

Now we are ready to use the JMS features in our test case in order to purge some JMS queues. This
can be done with following action definition:

XML DSL

<testcase name="purgeTest">
<actions>
<jms:purge-jms-queues>
<jms:queue name="Some.JMS.QUEUE.Name"/>
<jms:queue name="Another.JMS.QUEUE.Name"/>
<jms:queue name="My.JMS.QUEUE.Name"/>
</jms:purge-jms-queues>

<jms:purge-jms-queues connection-factory="connectionFactory">
<jms:queue name="Some.JMS.QUEUE.Name"/>
<jms:queue name="Another.JMS.QUEUE.Name"/>
<jms:queue name="My.JIMS.QUEUE.Name"/>
</jms:purge-jms-queues>
</actions>
</testcase>

Notice that we have referenced the jms namespace when using the purge-jms-queues test action.

159

Java DSL designer

@Autowired
@Qualifier("connectionFactory")
private ConnectionFactory connectionFactory;

@CitrusTest
public void purgeTest() {
purgeQueues()
.queue("Some.JMS.QUEUE.Name")
.queue("Another.JMS.QUEUE.Name");

purgeQueues(connectionFactory)
.timeout(150L) // custom timeout in ms
.queue("Some.JMS.QUEUE.Name")
.queue("Another.JMS.QUEUE.Name");

Java DSL runner

@Autowired
@Qualifier("connectionFactory")
private ConnectionFactory connectionFactory;

@CitrusTest
public void purgeTest() {
purgeQueues(action ->
action.queue("Some.JMS.QUEUE.Name")
.queue("Another.JMS.QUEUE.Name"));

purgeQueues(action -> action.connectionFactory(connectionFactory)
.timeout(150L) // custom timeout in ms
.queue("Some.JMS.QUEUE.Name")
.queue("Another.JMS.QUEUE.Name"));

Purging the JMS queues in every test case is quite exhausting because every test case needs to
define a purging action at the very beginning of the test. Fortunately the test suite definition offers
tasks to run before, between and after the test cases which should ease up this tasks a lot. The test
suite offers a very simple way to purge the destinations between the tests. See testsuite-before-
testfor more information about this.

As you can see in the next example it is quite easy to specify a group of destinations in the Spring
configuration that get purged before a test is executed.

160

#before-suite
#before-suite

<citrus:before-test id="purgeBeforeTest">
<citrus:actions>
<jms:purge-jms-queues>
<jms:queue name="Some.JMS.QUEUE.Name"/>
<jms:queue name="Another.JMS.QUEUE.Name"/>
</jms:purge-jms-queues>
</citrus:actions>
</citrus:before-test>

Please keep in mind that the JMS related configuration components in Citrus

o belong to a separate XML namespace jms: . We have to add this namespace
declaration to each test case XML and Spring bean XML configuration file as
described at the very beginning of this section.

The syntax for purging the destinations is the same as we used it inside the test case. So now we are
able to purge JMS destinations with given destination names. But sometimes we do not want to rely
on queue or topic names as we retrieve destinations over JNDI for instance. We can deal with
destinations coming from JNDI lookup like follows:

<jee:jndi-lookup id="jmsQueueHelloRequestIn" jndi-name="jms/jmsQueueHelloRequestIn"/>
<jee:jndi-lookup id="jmsQueueHelloResponseQut" jndi-
name="jms/jmsQueueHelloResponseOut"/>

<citrus:before-test id="purgeBeforeTest">
<citrus:actions>
<jms:purge-jms-queues>
<jms:queue ref="jmsQueueHelloRequestIn"/>
<jms:queue ref="jmsQueueHelloResponseQut"/>
</jms:purge-jms-queues>
</citrus:actions>
</citrus:before-test>

We just use the attribute 'ref' instead of 'name’' and Citrus is looking for a bean reference for that
identifier that resolves to a JMS destination. You can use the JNDI bean references inside a test case,
too.

XML DSL

<testcase name="purgeTest">
<actions>
<jms:purge-jms-queues>
<jms:queue ref="jmsQueueHelloRequestIn"/>
<jms:queue ref="jmsQueueHelloResponseOut"/>
</jms:purge-jms-queues>
</actions>
</testcase>

161

Of course you can use queue object references also in Java DSL test cases. Here we easily can use
Spring’s dependency injection with autowiring to get the object references from the IoC container.

Java DSL designer

@Autowired
@Qualifier("jmsQueueHelloRequestIn")
private Queue jmsQueueHelloRequestIn;

@Autowired
@Qualifier("jmsQueueHelloResponseQut")
private Queue jmsQueueHelloResponseQut;

@CitrusTest
public void purgeTest() {
purgeQueues()
.queue(jmsQueueHelloRequestIn)
.queue(jmsQueueHelloResponseOut);

Java DSL runner

@Autowired
@Qualifier("jmsQueueHelloRequestIn")
private Queue jmsQueueHelloRequestIn;

@Autowired
@Qualifier("jmsQueueHelloResponseQut")
private Queue jmsQueueHelloResponseOut;

@CitrusTest
public void purgeTest() {
purgeQueues(action ->
action.queue(jmsQueueHelloRequestIn)
.queue(jmsQueueHelloResponseQut));

0 You can mix queue name and queue object references as you like within one
single purge queue test action.

13.18. Purging message channels

Message channels define central messaging destinations in Citrus. These are namely in memory
message queues holding messages for test cases. These messages may become obsolete during a test
run, especially when test cases fail and stop in their message consumption. Purging these message
channel destinations is essential in these scenarios in order to not influence upcoming test cases.
Each test case should only receive those messages that actually refer to the test model. Therefore it
is a good idea to purge all message channel destinations between the test cases. Obsolete messages

162

that get stuck in a message channel destination for some reason are then removed so that
upcoming test case are not broken.

Following action definition purges all messages from a list of message channels:

XML DSL

<testcase name="purgeChannelTest">
<actions>
<purge-channel>
<channel name="someChannelName"/>
<channel name="anotherChannelName"/>
</purge-channel>

<purge-channel>
<channel ref="someChannel"/>
<channel ref="anotherChannel"/>
</purge-channel>
</actions>
</testcase>

As you can see the test action supports channel names as well as channel references to Spring bean
instances. When using channel references you refer to the Spring bean id or name in your
application context.

The Java DSL works quite similar as you can read from next examples:

Java DSL designer

@Autowired
@Qualifier("channelResolver")
private DestinationResolver<MessageChannel> channelResolver;

@CitrusTest
public void purgeTest() {
purgeChannels()
.channelResolver(channelResolver)
.channelNames("ch1", "ch2", "ch3")
.channel("ch4");

163

Java DSL runner

@Autowired
@Qualifier("channelResolver")
private DestinationResolver<MessageChannel> channelResolver;

@CitrusTest
public void purgeTest() {
purgeChannels(action ->
action.channelResolver(channelResolver)
.channelNames("ch1", "ch2", "ch3")
.channel("ch4"));

The channel resolver reference is optional. By default Citrus will automatically use a Spring
application context channel resolver so you just have to use the respective Spring bean names that
are configured in the Spring application context. However setting a custom channel resolver may
be adequate for you in some special cases.

While speaking of Spring application context bean references the next example uses such bean
references for channels to purge.

Java DSL designer

@Autowired
@Qualifier("channell")
private MessageChannel channell;

@Autowired
@Qualifier("channel2")
private MessageChannel channel?;

@Autowired
@Qualifier("channel3")
private MessageChannel channel3;

@CitrusTest
public void purgeTest() {
purgeChannels()
.channels(channell, channel?)
.channel(channel3);

164

Java DSL runner

@Autowired
@Qualifier("channell")
private MessageChannel channell;

@Autowired
@Qualifier("channel2")
private MessageChannel channel?;

@Autowired
@Qualifier("channel3")
private MessageChannel channel3;

@CitrusTest
public void purgeTest() {
purgeChannels(action ->
action.channels(channell, channel2)
.channel(channel3));

Message selectors enable you to selectively remove messages from the destination. All messages
that pass the message selection logic get deleted the other messages will remain unchanged inside
the channel destination. The message selector is a Spring bean that implements a special message
selector interface. A possible implementation could be a selector deleting all messages that are
older than five seconds:

import org.springframework.messaging.Message;
import org.springframework.integration.core.MessageSelector;

public class TimeBasedMessageSelector implements MessageSelector {

public boolean accept(Message<?> message) {
if (System.currentTimeMillis() - message.getHeaders().getTimestamp() > 5000) {
return false;
} else {
return true;

}

0 The message selector returns false for those messages that should be deleted
from the channel!

You simply define the message selector as a new Spring bean in the Citrus application context and
reference it in your test action property.

165

<bean id="specialMessageSelector"
class="com.consol.citrus.special.TimeBasedMessageSelector"/>

Now let us have a look at how you reference the selector in your test case:

XML DSL

<purge-channels message-selector="specialMessageSelector">
<channel name="someChannelName"/>
<channel name="anotherChannelName"/>

</purge-channels>

Java DSL designer

@Autowired
@Qualifier("specialMessageSelector")
private MessageSelector specialMessageSelector;

@CitrusTest
public void purgeTest() {
purgeChannels()
.channelNames("ch1", "ch2", "ch3")
.selector(specialMessageSelector);

Java DSL runner

@Autowired
@Qualifier("specialMessageSelector")
private MessageSelector specialMessageSelector;

@CitrusTest
public void purgeTest() {
purgeChannels(action ->
action.channelNames("ch1", "ch2", "ch3")
.selector(specialMessageSelector));

In the examples above we use a message selector implementation that gets injected via Spring IoC
container.

Purging channels in each test case every time is quite exhausting because every test case needs to
define a purging action at the very beginning of the test. A more straight forward approach would
be to introduce some purging action which is automatically executed before each test. Fortunately
the Citrus test suite offers a very simple way to do this. It is described in testsuite-before-test.

When using the special action sequence before test cases we are able to purge channel destinations
every time a test case executes. See the upcoming example to find out how the action is defined in

166

#before-suite

the Spring configuration application context.

<citrus:before-test id="purgeBeforeTest">
<citrus:actions>
<purge-channel>
<channel name="fooChannel"/>
<channel name="barChannel"/>
</purge-channel>
</citrus:actions>
</citrus:before-test>

Just use this before-test bean in the Spring bean application context and the purge channel action is
active. Obsolete messages that are waiting on the message channels for consumption are purged
before the next test in line is executed.

Purging message channels becomes also very interesting when working with
server instances in Citrus. Each server component automatically has an inbound
message channel where incoming messages are stored to internally. So if you
need to clean up a server that has already stored some incoming messages you

Q can do this easily by purging the internal message channel. The message channel
follows a naming convention {serverName}.inbound where {serverName} is
the Spring bean name of the Citrus server endpoint component. If you purge this
internal channel in a before test nature you are sure that obsolete messages on a
server instance get purged before each test is executed.

13.19. Purging endpoints

Citrus works with message endpoints when sending and receiving messages. In general endpoints
can also queue messages. This is especially the case when using JMS message endpoints or any
server endpoint component in Citrus. These are in memory message queues holding messages for
test cases. These messages may become obsolete during a test run, especially when a test case that
would consume the messages fails. Deleting all messages from a message endpoint is therefore a
useful task and is essential in such scenarios so that upcoming test cases are not influenced. Each
test case should only receive those messages that actually refer to the test model. Therefore it is a
good idea to purge all message endpoint destinations between the test cases. Obsolete messages
that get stuck in a message endpoint destination for some reason are then removed so that
upcoming test case are not broken.

Following action definition purges all messages from a list of message endpoints:

167

XML DSL

<testcase name="purgeEndpointTest">
<actions>
<purge-endpoint>
<endpoint name="someEndpointName"/>
<endpoint name="anotherEndpointName"/>
</purge-endpoint>

<purge-endpoint>
<endpoint ref="someEndpoint"/>
<endpoint ref="anotherEndpoint"/>
</purge-endpoint>
</actions>
</testcase>

As you can see the test action supports endpoint names as well as endpoint references to Spring
bean instances. When using endpoint references you refer to the Spring bean name in your
application context.

The Java DSL works quite similar - have a look:

Java DSL designer

@CitrusTest
public void purgeTest() {
purgeEndpoints()
.endpointNames("endpoint1", "endpoint2", "endpoint3")
.endpoint("endpoint4");

Java DSL runner

@CitrusTest
public void purgeTest() {
purgeEndpoints(action ->
action.endpointNames("endpoint1", "endpoint2", "endpoint3")
.endpoint("endpoint4d"));

When using the Java DSL we can inject endpoint objects with Spring bean container IoC. The next
example uses such bean references for endpoints in a purge action.

168

Java DSL designer

@Autowired
@Qualifier("endpoint1")
private Endpoint endpointT;

@Autowired
@Qualifier("endpoint2")
private Endpoint endpoint2;

@Autowired
@Qualifier("endpoint3")
private Endpoint endpoint3;

@CitrusTest
public void purgeTest() {
purgeEndpoints()
.endpoints(endpoint1, endpoint2)
.endpoint(endpoint3);

Java DSL runner

@Autowired
@Qualifier("endpoint1")
private Endpoint endpointi;

@Autowired
@Qualifier("endpoint2")
private Endpoint endpoint2;

@Autowired
@Qualifier("endpoint3")
private Endpoint endpoint3;

@CitrusTest
public void purgeTest() {
purgeEndpoints(action ->
action.endpoints(endpoint1, endpoint2)
.endpoint(endpoint3));

Message selectors enable you to selectively remove messages from an endpoint. All messages that
meet the message selector condition get deleted and the other messages remain inside the endpoint
destination. The message selector is either a normal String name-value representation or a map of
key value pairs:

169

XML DSL

<purge-endpoints>
<selector>
<value>operation = 'sayHello'</value>
</selector>
<endpoint name="someEndpointName"/>
<endpoint name="anotherEndpointName"/>
</purge-endpoints>

Java DSL designer

@CitrusTest
public void purgeTest() {
purgeEndpoints()
.endpointNames("endpoint1", "endpoint2", "endpoint3")
.selector("operation = 'sayHello'");

Java DSL runner

@CitrusTest
public void purgeTest() {
purgeEndpoints(action ->
action.endpointNames("endpoint1”, "endpoint2", "endpoint3")
.selector("operation = 'sayHello'"));

In the examples above we use a String to represent the message selector expression. In general the
message selector operates on the message header. So following on from that we remove all
messages selectively that have a message header operation with its value sayHello .

Purging endpoints in each test case every time is quite exhausting because every test case needs to
define a purging action at the very beginning of the test. A more straight forward approach would
be to introduce some purging action which is automatically executed before each test. Fortunately
the Citrus test suite offers a very simple way to do this. It is described in testsuite-before-test.

When using the special action sequence before test cases we are able to purge endpoint
destinations every time a test case executes. See the upcoming example to find out how the action is
defined in the Spring configuration application context.

170

#before-suite

<citrus:before-test id="purgeBeforeTest">
<citrus:actions>
<purge-endpoint>
<endpoint name="fooEndpoint"/>
<endpoint name="barEndpoint"/>
</purge-endpoint>
</citrus:actions>
</citrus:before-test>

Just use this before-test bean in the Spring bean application context and the purge endpoint action
is active. Obsolete messages that are waiting on the message endpoints for consumption are purged
before the next test in line is executed.

Purging message endpoints becomes also very interesting when working with
server instances in Citrus. Each server component automatically has an inbound

Q message endpoint where incoming messages are stored to internally. Citrus will
automatically use this incoming message endpoint as target for the purge action
so you can just use the server instance as you know it from your configuration in
any purge action.

13.20. Assert failure

Citrus test actions fail with Java exceptions and error messages. This gives you the opportunity to
expect an action to fail during test execution. You can simple assert a Java exception to be thrown
during execution. See the example for an assert action definition in a test case:

XML DSL

<testcase name="assertFailureTest">
<actions>
<assert exception="com.consol.citrus.exceptions.CitrusRuntimeException"
message="Unknown variable ${date}">
<when>
<echo>
<message>Current date is: ${date}</message>
</echo>
</when>
</assert>
</actions>
</testcase>

171

Java DSL

@CitrusTest
public void assertTest() {
assertException().exception(com.consol.citrus.exceptions.CitrusRuntimeException

.class)
.message("Unknown variable ${date}")
.when(echo("Current date is: ${date}"));
}
0 Note that the assert action requires an exception. In case no exception is thrown
by the embedded test action the assertion and the test case will fail!

The assert action always wraps a single test action, which is then monitored for failure. In case the
nested test action fails with error you can validate the error in its type and error message
(optional). The failure has to fit the expected one exactly otherwise the assertion fails itself.

Important to notice is the fact that asserted exceptions do not cause failure of the
test case. As you except the failure to happen the test continues with its work
once the assertion is done successfully.

13.21. Catch exceptions

In the previous chapter we have seen how to expect failures in Citrus with assert action. Now the
assert action is designed for single actions to be monitored and for failures to be expected in any
case. The 'catch' action in contrary can hold several nested test actions and exception failure is
optional.

The nested actions are error proof for the chosen exception type. This means possible exceptions
are caught and ignored - the test case will not fail for this exception type. But only for this
particular exception type! Other exception types that occur during execution do cause the test to
fail as usual.

XML DSL

<testcase name="catchExceptionTest">
<actions>
<catch exception="com.consol.citrus.exceptions.CitrusRuntimeException">
<echo>
<message>Current date is: ${date}</message>
</echo>
</catch>
</actions>
</testcase>

172

Java DSL

@CitrusTest
public void catchTest() {
catchException().exception(CitrusRuntimeException.class)
.when(echo("Current date is: ${date}"));

Note that there is no validation available in a catch block. So catching exceptions
is just to make a test more stable towards errors that can occur. The caught
0 exception does not cause any failure in the test. The test case may continue with
execution as if there was not failure. Also notice that the catch action is also
happy when no exception at all is raised. In contrary to that the assert action
requires the exception and an assert action is failing in positive processing.

Catching exceptions like this may only fit to very error prone action blocks where failures do not
harm the test case success. Otherwise a failure in a test action should always reflect to the whole
test case to fail with errors.

Java developers might ask why not use try-catch Java block instead? The answer
is simple yet very important to understand. The test method is called by the Java
DSL test case builder for building the Citrus test. This can be referred to as the
o design time of the test. After the building test method was processed the test gets
executed, which can be called the runtime of the test. This means that a try-catch
block within the design time method will never perform during the test run. The
only reliable way to add the catch capability to the test as part of the test case
runtime is to use the Citrus test action which gets executed during test runtime.

13.22. Apache Ant build

The <ant> action loads a build.xml Ant file and executes one or more targets in the Ant project. The
target is executed with optional build properties passed to the Ant run. The Ant build output is
logged with Citrus logger and the test case success is bound to the Ant build success. This means in
case the Ant build fails for some reason the test case will also fail with build exception accordingly.

See this basic Ant run example to see how it works within your test case:

173

XML DSL

<testcase name="AntRunTest">
<variables>
<variable name="today" value="citrus:currentDate()"/>
</variables>
<actions>
<ant build-file="classpath:com/consol/citrus/actions/build.xml">
<execute target="sayHello"/>
<properties>
<property name="date" value="${today}"/>
<property name="welcomeText" value="Hello!"/>
</properties>
</ant>
</actions>
</testcase>

Java DSL designer

@CitrusTest
public void antRunTest() {
variable("today", "citrus:currentDate()");

antrun("classpath:com/consol/citrus/actions/build.xml")
.target("sayHello")
.property("date", "${today}")
.property("welcomeText", "$Hello!");

Java DSL runner

@CitrusTest
public void antRunTest() {
variable("today", "citrus:currentDate()");

antrun(action -> action.buildFilePath
("classpath:com/consol/citrus/actions/build.xml")
.target("sayHello")
.property("date", "${today}")
.property("welcomeText", "$Hello!"));

The respective build.xml Ant file must provide the target to call. For example:

174

<project name="citrus-build" default="sayHello">
<property name="welcomeText" value="Welcome to Citrus!"></property>

<target name="sayHello">

<echo message="${welcomeText} - Today is ${date}"></echo>
</target>

<target name="sayGoodbye">
<echo message="Goodbye everybody!"></echo>
</target>
</project>

As you can see you can pass custom build properties to the Ant build execution. Existing Ant build
properties are replaced and you can use the properties in your build file as usual.

You can also call multiple targets within one single build run by using a comma separated list of
target names:

XML DSL

<testcase name="AntRunTest">
<variables>
<variable name="today" value="citrus:currentDate()"/>
</variables>
<actions>
<ant build-file="classpath:com/consol/citrus/actions/build.xml">
<execute targets="sayHello,sayGoodbye"/>
<properties>
<property name="date" value="${today}"/>
</properties>
</ant>
</actions>
</testcase>

Java DSL designer

@CitrusTest
public void antRunTest() {
variable("today", "citrus:currentDate()");

antrun("classpath:com/consol/citrus/actions/build.xml")

.targets("sayHello", "sayGoodbye")
.property("date", "${today}");

175

Java DSL runner

@CitrusTest
public void antRunTest() {
variable("today", "citrus:currentDate()");

antrun(action -> action.buildFilePath
("classpath:com/consol/citrus/actions/build.xml")
.targets("sayHello", "sayGoodbye")
.property("date", "${today}"));

The build properties can live in external file resource as an alternative to the inline property
definitions. You just have to use the respective file resource path and all nested properties get
loaded as build properties.

In addition to that you can also define a custom build listener. The build listener must implement
the Ant API interface org.apache.tools.ant.BuildListener . During the Ant build run the build
listener is called with several callback methods (e.g. buildStarted(), buildFinished(), targetStarted(),
targetFinished(), ...). This is how you can add additional logic to the Ant build run from Citrus. A
custom build listener could manage the fail state of your test case, in particular by raising some
exception forcing the test case to fail accordingly.

XML DSL

<testcase name="AntRunTest">
<actions>
<ant build-file="classpath:com/consol/citrus/actions/build.xml"
build-listener="customBuildListener">
<execute target="sayHello"/>
<properties file="classpath:com/consol/citrus/actions/build.properties"/>
</ant>
</actions>
</testcase>

Java DSL designer

@Autowired
private BuildlListener customBuildListener;

@CitrusTest
public void antRunTest() {
antrun("classpath:com/consol/citrus/actions/build.xml")
.target("sayHello")
.propertyFile("classpath:com/consol/citrus/actions/build.properties")
.listener(customBuildlListener);

176

Java DSL runner

@Autowired
private BuildListener customBuildListener;

@CitrusTest
public void antRunTest() {
antrun(action -> action.buildFilePath
("classpath:com/consol/citrus/actions/build.xml")
.target("sayHello")
.propertyFile("classpath:com/consol/citrus/actions/build.properties")
.listener(customBuildListener));

The customBuildListener used in the example above should reference a Spring bean in the Citrus
application context. The bean implements the interface org.apache.tools.ant.BuildListener and
controls the Ant build run.

13.23. Start/Stop server

Citrus is working with server components that are started and stopped within a test run. This can
be a Http server or some SMTP mail server for instance. Usually the Citrus server components are
automatically started when Citrus is starting and respectively stopped when Citrus is shutting
down. Sometimes it might be helpful to explicitly start and stop a server instance within your test
case. Here you can use special start and stop test actions inside your test. This is a good way to test
downtime scenarios of interface partners with respective error handling when connections to
servers are lost

Let me explain with a simple sample test case:

XML DSL

<testcase name="sleepTest">
<actions>
<start server="myMailServer"/>

<sleep/>

<stop server="myMailServer"/>
</actions>
</testcase>

The start and stop server test action receive a server name which references a Spring bean
component of type com.consol.citrus.server.Server in your basic Spring application context. The
server instance is started or stopped within the test case. As you can see in the next listing we can
also start and stop multiple server instances within a single test action.

177

<testcase name="sleepTest">
<actions>
<start>
<servers>
<server name="myMailServer"/>
<server name="myFtpServer"/>
</servers>
</start>

<sleep/>

<stop>
<servers>
<server name="myMailServer"/>
<server name="myFtpServer"/>
</servers>
</stop>
</actions>
</testcase>

When using the Java DSL the best way to reference a server instance is to autowire the Spring bean
via dependency injection. The Spring framework takes case on injecting the proper Spring bean
component defined in the Spring application context. This way you can easily start and stop server
instances within Java DSL test cases.

Java DSL

@Autowired
@Qualifier("myFtpServer")
private FtpServer myFtpServer;

@CitrusTest
public void startStopServerTest() {
start(myFtpServer);
sleep();
stop(myFtpServer);
}
Starting and stopping server instances is a synchronous test action. This means
o that your test case is waiting for the server to start before other test actions take
place. Startup times and shut down of server instances may delay your test
accordingly.

As you can see starting and stopping Citrus server instances is very easy. You can also write your
own server implementations by implementing the interface com.consol.citrus.server.Server . All
custom server implementations can then be started and stopped during a test case.

178

13.24. Stop Timer

The <stop-timer> action can be used for stopping either a specific timer (containers-timer) or all
timers running within a test. This action is useful when timers are started in the background (using
parallel or fork=true) and you wish to stop these timers at the end of the test. Some examples of
using this action are provided below:

XML DSL

<testcase name="timerTest">
<actions>
<timer id="forkedTimer" fork="true">
<sleep milliseconds="50" />
</timer>

<timer fork="true">
<sleep milliseconds="50" />
</timer>

<timer repeatCount="5">
<sleep milliseconds="50" />
</timer>

<stop-timer timerId="forkedTimer" />
</actions>
<finally>
<stop-timer />
</finally>
</testcase>

179

#containers-timer

Java DSL

@CitrusTest
public void timerTest() {

timer()
.timerId("forkedTimer")
.fork(true)
.actions(sleep(50L)

)i

timer()
.fork(true)
.actions(sleep(50L)

)i

timer()
.repeatCount(5)
.actions(sleep(50L));

stopTimer ("forkedTimer")

doFinally().actions(
stopTimer()

)i

}

In the above example 3 timers are started, the first 2 in the background and the third in the test
execution thread. Timer #3 has a repeatCount set to 5 so it will terminate automatically after 5 runs.
Timer #1 and #2 however have no repeatCount set so they will execute until they are told to stop.

Timer #1 is stopped explicitly using the first stopTimer action. Here the stopTimer action includes
the name of the timer to stop. This is convenient when you wish to terminate a specific timer.
However since no timerld was set for timer #2, you can terminate this (and all other timers) using
the 'stopTimer' action with no explicit timerld set.

13.25. Custom test actions

Now we have a look at the opportunity to add custom test actions to the test case flow. Let us start
this section with an example:

XML DSL

<testcase name="ActionReferenceTest">
<actions>
<action reference="cleanUpDatabase"/>
<action reference="mySpecialAction"/>
</actions>
</testcase>

180

The generic <action> element references Spring beans that implement the Java interface
com.consol.citrus.TestAction . This is a very fast way to add your own action implementations to
a Citrus test case. This way you can easily implement your own actions in Java and include them
into the test case.

In the example above the called actions are special database cleanup implementations. The actions
are defined as Spring beans in the Citrus configuration and get referenced by their bean name or
id.

<bean id="cleanUpDatabase"

class="my.domain.citrus.actions.SpecialDatabaseCleanupAction">
<property name="dataSource" ref="testDataSource"/>

</bean>

The Spring application context holds your custom bean implementations. You can set properties
and use the full Spring power while implementing your custom test action in Java. Let us have a
look on how such a Java class may look like.

import com.consol.citrus.actions.AbstractTestAction;
import com.consol.citrus.context.TestContext;

public class SpecialDatabaseCleanupAction extends AbstractTestAction {

@Autowired
private DataSource dataSource;

@0verride
public void doExecute(TestContext context) {
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);

jdbcTemplate.execute("...");

All you need to do in your Java class is to implement the Citrus com.consol.citrus.TestAction
interface. The abstract class com.consol.citrus.actions.AbstractTestAction may help you to start
with your custom test action implementation as it provides basic method implementations so you
just have to implement the doExecute() method.

When using the Java test case DSL you are also quite comfortable with including your custom test
actions.

181

Java DSL

@Autowired
private SpecialDatabase(CleanupAction cleanUpDatabaseAction;

@CitrusTest
public void genericActionTest() {
echo("Now let's include our special test action");

action(cleanUpDatabaseAction);

echo("That's it!");

Using anonymous class implementations is also possible.

Java DSL

@CitrusTest
public void genericActionTest() {
echo("Now let's call our special test action anonymously");

action(new AbstractTestAction() {
public void doExecute(TestContext context) {
// do something
}
b

echo("That's it!");

182

Chapter 14. Templates

Templates group action sequences to a logical unit. You can think of templates as reusable
components that are used in several tests. The maintenance is much more effective because the

templates are referenced several times.

The template always has a unique name. Inside a test case we call the template by this unique
name. Have a look at a first example:

<template name="doCreateVariables">
<create-variables>
<variable name="var" value="123456789"/>
</create-variables>

<call-template name="doTraceVariables"/>
</template>

<template name="doTraceVariables">
<echo>
<message>Current time is: ${time}</message>
</echo>

<trace-variables/>
</template>

The code example above describes two template definitions. Templates hold a sequence of test
actions or call other templates themselves as seen in the example above.

The <call-template> action calls other templates by their name. The called
template not necessarily has to be located in the same test case XML file. The
template might be defined in a separate XML file other than the test case itself:

XML DSL

<testcase name="templateTest">
<variables>
<variable name="myTime" value="citrus:currentDate()"/>
</variables>
<actions>
<call-template name="doCreateVariables"/>

<call-template name="doTraceVariables">
<parameter name="time" value="${myTime}">
</call-template>
</actions>
</testcase>

183

Java DSL designer

@CitrusTest
public void templateTest() {
variable("myTime", "citrus:currentDate()");

applyTemplate("doCreateVariables");

applyTemplate("doTraceVariables")
.parameter ("time", "${myTime}");

Java DSL runner

@CitrusTest
public void templateTest() {
variable("myTime", "citrus:currentDate()");

applyTemplate(template -> template.name("doCreateVariables"));

applyTemplate(template -> template.name("doTraceVariables")
.parameter ("time", "${myTime}"));

There is an open question when dealing with templates that are defined somewhere else outside
the test case. How to handle variables? A templates may use different variable names then the test
and vice versa. No doubt the template will fail as soon as special variables with respective values
are not present. Unknown variables cause the template and the whole test to fail with errors.

So a first approach would be to harmonize variable usage across templates and test cases, so that
templates and test cases do use the same variable naming. But this approach might lead to high
calibration effort. Therefore templates support parameters to solve this problem. When a template
is called the calling actor is able to set some parameters. Let us discuss an example for this issue.

The template "doDateConversion” in the next sample uses the variable ${date}. The calling test case
can set this variable as a parameter without actually declaring the variable in the test itself:

<call-template name="doDateConversion">
<parameter name="date" value="${sampleDate}">
</call-template>

The variable sampleDate is already present in the test case and gets translated into the date
parameter. Following from that the template works fine although test and template do work on
different variable namings.

With template parameters you are able to solve the calibration effort when working with templates
and variables. It is always a good idea to check the used variables/parameters inside a template
when calling it. There might be a variable that is not declared yet inside your test. So you need to

184

define this value as a parameter.

Template parameters may contain more complex values like XML fragments. The call-template
action offers following CDATA variation for defining complex parameter values:

<call-template name="printXMLPayload">
<parameter name="payload">
<value>
<![CDATAL
<HelloRequest xmlns="http://www.consol.de/schemas/samples/sayHello.xsd">
<Text>Hello South ${var}</Text>
</HelloRequest>
11>
</value>
</parameter>
</call-template>

When a template works on variable values and parameters changes to these
variables will automatically affect the variables in the whole test. So if you

o change a variable’s value inside a template and the variable is defined inside the
test case the changes will affect the variable in a global context. We have to be
careful with this when executing a template several times in a test, especially in
combination with parallel containers (see containers-parallel).

<parallel>
<call-template name="print">
<parameter name="param1" value="1"/>
<parameter name="param2" value="Hello Europe"/>
</call-template>
<call-template name="print">
<parameter name="paraml1" value="2"/>
<parameter name="param2" value="Hello Asia"/>
</call-template>
<call-template name="print">
<parameter name="param1" value="3"/>
<parameter name="param2" value="Hello Africa"/>
</call-template>
</parallel>

In the listing above a template print is called several times in a parallel container. The parameter
values will be handled in a global context, so it is quite likely to happen that the template instances
influence each other during execution. We might get such print messages:

2. Hello Europe
2. Hello Africa
3. Hello Africa

185

#containers-parallel

Index parameters do not fit and the message 'Hello Asia' is completely gone. This is because
templates overwrite parameters to each other as they are executed in parallel at the same time. To
avoid this behavior we need to tell the template that it should handle parameters as well as
variables in a local context. This will enforce that each template instance is working on a dedicated
local context. See the global-context attribute that is set to false in this example:

<template name="print" global-context="false">
<echo>
<message>${param1}.${param2}</message>
</echo>
</template>

After that template instances won’t influence each other anymore. But notice that variable changes
inside the template then do not affect the test case neither.

186

Chapter 15. Test behaviors

Test behaviors combine action sequences to a logical unit. The behavior defines a set of test actions
that can be applied to a Java DSL test case. Following from that you can say that behaviors are
reusable test action templates. The maintenance is much more effective when you reuse basic test
actions in many test cases.

The behavior is a separate Java DSL class with a single apply method that configures the test
actions. Have a look at this first example:

Java DSL

public class FooBehavior extends AbstractTestBehavior {
public void apply() {
variable("foo", "test");

echo("fooBehavior");

}

public class BarBehavior extends AbstractTestBehavior {
public void apply() {
variable("bar", "test");

echo("barBehavior");

As you can see the behavior class is able to use the Citrus Java DSL as usual. Each behavior is able to
define test variables and actions. In a test case you can apply the behaviors as follows:

Java DSL

@CitrusTest
public void behaviorTest() {
variable("myTime", "citrus:currentDate()");

FooBehavior fooBehavior = new FooBehavior();
applyBehavior(fooBehavior);

applyBehavior(new BarBehavior());

applyBehavior(fooBehavior);

When dealing with behaviors test actions are defined somewhere outside the test case. How do we
handle test variables? A behavior may use different variable names then the test and vice versa. No
doubt the behavior will fail as soon as special variables with respective values are not present.
Unknown variables cause the behavior and the whole test to fail with errors.

187

So a good approach would be to harmonize variable usage across behaviors and test cases, so that
templates and test cases do use the same variable naming. The behavior automatically knows all
variables in the test case. And all test variables created inside the behavior are visible to the test
case after applying.

When a behavior changes variables this will automatically affect the variables in
the whole test. So if you change a variable’s value inside a behavior and the

o variable is defined inside the test case the changes will affect the variable in a
global test context. This means we have to be careful when executing a behavior
several times in a test, especially in combination with parallel containers (see
containers-parallel).

15.1. Behavior types

The test case in Java is able to follow either designer or runner strategies. This means we also have
two different behavior types for designer and runner respectively. The behaviors are located in
separate packages

* com.consol.citrus.dsl.design.AbstractTestBehavior

e com.consol.citrus.dsl.runner.AbstractTestBehavior

Decide which base behavior you want to extend from according to your test case nature.

188

#containers-parallel

Chapter 16. Containers

Similar to templates a container element holds one to many test actions. In contrast to the template
the container appears directly inside the test case action chain, meaning that the container is not
referenced by more than one test case.

Containers execute the embedded test actions in specific logic. This can be an execution in iteration
for instance. Combine different containers with each other and you will be able to generate very
powerful hierarchical structures in order to create a complex execution logic. In the following
sections some predefined containers are described.

16.1. Sequential

The sequential container executes the embedded test actions in strict sequence. Readers now might
search for the difference to the normal action chain that is specified inside the test case. The actual
power of sequential containers does show only in combination with other containers like iterations
and parallels. We will see this later when handling these containers.

For now the sequential container seems not very sensational - one might say boring - because it
simply groups a pair of test actions to sequential execution.

XML DSL

<testcase name="sequentialTest">
<actions>
<sequential>
<trace-time/>
<sleep/>
<echo>
<message>Hallo TestFramework</message>
</echo>
<trace-time/>
</sequential>
</actions>
</testcase>

Java DSL

@CitrusTest
public void sequentialTest() {
sequential()
.actions(
stopTime(),
sleep(1.0),
echo("Hello Citrus"),
stopTime()

189

16.2. Conditional

Now we deal with conditional executions of test actions. Nested actions inside a conditional
container are executed only in case a boolean expression evaluates to true. Otherwise the container
execution is not performed at all.

See some example to find out how it works with the conditional expression string.

XML DSL

<testcase name="conditionalTest">
<variables>
<variable name="index" value="5"/>
<variable name="shouldSleep" value="true"/>
</variables>

<actions>
<conditional expression="${index} = 5">
<sleep seconds="10"/>
</conditional>

<conditional expression="${shouldSleep}">
<sleep seconds="10"/>
</conditional>

<conditional expression="@assertThat('${shouldSleep}', 'anyOf(is(true),
isEmptyString())')e">
<sleep seconds="10"/>
</conditional>
</actions>
</testcase>

190

Java DSL

@CitrusTest

public void conditionalTest() {
variable("index", 5);
variable("shouldSleep", true);

conditional().when("${index} = 5"))
.actions(
sleep(10000L)
)7

conditional().when("${shouldSleep}"))
.actions(
sleep(10000L)
)i

conditional().when("${shouldSleep}", anyOf(is("true"), isEmptyString()))
.actions(
sleep(10000L)
iB

The nested sleep action is executed in case the variable ${index} is equal to the value '5'. This
conditional execution of test actions is useful when dealing with different test environments such
as different operating systems for instance. The conditional container also supports expressions
that evaluate to the character sequence "true" or "false" as shown in the ${shouldSleep} example.

The last conditional container in the example above makes use of Hamcrest matchers. The matcher
evaluates to true of false and based on that the container actions are executed or skipped. The
Hamcrest matchers are very powerful when it comes to evaluation of multiple conditions at a time.

16.3. Parallel

Parallel containers execute the embedded test actions concurrent to each other. Every action in this
container will be executed in a separate Java Thread. Following example should clarify the usage:

191

XML DSL

<testcase name="parallelTest">
<actions>
<parallel>
<sleep/>

<sequential>
<sleep/>
<echo>
<message>1</message>
</echo>
</sequential>

<echo>
<message>2</message>
</echo>

<echo>
<message>3</message>

</echo>

<iterate condition="1 1t= 5"

index="1">
<echo>
<message>10</message>

</echo>

</iterate>

</parallel>
</actions>
</testcase>

192

Java DSL

@CitrusTest
public void paralletTest() {
parallel().actions(
sleep(),
sequential().actions(
sleep(),
echo("1")
b
echo("2"),
echo("3"),
iterate().condition("i 1t= 5").index("i"))
.actions(
echo("10")

So the normal test action processing would be to execute one action after another. As the first
action is a sleep of five seconds, the whole test processing would stop and wait for 5 seconds. Things
are different inside the parallel container. Here the descending test actions will not wait but

execute at the same time.

Note that containers can easily wrap other containers. The example shows a
o simple combination of sequential and parallel containers that will archive a
complex execution logic. Actions inside the sequential container will execute one

after another. But actions in parallel will be executed at the same time.

16.4. Iterate

Iterations are very powerful elements when describing complex logic. The container executes the
embedded actions several times. The container will continue with looping as long as the defined
breaking condition string evaluates to true . In case the condition evaluates to false the iteration

will break an finish execution.

XML DSL

<testcase name="iterateTest">
<actions>
<iterate index="i" condition="i 1t 5">
<echo>
<message>index is: ${i}</message>
</echo>
</iterate>
</actions>
</testcase>

193

Java DSL

@CitrusTest
public void iterateTest() {
iterate().condition("i 1t 5").index("i"))
.actions(
echo("index is: ${i}")
)i

The attribute "index" automatically defines a new variable that holds the actual loop index starting
at "1". This index variable is available as a normal variable inside the iterate container. Therefore it
is possible to print out the actual loop index in the echo action as shown in the above example.

The condition string is mandatory and describes the actual end of the loop. In iterate containers the
loop will break in case the condition evaluates to false .

The condition string can be any Boolean expression and supports several operators:

lt

lower than

lt=

lower than equals

gt
greater than

gt=
greater than equals

equals

and

logical combining of two Boolean values

or

logical combining of two Boolean values

0

brackets
It is very important to notice that the condition is evaluated before the very first
iteration takes place. The loop therefore can be executed 0-n times according to

the condition value.

Now the boolean expression evaluation as described above is limited to very basic operation such

194

as lower than, greater than and so on. We also can use Hamcrest matchers in conditions that are
way more powerful than that.

XML DSL

<testcase name="iterateTest">
<actions>
<jterate index="i" condition="@assertThat(lessThan(5))@">
<echo>
<message>index is: ${i}</message>
</echo>
</iterate>
</actions>
</testcase>

Java DSL

@CitrusTest
public void iterateTest() {
iterate().condition(lessThan(5)).index("i"))
.actions(
echo("index is: ${i}")
i

In the example above we use Hamcrest matchers as condition. You can combine Hamcrest
matchers and create very powerful condition evaluations here.

16.5. Repeat until true

Quite similar to the previously described iterate container this repeating container will execute its
actions in a loop according to an ending condition. The condition describes a Boolean expression
using the operators as described in the previous chapter.

The loop continues its work until the provided condition evaluates to true . It is

very important to notice that the repeat loop will execute the actions before
evaluating the condition. This means the actions get executed n-1 times.

195

XML DSL

<testcase name="iterateTest">

<actions>
<repeat-until-true index="i" condition="(i = 3) or (i = 5)">
<echo>
<message>index is: ${i}</message>
</echo>
</repeat-until-true>
</actions>
</testcase>
Java DSL
@CitrusTest

public void repeatTest() {
repeat().until("(i gt 5) or (i = 3)").index("i"))
.actions(
echo("index is: ${i}")
)i

As you can see the repeat container is only executed when the iterating condition expression
evaluates to false . By the time the condition is true execution is discontinued. You can use basic
logical operators such as and, or and so on.

A more powerful way is given by Hamcrest matchers that are directly supported in condition
expressions.

XML DSL

<testcase name="iterateTest">

<actions>
<repeat-until-true index="i" condition="@assertThat(any0f(is(3), is(5))e">
<echo>
<message>index is: ${i}</message>
</echo>
</repeat-until-true>
</actions>
</testcase>

196

Java DSL

@CitrusTest
public void repeatTest() {
repeat().until(any0f(is(3), is(5)).index("i"))
.actions(
echo("index is: ${i}")
)i

The Hamcrest matcher usage simplifies the reading a lot. And it empowers you to combine more
complex condition expressions. So I personally prefer this syntax.

16.6. Repeat on error until true

The next looping container is called repeat-on-error-until-true. This container repeats a group of
actions in case one embedded action failed with error. In case of an error inside the container the
loop will try to execute all embedded actions again in order to seek for overall success. The
execution continues until all embedded actions were processed successfully or the ending
condition evaluates to true and the error-loop will lead to final failure.

XML DSL

<testcase name="iterateTest">
<actions>
<repeat-onerror-until-true index="i" condition="i = 5">
<echo>
<message>index is: ${i}</message>
</echo>
<fail/>
</repeat-onerror-until-true>
</actions>
</testcase>

Java DSL designer

@CitrusTest
public void repeatOnErrorTest() {
repeatOnError(
echo("index is: ${i}"),
fail("Force loop to faill!")
).until("i = 5").index("i");

197

Java DSL runner

@CitrusTest
public void repeatOnErrorTest() {
repeatOnError().until("i = 5").index("i"))
.actions(
echo("index is: ${i}"),
fail("Force loop to fail!")
)i

In the code example the error-loop continues four times as the <fail> action definitely fails the test.
During the fifth iteration The condition "i=5" evaluates to true and the loop breaks its processing
leading to a final failure as the test actions were not successful.

The overall success of the test case depends on the error situation inside the
repeat-onerror-until-true container. In case the loop breaks because of failing

0 actions and the loop will discontinue its work the whole test case is failing too.
The error loop processing is successful in case all embedded actions were not
raising any errors during an iteration.

The repeat-on-error container also offers an automatic sleep mechanism. This auto-sleep property
will force the container to wait a given amount of time before executing the next iteration. We used
this mechanism a lot when validating database entries. Let’s say we want to check the existence of
an order entry in the database. Unfortunately the system under test is not very well performing
and may need some time to store the new order. This amount of time is not predictable, especially
when dealing with different hardware on our test environments (local testing vs. server testing).
Following from that our test case may fail unpredictable only because of runtime conditions.

We can avoid unstable test cases that are based on these runtime conditions with the auto-sleep
functionality.

XML DSL

<repeat-onerror-until-true auto-sleep="1000" condition="i = 5" index="i">

<echo>
<sql datasource="testDataSource">
<statement>
SELECT COUNT(1) AS CNT_ORDERS
FROM ORDERS
WHERE CUSTOMER_ID='${customerId}'
</statement>
<validate column="CNT_ORDERS" value="1"/>
</sql>
</echo>

</repeat-onerror-until-true>

198

Java DSL

@CitrusTest
public void repeatOnErrorTest() {
repeatOnError().until("i = 5").index("i").autoSleep(1000))
.actions(
query(action -> action.dataSource(testDataSource)
.statement ("SELECT COUNT(1) AS CNT_ORDERS FROM ORDERS WHERE
CUSTOMER_ID="${customerId}'")
.validate("CNT_ORDERS", "1"))

)

We surrounded the database check with a repeat-onerror container having the auto-sleep property
set to 1000 milliseconds. The repeat container will try to check the database up to five times with an
automatic sleep of 1 second before every iteration. This gives the system under test up to five
seconds time to store the new entry to the database. The test case is very stable and just fits to the
hardware environment. On slow test environments the test may need several iterations to
successfully read the database entry. On very fast environments the test may succeed right on the
first try.

We changed auto sleep time from seconds to milliseconds with Citrus 2.0 release.
So if you are coming from previous Citrus versions be sure to now use proper
millisecond values.

So fast environments are not slowed down by static sleep operations and slower environments are
still able to execute this test case with high stability.

16.7. Timer

Timers are very useful containers when you wish to execute a collection of test actions several
times at regular intervals. The timer component generates an event which in turn triggers the
execution of the nested test actions associated with timer. This can be useful in a number of test
scenarios for example when Citrus needs to simulate a heart beat or if you are debugging a test and
you wist to query the contents of the database, to mention just a few. The following code sample
should demonstrate the power and flexibility of timers:

199

XML DSL

<testcase name="timerTest">

<actions>
<timer id="forkedTimer" interval="100" fork="true">
<echo>

<message>I'm going to run in the background and let some other test
actions run (nested action run ${forkedTimer-index} times)</message>
</echo>
<sleep milliseconds="50" />
</timer>

<timer repeatCount="3" interval="100" delay="50">
<sleep milliseconds="50" />
<echo>
<message>I'm going to repeat this message 3 times before the next test
actions are executed</message>
</echo>
</timer>

<echo>
<message>Test almost complete. Make sure all timers running in the
background are stopped</message>
</echo>
</actions>
<finally>
<stop-timer timerId="forkedTimer" />
</finally>
</testcase>

200

Java DSL

@CitrusTest
public void timerTest() {

timer()
.timerId("forkedTimer")
.interval(100L)
.fork(true)
.actions(
echo("I'm going to run in the background and let some other test actions
run (nested action run ${forkedTimer-index} times)"),
sleep(50L)
)i

timer()
.repeatCount(3)
.interval(100L)
.delay(50L)
.actions(
sleep(50L),
echo("I'm going to repeat this message 3 times before the next test
actions are executed")

)

echo("Test almost complete. Make sure all timers running in the background are
stopped");

doFinally().actions(
stopTimer ("forkedTimer")

)i

In the above example the first timer (timerld = forkedTimer) is started in the background. By
default timers are run in the current thread of execution but to start it in the background just use
"fork=true". Every 100 milliseconds this timer emits an event which will result in the nested actions
being executed. The nested 'echo' action outputs the number of times this timer has already been
executed. It does this with the help of an 'index' variable, in this example ${forkedTimer-index},
which is named according to the timer id with the suffix -index'. No limit is set on the number of
times this timer should run so it will keep on running until either a nested test action fails or it is
instructed to stop (more on this below).

The second timer is configured to run 3 times with a delay of 100 milliseconds between each
iteration. Using the attribute 'delay’ we can get the timer pause for 50 milliseconds before running
the nested actions for the first time. The timer is configured to run in the current thread of
execution so the last test action, the 'echo’, has to wait for this timer to complete before it is
executed.

So how do we tell the forked timer to stop running? If we forget to do this the timer will just execute
indefinitely. To help us out here we can use the 'stop-timer' action. By adding this to the finally

201

block we ensure that the timer will be stopped, even if some nested test action fails. We could have
easily added it as a nested test action, to the forkedTimer for example, but if some other test action
failed before the stop-timer was called, the timer would never stop.

You can also configure timers to run in the background using the 'parallel’
container, rather than setting the attribute 'fork' to true. Using parallel allows
more fine-grained control of the test and has the added advantage that all errors

o generated from a nester timer action are visible to the test executer. If an error
occurs within the timer then the test status is set to failed. Using fork=true an
error causes the timer to stop executing, but the test status is not influenced by
this error.

16.8. Async

Now we deal with parallel execution of test actions. Nested actions inside a async container are
executed in a separate thread. This has the effect that the test execution is not blocked until the
nested actions have performed. The test immediately continues with the next test actions in place
the will be executed in parallel to those actions in the async container.

This mechanism comes in handy when a test action should be forked to the rest of the test. In send
operations we were able to do this before with the fork="true" option set. Now we can also use the
async test action container with all kind of test actions nested.

See some example to find out how it works.

XML DSL

<testcase name="asyncTest">

<actions>
<async>
<actions>
<send endpoint="fooEndpoint">
<message>...</message>
</send>
<receive endpoint="fooEndpoint">
<message>...</message>
</echo>
</actions>
</async>
<echo>
<message>Continue with test</message>
</echo>
</actions>
</testcase>

202

Java DSL

@CitrusTest
public void asyncTest() {
async().actions(
send(fooEndpoint)
.message(fooRequest()),
receive(fooEndpoint)
.message(fooResponse())

)

echo("Continue with test");

The nested send and receive actions get executed in parallel to the other test actions in that test
case. So the test will not wait for these actions to finish before executing next actions. Of course
possible errors inside the async container will also cause the whole test case to fail. And the test will
definitely wait for all async actions to be finished before finishing the whole test case. This safely
lets us execute test actions in parallel to each other.

The async container also supports success and error callback actions. This is an experimental
feature that is only available for XML test cases up to now.

XML DSL

<testcase name="asyncTest">

<actions>
<async>
<actions>
<send endpoint="fooEndpoint">
<message>...</message>
</send>
<receive endpoint="fooEndpoint">
<message>...</message>
</echo>
<success>
<echo><message>Success!</message></echo>
</success>
<error>
<echo><message>Failed!</message></echo>
</error>
</actions>
</async>
<echo>
<message>Continue with test</message>
</echo>
</actions>
</testcase>

203

So you can add test actions that get executed based on the async test action outcome success or
error.

16.9. Custom containers

In case you have a custom action container implementation you might also want to use it in Java
DSL. The action containers are handled with special care in the Java DSL because they have nested
actions. So when you call a test action container in the Java DSL you always have something like
this:

Java DSL

@CitrusTest
public void containerTest() {
echo("This echo is outside of the action container");

sequential()
.actions(
echo("Inside"),
echo("Inside once more"),
echo("And again: Inside!")

)i

echo("This echo is outside of the action container");

Now the three nested actions are added to the action sequential container rather than to the test
case itself although we are using the same action Java DSL methods as outside the container. This
mechanism is only working because Citrus is handling test action containers with special care.

A custom test action container implementation could look like this:

public class ReverseActionContainer extends AbstractActionContainer {
@0verride
public void doExecute(TestContext context) {
for (int i = getActions().size(); i > 0; i--) {
getActions().get(i-1).execute(context);

The container logic is very simple: The container executes the nested actions in reverse order. As
already mentioned Citrus needs to take special care on all action containers when executing a Java
DSL test. This is why you should not execute a custom test container implementation on your own.

204

@CitrusTest

public void containerTest() {
ReverseActionContainer reverseContainer = new ReverseActionContainer();
reverseContainer.addTestAction(new EchoAction().setMessage("Fo0"));
reverseContainer.addTestAction(new EchoAction().setMessage("Bar"));
run(reverseContainer);

The above custom container execution is going to fail with internal error as the Citrus Java DSL was
not able to recognise the action container as it should be. Also the EchoAction instance creation is
not very comfortable. Instead you can use a special container Java DSL syntax also with your
custom container implementation:

@CitrusTest
public void containerTest() {
container (new ReverseActionContainer()).actions(
echo("Fo0"),
echo("Bar")

)i

The custom container implementation now works fine with the automatically nested echo actions.
And we are able to use the usual Java DSL syntactic sugar for test actions like echo .

In a next step we add a custom superclass for all our test classes which provides a helper method
for the custom container implementation in order to have a even more comfortable syntax.

Java DSL

public class CustomCitrusBaseTest extends TestNGCitrusTestDesigner {

public AbstractTestContainerBuilder<ReverseActionContainer> reverse() {
return container(new ReverseActionContainer());

}

Now all subclasses can use the new reverse method for calling the custom container
implementation.

@CitrusTest
public void containerTest() {
reverse().actions(
echo("Fo0"),
echo("Bar")

)i

205

Nice! This is how we should integrate customized test action containers to the Citrus Java DSL.

206

Chapter 17. JMS support

Citrus provides support for sending and receiving JMS messages. We have to separate between
synchronous and asynchronous communication. So in this chapter we explain how to setup JMS
message endpoints for synchronous and asynchronous outbound and inbound communication

The JMS components in Citrus are kept in a separate Maven module. If not
already done so you have to include the module as Maven dependency to your
project

<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-jms</artifactld>
<version>2.7.5</version>
</dependency>

Citrus provides a "citrus-jms" configuration namespace and schema definition for JMS related
components and features. Include this namespace into your Spring configuration in order to use
the Citrus JMS configuration elements. The namespace URI and schema location are added to the
Spring configuration XML file as follows.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:citrus-jms="http://www.citrusframework.org/schema/jms/config"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/jms/config
http://www.citrusframework.org/schema/jms/config/citrus-jms-config.xsd">

[...]

</beans>

After that you are able to use customized Citrus XML elements in order to define the Spring beans.

17.1. JMS endpoints

By default Citrus JMS endpoints are asynchronous. So let us first of all deal with asynchronous
messaging which means that we will not wait for any response message after sending or receiving
a message.

The test case itself should not know about JMS transport details like queue names or connection
credentials. This information is stored in the endpoint component configuration that lives in the
basic Spring configuration file in Citrus. So let us have a look at a simple JMS message endpoint
configuration in Citrus.

207

<citrus-jms:endpoint id="helloServiceQueueEndpoint"
destination-name="Citrus.HelloService.Request.Queue"
timeout="10000"/>

The endpoint component receives an unique id and a JMS destination name. This can be a queue or
topic destination. We will deal with JMS topics later on. For now the timeout setting completes our
first JMS endpoint component definition.

The endpoint needs a JMS connection factory for connecting to a JMS message broker. The
connection factory is also added as Spring bean to the Citrus Spring application context.

<bean id="connectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />
</bean>

The JMS connection factory receives the JMS message broker URL and is able to hold many other
connection specific options. In this example we use the Apache ActiveMQ connection factory
implementation as we want to use the ActiveMQ message broker. Citrus works by default with a
bean id connectionFactory . All Citrus JMS component will automatically recognize this connection
factory.

Spring makes it very easy to connect to other JMS broker implementations too

Q (e.g. Apache ActiveMQ, TIBCO Enterprise Messaging Service, IBM Websphere
MQ). Just add the required connection factory implementation as
connectionFactory bean.

All of the Citrus JMS endpoint components will automatically look for a bean

0 named connectionFactory by default. You can use the connection-factory
endpoint attribute in order to use another connection factory instance with
different bean names.

<citrus-jms:endpoint id="helloServiceQueueEndpoint"
destination-name="Citrus.HelloService.Request.Queue"
connection-factory="myConnectionFacotry"/>

As an alternative to that you may want to use a special Spring jms template implementation as
custom bean in your endpoint.

<citrus-jms:endpoint id="helloServiceQueueEndpoint"
destination-name="Citrus.HelloService.Request.Queue"
jms-template="myJmsTemplate"/>

The endpoint is now ready to be used inside a test case. Inside a test case you can send or receive

208

messages using this endpoint. The test actions can reference the JMS endpoint using its identifier.
When sending a message the message endpoint creates a JMS message producer and will simply
publish the message to the defined JMS destination. As the communication is asynchronous by
default producer does not wait for a synchronous response.

When receiving a messages with this endpoint the endpoint creates a JMS consumer on the JMS
destination. The endpoint then acts as a message driven listener. This means that the message
consumer connects to the given destination and waits for messages to arrive.

0 Besides the destination-name attribute you can also provide a reference to a
destination implementation.

<citrus-jms:endpoint id="helloServiceQueueEndpoint"
destination="helloServiceQueue"/>

<amq:queue id="helloServiceQueue" physicalName="Citrus.HelloService.Request.Queue"/>

The destination attribute references to a JMS destination object in the Spring application context. In
the example above we used the ActiveMQ queue destination component. The destination reference
can also refer to a JNDI lookup for instance.

17.2. JMS synchronous endpoints

When using synchronous message endpoints Citrus will manage a reply destination for receiving a
synchronous response message on the reply destination. The following figure illustrates that we
now have two destinations in our communication scenario.

MessageDestination

[SyncEndpoint] . : E g = %

receive()

send(Message)

ReplyDestination

The synchronous message endpoint component is similar to the asynchronous brother that we
have discussed before. The only difference is that the endpoint will automatically manage a reply
destination behind the scenes. By default Citrus uses temporary reply destinations that get
automatically deleted after the communication handshake is done. Again we need to use a JMS
connection factory in the Spring XML configuration as the component need to connect to a JMS
message broker.

<citrus-jms:sync-endpoint id="helloServiceSyncEndpoint"
destination-name="Citrus.HelloService.InOut.Queue"
timeout="10000"/>

The synchronous component defines a target destination which again is either a queue or topic

209

destination. If nothing else is defined the endpoint will create temporary reply destinations on its
own. When the endpoint has sent a message it waits synchronously for the response message to
arrive on the reply destination. You can receive this reply message in your test case by referencing
this same endpoint in a receive test action. In case no reply message arrives in time a message
timeout error is raised respectively.

See the following example test case which references the synchronous message endpoint in its send
and receive test action in order to send out a message and wait for the synchronous response.

<testcase name="synchronousMessagingTest">
<actions>
<send endpoint="helloServiceSyncEndpoint">
<message>
<data>
[...]
</data>
</message>
</send>

<receive endpoint="helloServiceSyncEndpoint">
<message>
<data>

[...]
</data>
</message>
</receive>
</actions>
</testcase>

We initiated the synchronous communication by sending a message on the synchronous endpoint.
The second step then receives the synchronous message on the temporary reply destination that
was automatically created for us.

If you rather want to define a static reply destination you can do so, too. The static reply destination
is not deleted after communication handshake. You may need to work with message selectors then
in order to pick the right response message that belongs to a specific communication handshake.
You can define a static reply destination on the synchronous endpoint component as follows.

<citrus-jms:sync-endpoint id="helloServiceSyncEndpoint"
destination-name="Citrus.HelloService.InOut.Queue"
reply-destination-name="Citrus.HelloService.Reply.Queue"
timeout="10000"/>

Instead of using the reply-destination-name feel free to use the destination reference with reply-
destination attribute. Again you can use a JNDI lookup then to reference a destination object.

210

Be aware of permissions that are mandatory for creating temporary destinations.

o Citrus tries to create temporary queues on the JMS message broker. Following
from that the Citrus JMS user has to have the permission to do so. Be sure that the
user has the sufficient rights when using temporary reply destinations.

Up to now we have sent a message and waited for a synchronous response in the next step. Now it
is also possible to switch the directions of send and receive actions. Then we have the situation
where Citrus receives a JMS message first and then Citrus is in charge of providing a proper
synchronous response message to the initial sender.

MessageDestination

receive()

g = g 8 . : [SyncEndpoint]

send(Message)

ReplyDestination

In this scenario the foreign message producer has stored a dynamic JMS reply queue destination to
the JMS header. So Citrus has to send the reply message to this specific reply destination, which is
dynamic of course. Fortunately the heavy lift is done with the JMS message endpoint and we do not
have to change anything in our configuration. Again we just define a synchronous message
endpoint in the application context.

<citrus-jms:sync-endpoint id="helloServiceSyncEndpoint"
destination-name="Citrus.HelloService.InOut.Queue"
timeout="10000"/>

Now the only thing that changes here is that we first receive a message in our test case on this
endpoint. The second step is a send message action that references this same endpoint and we are
done. Citrus automatically manages the reply destinations for us.

211

<testcase name="synchronousMessagingTest">
<actions>
<receive endpoint="helloServiceSyncEndpoint">
<message>
<data>

[...]
</data>
</message>
</receive>

<send endpoint="helloServiceSyncEndpoint">
<message>
<data>
[...]
</data>
</message>
</send>
</actions>
</testcase>

17.3. JMS topics

Up to now we have used JMS queue destinations on our endpoints. Citrus is also able to connect to
JMS topic destinations. In contrary to JMS queues which represents the point-to-point
communication JMS topics use publish-subscribe mechanism in order to spread messages over
JMS. A JMS topic producer publishes messages to the topic, while the topic accepts multiple message
subscriptions and delivers the message to all subscribers.

The Citrus JMS endpoints offer the attribute 'pub-sub-domain’ . Once this attribute is set to true
Citrus will use JMS topics instead of queue destinations. See the following example where the
publish-subscribe attribute is set to true in JMS message endpoint components.

<citrus-jms:endpoint id="helloServiceQueueEndpoint"
destination="helloServiceQueue"
pub-sub-domain="true"/>

When using JMS topics you will be able to subscribe several test actions to the topic destination and
receive a message multiple times as all subscribers will receive the message.

It is very important to keep in mind that Citrus does not deal with durable
subscribers. This means that messages that were sent in advance to the message

o subscription are not delivered to the message endpoint. So racing conditions may
cause problems when using JMS topic endpoints in Citrus. Be sure to let Citrus
subscribe to the topic before messages are sent to it. Otherwise you may loose
some messages that were sent in advance to the subscription.

212

17.4. JMS message headers

The JMS specification defines a set of special message header entries that can go into your JMS
message. These JMS headers are stored differently in a JMS message header than other custom
header entries do. Therefore these special header values should be set in a special syntax that we
discuss in the next paragraphs.

<header>
<element name="citrus_jms_correlationId" value="${correlationId}"/>
<element name="citrus_jms_messageId" value="${messageId}"/>
<element name="citrus_jms_redelivered" value="${redelivered}"/>
<element name="citrus_jms_timestamp" value="${timestamp}"/>
</header>

As you see all JMS specific message headers use the citrus_jms_ prefix. This prefix comes from
Spring Integration message header mappers that take care of setting those headers in the JMS
message header properly.

Typing of message header entries may also be of interest in order to meet the JMS standards of
typed message headers. For instance the following message header is of type double and is
therefore transferred via JMS as a double value.

<header>
<element name="amount" value="19.75" type="double"/>
</header>

17.5. Dynamic destination names

Usually you set the target destination as property on the JMS endpoint component. In some cases it
might be useful to set the target destination in a more dynamic way during the test run. You can do
this by adding a special message header named citrus_jms_destination_name. This header is
automatically interpreted by the Citrus JMS endpoint and is set as the target destination before a
message is sent.

<send endpoint="jmsEndpoint">
<message>

</message>
<header>
<element name="citrus_jms_destination_name" value="dynamic.destination.name"/>
</header>
</send>

This action above will send the message to the destination "dynamic.destination.name" no matter
what default destination is set on the referenced endpoint component named jmsEndpoint. The

213

dynamic destination name setting also supports test variables so you can use variables and
functions in the destination name, too.

Another possibility for dynamic JMS destinations is given with the dynamic endpoints.

17.6. SOAP over JMS

When sending SOAP messages you have to deal with proper envelope, body and header
construction. In Citrus you can add a special message converter that performs the heavy lift for
you. Just add the message converter to the JMS endpoint as shown in the next program listing:

<citrus-jms:endpoint id="helloServiceSoapImsEndpoint"
destination-name="Citrus.HelloService.Request.Queue"
message-converter="soapJmsMessageConverter"/>

<bean id="soapJmsMessageConverter"
class="com.consol.citrus.jms.message.SoapImsMessageConverter"/>

With this message converter you can skip the SOAP envelope completely in your test case. You just
deal with the message body payload and the header entries. The rest is done by the message
converter. So you get proper SOAP messages on the producer and consumer side.

214

#dynamic-endpoint-components

Chapter 18. HTTP REST support

REST APIs have gained more and more significance regarding client-server interfaces. The REST
client is nothing but a HTTP client sending HTTP requests usually in JSON data format to a HTTP
server. As HTTP is a synchronous protocol by nature the client receives the server response
synchronously. Citrus is able to connect with HTTP services and test REST APIs on both client and
server side with a powerful JSON message data support. In the next sections you will learn how to
invoke HTTP services as a client and how to handle REST HTTP requests in a test case. We deal with
setting up a HTTP server in order to accept client requests and provide proper HTTP responses with
GET, PUT, DELETE or POST request method.

o The http components in Citrus are kept in a separate Maven module. So you
should add the module as Maven dependency to your project accordingly.

<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-http</artifactld>
<version>2.7.5</version>
</dependency>

As Citrus provides a customized HTTP configuration schema for the Spring application context
configuration files we have to add name to the top level beans element. Simply include the http-
config namespace in the configuration XML files as follows.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:citrus="http://www.citrusframework.org/schema/config"
xmlns:citrus-http="http://www.citrusframework.org/schema/http/config"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/config
http://www.citrusframework.org/schema/config/citrus-config.xsd
http://www.citrusframework.org/schema/http/config
http://www.citrusframework.org/schema/http/config/citrus-http-config.xsd">

[...]

</beans>

Now we are ready to use the customized Citrus HTTP configuration elements with the citrus-http
namespace prefix.

18.1. HTTP REST client

On the client side we have a simple HTTP message client component connecting to the server. The

215

request-url attribute defines the HTTP server endpoint URL to connect to. As usual you can
reference this client in your test case in order to send and receive messages. Citrus as client waits
for the response message from server. After that the response message goes through the validation
process as usual. Let us see how a Citrus HTTP client component looks like:

<citrus-http:client id="helloHttpClient"
request-url="http://localhost:8080/hello"
request-method="GET"
content-type="application/xml"
charset="UTF-8"
timeout="60000"/>

The request-method defines the HTTP method to use. In addition to that we can specify the
content-type of the request we are about to send. The charset is also added to the content-type
header. In case you do not want to set the charset at all please specify an empty string as the default
value is UTF-8. The client builds the HTTP request and sends it to the HTTP server. While the client
is waiting for the synchronous HTTP response to arrive we are able to poll several times for the
response message in our test case. As usual aou can use the same client endpoint in your test case
to send and receive messages synchronously. In case the reply message comes in too late according
to the timeout settings a respective timeout error is raised.

Http defines several request methods that a client can use to access Http server resources. In the
example client above we are using GET as default request method. Of course you can overwrite this
setting in a test case action by setting the HTTP request method inside the sending test action. The
Http client component can be used as normal endpoint in a sending test action. Use something like
this in your test:

XML DSL

<send endpoint="helloHttpClient">

<message>
<payload>
<TestMessage>
<Text>Hello HttpServer</Text>
</TestMessage>
</payload>
</message>
<header>
<element name="citrus_http_method" value="POST"/>
</header>
</send>

Citrus uses the Spring REST template mechanism for sending out HTTP requests.
This means you have great customizing opportunities with a special REST

Q template configuration. You can think of basic HTTP authentication, read
timeouts and special message factory implementations. Just use the custom REST
template attribute in client configuration like this:

216

<citrus-http:client id="helloHttpClient"
request-url="http://localhost:8080/hello"
request-method="GET"
content-type="text/plain"
rest-template="customizedRestTemplate"/>

<!-- Customized rest template -->
<bean name="customizedRestTemplate"
class="org.springframework.web.client.RestTemplate">
<property name="messageConverters">
<util:list id="converter">
<bean class="org.springframework.http.converter.StringHttpMessageConverter">
<property name="supportedMediaTypes">
<util:Tlist id="types">
<value>text/plain</value>
</util:list>
</property>
</bean>
</util:list>
</property>
<property name="errorHandler">
<!-- Custom error handler -->
</property>
<property name="requestFactory">
<bean
class="org.springframework.http.client.HttpComponentsClientHttpRequestFactory">
<property name="readTimeout" value="9000" />
</bean>
</property>
</bean>

Up to now we have used a normal send test action to send Http requests as a client. This is
completely valid strategy as the Citrus Http client is a normal endpoint. But we might want to set
some more Http REST specific properties and settings. In order to simplify the Http usage in a test
case we can use a special test action implementation. The Citrus Http specific actions are located in
a separate XML namespace. So wen need to add this namespace to our test case XML first.

217

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:http="http://www.citrusframework.org/schema/http/testcase"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/http/testcase
http://www.citrusframework.org/schema/http/testcase/citrus-http-testcase.xsd">

[...]

</beans>

The test case is now ready to use the specific Http test actions by using the prefix http: .

XML DSL

<http:send-request client="httpClient">
<http:POST path="/customer">
<http:headers content-type="application/xml" accept="application/xml, */*">
<http:header name="X-CustomHeaderId" value="${custom_header_id}"/>
</http:headers>
<http:body>
<http:data>
<![CDATAL
<customer>
<id>citrus:randomNumber()</id>
<name>testuser</name>
</customer>
11>
</http:data>
</http:body>
</http:POST>
</http:send-request>

The action above uses several Http specific settings such as the request method POST as well as the
content-type and accept headers. As usual the send action needs a target Http client endpoint
component. We can specify a request path attribute that added as relative path to the base uri used
on the client.

When using a GET request we can specify some request uri parameters.

218

XML DSL

<http:send-request client="httpClient">
<http:GET path="/customer/${custom_header_id}">
<http:params content-type="application/xml" accept="application/xml, */*">
<http:param name="type" value="active"/>
</http:params>
</http:GET>
</http:send-request>

The send action above uses a GET request on the endpoint uri
http://localhost:8080/customer/12347type=active.

Of course when sending Http client requests we are also interested in receiving Http response
messages. We want to validate the success response with Http status code.

XML DSL

<http:receive-response client="httpClient">
<http:headers status="200" reason-phrase="0K" version="HTTP/1.1">
<http:header name="X-CustomHeaderId" value="${custom_header_id}"/>
</http:headers>
<http:body>
<http:data>
<I[CDATAL
<customerResponse>
<success>true</success>
</customerResponse>
11>
</http:data>
</http:body>
</http:receive-response>

The receive-response test action also uses a client component. We can expect response status code
information such as status and reason-phrase . Of course Citrus will raise a validation exception in
case Http status codes mismatch.

Up to now we have used XML DSL test cases. The Java DSL in Citrus also works with specific Http
test actions. See following example and find out how this works:

219

http://localhost:8080/customer/1234?type=active

XML DSL

@CitrusTest
public void httpActionTest() {
http().client("httpClient")

.send()

.post("/customer")

.payload("<customer>" +
"<id>citrus:randomNumber()</id>" +
"<name>testuser</name>" +

"</customer>")

.header ("X-CustomHeaderId", "${custom_header id}")

.contentType("application/xml")

.accept("application/xml");

http().client("httpClient")
.receive()
.response(HttpStatus.0K)
.payload("<customerResponse>" +

"<success>true</success>" +
"</customerResponse>")

.header ("X-CustomHeaderId", "${custom_header id}")
.version("HTTP/1.1");

There is one more setting on the client to be aware of. By default the client component will add the
Accept http header and set its value to a list of all supported encodings on the host operating
system. As this list can get very long you may want to not set this default accept header. The setting
is done in the Spring RestTemplate:

<bean name="customizedRestTemplate"
class="org.springframework.web.client.RestTemplate">
<property name="messageConverters">
<util:list id="converter">
<bean
class="org.springframework.http.converter.StringHttpMessageConverter">
<property name="writeAcceptCharset" value="false"/>
</bean>
</util:list>
</property>
</bean>

You would have add this custom RestTemplate configuration and set it to the client component with
rest-template property. But fortunately the Citrus client component provides a separate setting
default-accept-header which is a Boolean setting. By default it is set to true so the default accept
header is automatically added to all requests. If you set this flag to false the header is not set:

220

<citrus-http:client id="helloHttpClient"
request-url="http://localhost:8080/hello"
request-method="GET"
content-type="text/plain”
default-accept-header="false"/>

Of course you can set the Accept header on each send operation in order to tell the server what
kind of content types are supported in response messages.

Now we can send and receive messages as Http client with specific test actions. Now lets move on to
the Http server.

18.2. HTTP client interceptors

The client component is able to add custom interceptors that participate in the request/response
processing. The interceptors need to implement the common interface
org.springframework.http.client.ClientHttpRequestInterceptor.

<citrus-http:client id="helloHttpClient"
request-url="http://localhost:8080/hello"
request-method="GET"
interceptors="clientInterceptors"/>

<util:list id="clientInterceptors">
<bean class="com.consol.citrus.http.interceptor.LoggingClientInterceptor"/>
</util:list>

The sample above adds the Citrus logging client interceptor that logs requests and responses
exchanged with that client component. You can add custom interceptor implementations here in
order to participate in the request/response message processing.

18.3. HTTP REST server

The HTTP client was quite easy and straight forward. Receiving HTTP messages is a little bit more
complicated because Citrus has to provide server functionality listening on a local port for client
connections. Therefore Citrus offers an embedded HTTP server which is capable of handling
incoming HTTP requests. Once a client connection is accepted the HTTP server must also provide a
proper HTTP response to the client. In the next few lines you will see how to simulate server side
HTTP REST service with Citrus.

<citrus-http:server id="helloHttpServer"
port="8080"
auto-start="true"
resource-base="src/it/resources"/>

221

Citrus uses an embedded Jetty server that will automatically start when the Spring application
context is loaded (auto-start="true"). The basic connector is listening on port 8080 for requests. Test
cases can interact with this server instance via message channels by default. The server provides an
inbound channel that holds incoming request messages. The test case can receive those requests
from the channel with a normal receive test action. In a second step the test case can provide a
synchronous response message as reply which will be automatically sent back to the HTTP client as
response.

InboundChannel

XMLUHTTP send(Message)

. - » CC=C0 @)
[HeepClient | 7/——— HttpServer] — 0

ReplyChannel

InboundChannel

send(Message)

P

> » (ffj—*{::i? (-)

_[HttpServer] — 0
ReplyChannel

The figure above shows the basic setup with inbound channel and reply channel. You as a tester
should not worry about this to much. By default you as a tester just use the server as synchronous
endpoint in your test case. This means that you simply receive a message from the server and send
a response back.

<testcase name="httpServerTest">
<actions>
<receive endpoint="helloHttpServer">
<message>
<data>
[...]
</data>
</message>
</receive>

<send endpoint="helloHttpServer">
<message>
<data>
[...]
</data>
</message>
</send>
</actions>
</testcase>

As you can see we reference the server id in both receive and send actions. The Citrus server
instance will automatically send the response back to the calling HTTP client. In most cases this is
exactly what we want to do - send back a response message that is specified inside the test. The
HTTP server component by default uses a channel endpoint adapter in order to forward all

222

incoming requests to an in memory message channel. This is done completely behind the scenes.
The Http server component provides some more customization possibilities when it comes to
endpoint adapter implementations. This topic is discussed in a separate section endpoint-adapter.
Up to now we keep it simple by synchronously receiving and sending messages in the test case.

The default channel endpoint adapter automatically creates an inbound message
channel where incoming messages are stored to internally. So if you need to clean
up a server that has already stored some incoming messages you can do this

Q easily by purging the internal message channel. The message channel follows a
naming convention {serverName}.inbound where {serverName} is the Spring
bean name of the Citrus server endpoint component. If you purge this internal
channel in a before test nature you are sure that obsolete messages on a server
instance get purged before each test is executed.

So lets get back to our mission of providing response messages as server to connected clients. As
you might know Http REST works with some characteristic properties when it comes to send and
receive messages. For instance a client can send different request methods GET, POST, PUT, DELETE,
HEAD and so on. The Citrus server may verify this method when receiving client requests.
Therefore we have introduced special Http test actions for server communication. Have a look at a
simple example:

223

#endpoint-adapter

<http:receive-request server="helloHttpServer">
<http:POST path="/test">
<http:headers content-type="application/xml" accept="application/xml, */*">
<http:header name="X-CustomHeaderId" value="${custom_header_id}"/>
<http:header name="Authorization" value="Basic
c29tZVVzZXJuYW110nNvbWVQYXNzd29yZA=="/>
</http:headers>
<http:body>
<http:data>
<I[CDATAL
<testRequestMessage>
<text>Hello HttpServer</text>
</testRequestMessage>
11>
</http:data>
</http:body>
</http:POST>
<http:extract>
<http:header name="X-MessageId" variable="message_id"/>
</http:extract>
</http:receive-request>

<http:send-response server="helloHttpServer">
<http:headers status="200" reason-phrase="0K" version="HTTP/1.1">
<http:header name="X-MessageId" value="${message_id}"/>
<http:header name="X-CustomHeaderId" value="${custom_header_id}"/>
<http:header name="Content-Type" value="application/xml"/>
</http:headers>
<http:body>
<http:data>
<![CDATAL
<testResponseMessage>
<text>Hello Citrus</text>
</testResponseMessage>
11>
</http:data>
</http:body>
</http:send-response>

We receive a client request and validate that the request method is POST on request path /test .
Now we can validate special message headers such as content-type . In addition to that we can
check custom headers and basic authorization headers. As usual the optional message body is
compared to an expected message template. The custom X-Messageld header is saved to a test
variable message_id for later usage in the response.

The response message defines Http typical entities such as status and reason-phrase . Here the
tester can simulate 404 NOT_FOUND errors or similar other status codes that get send back to the
client. In our example everything is OK and we send back a response body and some custom
header entries.

224

That is basically how Citrus simulates Http server operations. We receive the client request and
validate the request properties. Then we send back a response with a Http status code.

As usual all these Http specific actions are also available in Java DSL.

@CitrusTest
public void httpServerActionTest() {
http().server("helloHttpServer")
.receijve()
.post("/test")
.payload("<testRequestMessage>" +
"<text<Hello HttpServer</text>" +
"</testRequestMessage>")
.contentType("application/xml")
.accept("application/xml, */*")
.header ("X-CustomHeaderId", "${custom_header_id}")
.header ("Authorization", "Basic c29tZVVzZXJuYW110nNvbWVQYXNzd29yZA==")
.extractFromHeader ("X-MessageId", "message_id");

http().server("helloHttpServer")

.send()
.response(HttpStatus.0K)
.payload("<testResponsellessage>" +

"<text<Hello Citrus</text>" +

"</testResponseMessage>")

.version("HTTP/1.1")
.contentType("application/xml")
.header ("X-CustomHeaderId", "${custom_header_id}")
.header("X-MessageId", "${message_id}");

This is the exact same example in Java DSL. We select server actions first and receive client
requests. Then we send back a response with a HttpStatus.OK status. This completes the server
actions on Http message transport. Now we continue with some more Http specific settings and
features.

18.4. HTTP headers

When dealing with HTTP request/response communication we always deal with HTTP specific
headers. The HTTP protocol defines a group of header attributes that both client and server need to
be able to handle. You can set and validate these HTTP headers in Citrus quite easy. Let us have a
look at a client operation in Citrus where some HTTP headers are explicitly set before the request is
sent out.

225

<http:send-request client="httpClient">
<http:POST>
<http:headers>
<http:header name="X-CustomHeaderId" value="${custom_header_id}"/>
<http:header name="Content-Type" value="application/xm1"/>
<http:header name="Accept" value="application/xml"/>
</http:headers>
<http:body>
<http:payload>
<testRequestMessage>
<text>Hello HttpServer</text>
</testRequestMessage>
</http:payload>
</http:body>
</http:POST>
</http:send-request>

We are able to set custom headers (X-CustomHeaderlId) that go directly into the HTTP header
section of the request. In addition to that testers can explicitly set HTTP reserved headers such as
Content-Type . Fortunately you do not have to set all headers on your own. Citrus will
automatically set the required HTTP headers for the request. So we have the following HTTP
request which is sent to the server:

POST /test HTTP/1.1
Accept: application/xml
Content-Type: application/xml
X-CustomHeaderId: 123456789
Accept-Charset: macroman
User-Agent: Jakarta Commons-HttpClient/3.1
Host: localhost:8091
Content-Length: 175
<testRequestMessage>

<text>Hello HttpServer</text>
</testRequestMessage>

On server side testers are interested in validating the HTTP headers. Within Citrus receive action
you simply define the expected header entries. The HTTP specific headers are automatically
available for validation as you can see in this example:

226

<http:receive-request server="httpServer">
<http:POST>
<http:headers>
<http:header name="X-CustomHeaderId" value="${custom_header_id}"/>
<http:header name="Content-Type" value="application/xm1"/>
<http:header name="Accept" value="application/xml"/>
</http:headers>
<http:body>
<http:payload>
<testRequestMessage>
<text>Hello HttpServer</text>
</testRequestMessage>
</http:payload>
</http:body>
</http:POST>
</http:receive-request>

The test checks on custom headers and HTTP specific headers to meet the expected values.

Now that we have accepted the client request and validated the contents we are able to send back a
proper HTTP response message. Same thing here with HTTP specific headers. The HTTP protocol
defines several headers marking the success or failure of the server operation. In the test case you
can set those headers for the response message with conventional Citrus header names. See the
following example to find out how that works for you.

<http:send-response server="httpServer">
<http:headers status="200" reason-phrase="0K">
<http:header name="X-CustomHeaderId" value="${custom_header_id}"/>
<http:header name="Content-Type" value="application/xml"/>
</http:headers>
<http:body>
<http:payload>
<testResponsellessage>
<text>Hello Citrus Client</text>
</testResponseMessage>
</http:payload>
</http:body>
</http:send-response>

Once more we set the custom header entry (X-CustomHeaderId) and a HTTP reserved header
(Content-Type) for the response message. On top of this we are able to set the response status for
the HTTP response. We use the reserved header names status in order to mark the success of the
server operation. With this mechanism we can easily simulate different server behaviour such as
HTTP error response codes (e.g. 404 - Not found, 500 - Internal error). Let us have a closer look at
the generated response message:

227

HTTP/1.1 200 0K
Content-Type: application/xml;charset=UTF-8
Accept-Charset: macroman
Content-Length: 205
Server: Jetty(7.0.0.pre5)
<testResponsellessage>

<text>Hello Citrus Client</text>
</testResponseMessage>

You do not have to set the reason phrase all the time. It is sufficient to only set the
HTTP status code. Citrus will automatically add the proper reason phrase for well
known HTTP status codes.

The only thing that is missing right now is the validation of HTTP status codes when receiving the
server response in a Citrus test case. It is very easy as you can use the Citrus reserved header names
for validation, too.

<http:receive-response client="httpClient">
<http:headers status="200" reason-phrase="0K" version="HTTP/1.1">
<http:header name="X-CustomHeaderId" value="${custom_header_id}"/>
</http:headers>
<http:body>
<http:payload>
<testResponseMessage>
<text>Hello Test Framework</text>
</testResponseMessage>
</http:payload>
</http:body>
</http:receive-response>

Up to now we have used some of the basic Citrus reserved HTTP header names (status, version,
reason-phrase). In HTTP RESTful services some other header names are essential for validation.
These are request attributes like query parameters, context path and request URI. The Citrus server
side REST message controller will automatically add all this information to the message header for
you. So all you need to do is validate the header entries in your test.

The next example receives a HTTP GET method request on server side. Here the GET request does
not have any message payload, so the validation just works on the information given in the
message header. We assume the client to call http://localhost:8080/app/users?id=123456789. As a
tester we need to validate the request method, request URI, context path and the query parameters.

228

http://localhost:8080/app/users?id=123456789

<http:receive-request server="httpServer">
<http:GET path="/app/users" context-path="/app">
<http:params>
<http:param name="1id" value="123456789"/>
</http:params>
<http:headers>
<http:header name="Host" value="localhost:8080"/>
<http:header name="Content-Type" value="application/xml"/>
<http:header name="Accept" value="application/xml"/>
</http:headers>
<http:body>
<http:data></http:data>
</http:body>
</http:GET>
</http:receive-request>

Be aware of the slight differences in request URI and context path. The context

Q path gives you the web application context path within the servlet container for
your web application. The request URI always gives you the complete path that
was called for this request.

As you can see we are able to validate all parts of the initial request endpoint URI the client was
calling. This completes the HTTP header processing within Citrus. On both client and server side
Citrus is able to set and validate HTTP specific header entries which is essential for simulating
HTTP communication.

18.5. HTTP server interceptors

The server component is able to add custom interceptors that participate in the request/response
processing. The interceptors need to implement the common interface
org.springframework.web.servlet. HandlerInterceptor.

<citrus-http:server id="httpServer"
port="8080"
auto-start="true"
interceptors="serverInterceptors"/>

<util:list id="serverInterceptors">
<bean class="com.consol.citrus.http.interceptor.LoggingHandlerInterceptor"/>
</util:list>

The sample above adds the Citrus logging handler interceptor that logs requests and responses
exchanged with that server component. You can add custom interceptor implementations here in
order to participate in the request/response message processing.

229

18.6. HTTP form urlencoded data

HTML form data can be sent to the server using different methods and content types. One of them
is a POST method with x-www-form-urlencoded body content. The form data elements are sent to
the server using key-value pairs POST data where the form control name is the key and the control
data is the url encoded value.

Form urlencoded form data content could look like this:
password=s%21cr%21t&username=foo

A you can see the form data is automatically encoded. In the example above we transmit two form
controls password and username with respective values scrt and foo . In case we would
validate this form data in Citrus we are able to do this with plaintext message validation.

<receive endpoint="httpServer">
<message type="plaintext">
<data>
<I[CDATA[
password=s%21cr%21t&username=${username}
11>
</data>
</message>
<header>
<element name="citrus_http_method" value="POST"/>
<element name="citrus_http_request_uri" value="/form-test"/>
<element name="Content-Type" value="application/x-www-form-urlencoded"/>
</header>
</receive>

Obviously validating these key-value pair character sequences can be hard especially when having
HTML forms with lots of form controls. This is why Citrus provides a special message validator for
x-www-form-urlencoded contents. First of all we have to add citrus-http module as dependency
to our project if not done so yet. After that we can add the validator implementation to the list of
message validators used in Citrus.

<citrus:message-validators>

<citrus:validator
class="com.consol.citrus.http.validation.FormUrlEncodedMessageValidator"/>
</citrus:message-validators>

Now we are able to receive the urlencoded form data message in a test.

230

<receive endpoint="httpServer">
<message type="x-www-form-urlencoded">
<payload>
<form-data xmlns="http://www.citrusframework.org/schema/http/message">
<content-type>application/x-www-form-urlencoded</content-type>
<action>/form-test</action>
<controls>
<control name="password">
<value>${password}</value>
</control>
<control name="username">
<value>${username}</value>
</control>
</controls>
</form-data>
</payload>
</message>
<header>
<element name="citrus_http_method" value="POST"/>
<element name="citrus_http_request_uri" value="/form-test"/>
<element name="Content-Type" value="application/x-www-form-urlencoded"/>
</header>
</receive>

We use a special message type x-www-form-urlencoded so the new message validator will take
action. The form url encoded message validator is able to handle a special XML representation of
the form data. This enables the very powerful XML message validation capabilities of Citrus such as
ignoring elements and usage of test variables inline.

Each form control is translated to a control element with respective name and value properties. The
form data is validated in a more comfortable way as the plaintext message validator would be able
to offer.

18.7. HTTP error handling

So far we have received response messages with HTTP status code 200 OK . How to deal with server
errors like 404 Not Found or 500 Internal server error ? The default HTTP message client error
strategy is to propagate server error response messages to the receive action for validation. We
simply check on HTTP status code and status text for error validation.

231

<http:send-request client="httpClient">
<http:body>
<http:payload>
<testRequestMessage>
<text>Hello HttpServer</text>
</testRequestMessage>
</http:payload>
</http:body>
</http:send-request>

<http:receive-request client="httpClient">
<http:body>
<http:data><![CDATA[]]></http:data>
</http:body>
<http:headers status="403" reason-phrase="FORBIDDEN"/>
</http:receive>

The message data can be empty depending on the server logic for these error situations. If we
receive additional error information as message payload just add validation assertions as usual.

Instead of receiving such empty messages with checks on HTTP status header information we can
change the error strategy in the message sender component in order to automatically raise
exceptions on response messages other than 200 OK . Therefore we go back to the HTTP message
sender configuration for changing the error strategy.

<citrus-http:client id="httpClient"
request-url="http://localhost:8080/test"
error-strategy="throwsException"/>

Now we expect an exception to be thrown because of the error response. Following from that we
have to change our test case. Instead of receiving the error message with receive action we assert
the client exception and check on the HTTP status code and status text.

<assert exception="org.springframework.web.client.HttpClientErrorException"
message="403 Forbidden">
<when>
<http:send-request client="httpClient">
<http:body>
<http:payload>
<testRequestMessage>
<text>Hello HttpServer</text>
</testRequestMessage>
</http:payload>
</http:body>
</http:send-request>
</when>
</assert>

232

Both ways of handling HTTP error messages on client side are valid for expecting the server to raise
HTTP error codes. Choose the preferred way according to your test project requirements.

18.8. HTTP client basic authentication

As client you may have to use basic authentication in order to access a resource on the server. In
most cases this will be username/password authentication where the credentials are transmitted in
the request header section as base64 encoding.

The easiest approach to set the Authorization header for a basic authentication HTTP request
would be to set it on your own in the send action definition. Of course you have to use the correct
basic authentication header syntax with base64 encoding for the username:password phrase. See
this simple example.

<http:headers>

<http:header name="Authorization" value="Basic
c29tZVVzZXJuYW110nNvbWVQYXNzd29yZA=="/>
</http:headers>

Citrus will add this header to the HTTP requests and the server will read the Authorization
username and password. For more convenient base64 encoding you can also use a Citrus function,
see functions-encode-base64

Now there is a more comfortable way to set the basic authentication header in all the Citrus
requests. As Citrus uses Spring’s REST support with the RestTemplate and ClientHttpRequestFactory
the basic authentication is already covered there in a more generic way. You simply have to
configure the basic authentication credentials on the RestTemplate’s ClientHttpRequestFactory. Just
see the following example and learn how to do that.

233

#functions-encode-base64

<citrus-http:client id="http(Client"
request-method="POST"
request-url="http://localhost:8080/test"
request-factory="basicAuthFactory"/>

<bean id="basicAuthFactory"
class="com.consol.citrus.http.client.BasicAuthClientHttpRequestFactory">
<property name="authScope">
<bean class="org.apache.http.auth.AuthScope">
<constructor-arg value="localhost"/>
<constructor-arg value="8072"/>
<constructor-arg value=""/>
<constructor-arg value="basic"/>
</bean>
</property>
<property name="credentials">
<bean class="org.apache.http.auth.UsernamePasswordCredentials">
<constructor-arg value="someUsername"/>
<constructor-arg value="somePassword"/>
</bean>
</property>
</bean>

The advantages of this method is obvious. Now all sending test actions that reference the client
component will automatically add the basic authentication header.

Since Citrus has upgraded to Spring 3.1.x the Jakarta commons HTTP client is
deprecated with Citrus version 1.2. The formerly used

o UserCredentialsClientHttpRequestFactory is therefore also deprecated and will
not continue with next versions. Please update your configuration if you are
coming from Citrus 1.1 or earlier versions.

The above configuration results in HTTP client requests with authentication headers properly set
for basic authentication. The client request factory takes care on adding the proper basic
authentication header to each request that is sent with this Citrus message sender. Citrus uses
preemptive authentication. The message sender only sends a single request to the server with all
authentication information set in the message header. The request which determines the
authentication scheme on the server is skipped. This is why you have to add some auth scope in the
client request factory so Citrus can setup an authentication cache within the HTTP context in order
to have preemptive authentication.

As a result of the basic auth client request factory the following example request that is created by
the Citrus HTTP client has the Authorization header set. This is done now automatically for all
requests with this HTTP client.

234

POST /test HTTP/1.1
Accept: application/xml
Content-Type: application/xml
Accept-Charset: is0-8859-1, us-ascii, utf-8
Authorization: Basic ¢29tZVVzZXJuYW110nNvbWVQYXNzd29yZA==
User-Agent: Jakarta Commons-HttpClient/3.1
Host: localhost:8080
Content-Length: 175
<testRequestMessage>

<text>Hello HttpServer</text>
</testRequestMessage>

18.9. HTTP server basic authentication

Citrus as a server can also set basic authentication so clients need to authenticate properly when
accessing server resources.

<citrus-http:server id="basicAuthHttpServer"
port="8090"
auto-start="true"
resource-base="src/it/resources"
security-handler="basicAuthSecurityHandler"/>

<bean id="basicAuthSecurityHandler"
class="com.consol.citrus.http.security.SecurityHandlerFactory">
<property name="users">
<list>
<bean class="com.consol.citrus.http.security.User">
<property name="name" value="citrus"/>
<property name="password" value="secret"/>
<property name="roles" value="CitrusRole"/>
</bean>
</list>
</property>
<property name="constraints">
<map>
<entry key="/foo/*">
<bean class="com.consol.citrus.http.security.BasicAuthConstraint">
<constructor-arg value="CitrusRole"/>
</bean>
</entry>
</map>
</property>
</bean>

We have set a security handler on the server web container with a constraint on all resources with
/foo/*. Following from that the server requires basic authentication for these resources. The

235

granted users and roles are specified within the security handler bean definition. Connecting
clients have to set the basic auth HTTP header properly using the correct user and role for
accessing the Citrus server now.

You can customize the security handler for your very specific needs (e.g. load users and roles with
JDBC from a database). Just have a look at the code base and inspect the settings and properties
offered by the security handler interface.

Q This mechanism is not restricted to basic authentication only. With other settings
you can also set up digest or form-based authentication constraints very easy.

18.10. HTTP cookies

Cookies hold any kind of information and are saved as test information on the client side. Http
servers are able to instruct the client (browser) to save a new cookie with name, value and some
attributes. This is usually done with a "Set-Cookie" message header set on the server response
message. Citrus is able to add those cookie information in a server response.

236

XML DSL

<http:receive-request server="echoHttpServer">
<http:POST>
<http:headers>
<http:header name="Operation" value="getCookie"/>
</http:headers>
<http:body>
<http:data>
<![CDATAL
Some request data
11>
</http:data>
</http:body>
</http:POST>
</http:receive-request>

<http:send-response server="echoHttpServer">
<http:headers status="200" reason-phrase="0K" version="HTTP/1.1">
<http:header name="Operation" value="getCookie"/>
<http:cookie name="Token"
value="${messageld}"
secure="false"
domain="citrusframework.org"
path="/test/cookie.py"
max-age="86400"/>
</http:headers>
<http:body>
<http:data>
<![CDATA[
Some response body
11>
</http:data>
</http:body>
</http:send-response>

237

Java DSL

Cookie cookie = new Cookie("Token", "${messageId}");
cookie.setPath("/test/cookie.py");
cookie.setSecure(false);
cookie.setDomain("citrusframework.org");
cookie.setMaxAge(86400);

http().server("echoHttpServer")
.receive()

.post()
.payload("Some request data")
.header ("Operation", "sayHello");

http().server("echoHttpServer")
.send()
.response(HttpStatus.0K)
.payload("Some response body")
.header ("Operation", "sayHello")
.cookie(cookie);

The sample above receives a Http request with method POST and some request data. The server
response is specified with Http 200 OK and some additional cookie information. The cookie is part
of the message header specification and gets a name and value as well as several other attributes.
This response will result in a Http response with the "Set-Cookie" header set:

Set-Cookie:Token=5877643571;Path=/test/cookie.py;Domain=citrusframework.org;Max-
Age=86400

As you can see test variables are replaced before the cookie is added to the response. The client
now is able to receive the cookie information for validation:

238

XML DSL

<http:receive-response server="echoHttpClient">
<http:headers status="200" reason-phrase="0K" version="HTTP/1.1">
<http:header name="Operation" value="getCookie"/>
<http:cookie name="Token"
value="${messageld}"
secure="false"
domain="citrusframework.org"
path="/test/cookie.py"
max-age="86400"/>
</http:headers>
<http:body>
<http:data>
<I[CDATAL
Some response body
11>
</http:data>
</http:body>
</http:receive-response>

Java DSL

Cookie cookie = new Cookie("Token", "${messageId}");
cookie.setPath("/test/cookie.py");
cookie.setSecure(false);
cookie.setDomain("citrusframework.org");
cookie.setMaxAge(86400);

http().client("echoHttpClient")
.receive()
.response(HttpStatus.0K)
.payload("Some response body")
.header ("Operation", "sayHello")
.cookie(cookie);

Once again the cookie information is added to the header specification. The Citrus message
validation will make sure that the cookie information is present with all specified attributes.

In all further actions the client is able to continue to send the cookie information with name and
value:

239

XML DSL

<http:send-request client="echoHttpClient" fork="true">
<http:POST>
<http:headers>
<http:header name="Operation" value="sayHello"/>
<http:cookie name="Token" value="${messageId}"/>
</http:headers>
<http:body>
<http:data>
<![CDATAL
Some other request data
11>
</http:data>
</http:body>
</http:POST>
</http:send-request>

Java DSL

http().client("echoHttpClient")
.send()
.post()
.fork(true)
.payload("Some other request data")
.header ("Operation", "sayHello")
.cookie(new Cookie("Token", "${messageld}"));

The cookie now is only specified with name and value as the cookie now goes to the "Cookie"
request message header.

Cookie:Token=5877643571

Of course the Citrus Http server can now also validate the cookie information in a request
validation:

240

XML DSL

<http:receive-request client="echoHttpServer">
<http:POST>
<http:headers>
<http:header name="Operation" value="sayHello"/>
<http:cookie name="Token" value="${messageId}"/>
</http:headers>
<http:body>
<http:data>
<![CDATAL
Some other request data
11>
</http:data>
</http:body>
</http:POST>
</http:receive-request>

Java DSL

http().server("echoHttpServer")
.receive()

.post()

.payload("Some other request data")
.header("Operation", "sayHello")

.cookie(new Cookie("Token", "${messageld}"));

The Citrus message validation will make sure that the cookie is set in the request with respective
name and value.

18.11. HTTP Gzip compression

Gzip is a very popular compression mechanism for optimizing the message transportation for large
content. The Citrus http client and server components support gzip compression out of the box. This
means that you only need to set the specific encoding headers in your http request/response
message.

Accept-Encoding=gzip
Setting for clients when requesting gzip compressed response content. The Http server must
support gzip compression then in order to provide the response as zipped byte stream. The
Citrus http server component automatically recognizes this header in a request and applies gzip
compression to the response.

Content-Encoding=gzip
When a http server sends compressed message content to the client this header is set to gzip in
order to mark the compression. The Http client must support gzip compression then in order to
unzip the message content. The Citrus http client component automatically recognizes this
header in a response and applies gzip unzip logic before passing the message to the test case.

241

The Citrus client and server automatically take care on gzip compression when those headers are
set. In the test case you do not need to zip or unzip the content then as it is automatically done
before.

This means that you can request gzipped content from a server with just adding the message
header Accept-Encoding in your http request operation.

<echo>
<message>Send Http client request for gzip compressed data</message>
</echo>

<http:send-request client="gzipClient">
<http:POST>
<http:headers content-type="text/html">
<http:header name="Accept-Encoding" value="gzip"/>
<http:header name="Accept" value="text/plain"/>
</http:headers>
</http:POST>
</http:send-request>

<echo>
<message>Receive text automatically gzip unzipped</message>
</echo>

<http:receive-response client="gzipClient">
<http:headers status="200" reason-phrase="0K">
<http:header name="Content-Type" value="text/plain"/>
</http:headers>
<http:body type="plaintext">
<http:data>${text}</http:data>
</http:body>
</http:receive-response>

On the server side if we receive a message and the response should be compressed with Gzip we
just have to set the Content-Encoding header in the response operation.

242

<echo>
<message>Receive gzip compressed as baseb4 encoded text</message>
</echo>

<http:receive-request server="echoHttpServer">
<http:POST path="/echo">
<http:headers>
<http:header name="Content-Type" value="text/html"/>
<http:header name="Accept-Encoding" value="gzip"/>
<http:header name="Accept" value="text/plain"/>
</http:headers>
</http:POST>
</http:receive-request>

<echo>
<message>Send Http server gzip compressed response</message>
</echo>

<http:send-response server="echoHttpServer">
<http:headers status="200" reason-phrase="0K">
<http:header name="Content-Encoding" value="gzip"/>
<http:header name="Content-Type" value="text/plain"/>
</http:headers>
<http:body>
<http:data>${text}</http:data>
</http:body>
</http:send-response>

So the Citrus server will automatically add gzip compression to the response for us.

Of course you can also send gzipped content as a client. Then you would just set the Content-
Encoding header to gzip in your request. The client will automatically apply compression for you.

18.12. HTTP servlet filters

The Citrus http server component supports custom servlet filters that take part in handling an
incoming request/response communication. This might be useful when customizing the basic
server behavior such as custom zip/unzip mechanisms. The custom servlet filters are referenced in
the http server component as follows:

243

<citrus-http:server id="httpServer"
port="8080"
filters="filters"
filter-mappings="filterMappings"/>

<util:map id="filters">
<entry key="request-caching-filter">
<bean class="com.consol.citrus.http.servlet.RequestCachingServletFilter"/>
</entry>
<entry key="gzip-filter">
<bean class="com.consol.citrus.http.servlet.GzipServletFilter"/>
</entry>
</util:map>

<util:map id="filterMappings">
<entry key="request-caching-filter" value="/*"/>
<entry key="gzip-filter" value="/gzip/*"/>
</util:map>

The map of filters are specified as normal Spring configuration entries. The server component uses
the attribute filters to reference a set of custom servlet filters. The map holds one to many servlet
filter beans each given a name that is also referenced in the respective servlet mappings. The
servlet mappings specify when to apply those filters.

This way you can set a very custom servlet filter chain for each request/response communication.
As usual the filter implementations can participate in the request and response handling process.

Citrus provides several default servlet implementations that are automatically added to each http
server component these implementations are:

com.consol.citrus.http.servlet.RequestCachingServletFilter

caches incoming request data so input streams can be read multiple times during request
processing (important when request logging is enabled)

com.consol.citrus.http.servlet.GzipServletFilter

applies Gzip compressing when according headers are set and client explicitly asks for
compressed request/response communication

By the time you define some custom servlet filters or mappings to the server component Citrus will
not apply default servlet filters. This means you always need to construct the whole servlet filter
chain including default servlet filters mentioned above.

18.13. HTTP servlet context customization

The Citrus HTTP server uses Spring application context loading on startup. For high customizations
you can provide a custom servlet context file which holds all custom configurations as Spring beans
for the server. Here is a sample servlet context with some basic Spring MVC components and the
central HttpMessageController which is responsible for handling incoming requests (GET, PUT,

244

DELETE, POST, etc.).

<bean id="citrusHandlerMapping"
class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapp
ing"/>

<bean id="citrusMethodHandlerAdapter"
class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdap
ter">
<property name="messageConverters">
<util:list id="converters">
<ref bean="citrusHttpMessageConverter"/>
</util:list>
</property>
</bean>

<bean id="citrusHttpMessageConverter"
class="com.consol.citrus.http.message.DelegatingHttpEntityMessageConverter"/>

<bean id="citrusHttpMessageController"
class="com.consol.citrus.http.controller.HttpMessageController">
<property name="endpointAdapter">
<bean
class="com.consol.citrus.endpoint.adapter.EmptyResponseEndpointAdapter"/>
</property>
</bean>

The beans above are responsible for proper HTTP server configuration. In general you do not need
to adjust those beans, but we have the possibility to do so which gives us a great customization and
extension points. The important part is the endpoint adapter definition inside the
HttpMessageController. Once a client request was accepted the adapter is responsible for
generating a proper response to the client.

You can add the custom servlet context as file resource to the Citrus HTTP server component. Just
use the context-config-location attribute as follows:

<citrus-http:server id="helloHttpServer"
port="8080"
auto-start="true"
context-config-location="classpath:com/consol/citrus/http/custom-servlet-
context.xml"
resource-base="src/it/resources"/>

245

Chapter 19. WebSocket support

The WebSocket message protocol builds on top of Http standard and brings bidirectional
communication to the Http client-server world. Citrus is able to send and receive messages with
WebSocket connections as client and server. The Http server implementation is now able to define
multiple WebSocket endpoints. The new Citrus WebSocket client is able to publish and consumer
messages via bidirectional WebSocket protocol.

The new WebSocket support is located in the module citrus-websocket . Therefore we need to add
this module to our project as dependency when we are about to use the WebSocket features in
Citrus.

<dependency>
<groupId>com.consol.citrus</groupId>
<artifactId>citrus-websocket</artifactId>
<version>2.7.5</version>

</dependency>

As Citrus provides a customized WebSocket configuration schema for the Spring application
context configuration files we have to add name to the top level beans element. Simply include the
websocket-config namespace in the configuration XML files as follows.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:citrus="http://www.citrusframework.org/schema/config"
xmlns:citrus-websocket="http://www.citrusframework.org/schema/websocket/config"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/config
http://www.citrusframework.org/schema/config/citrus-config.xsd
http://www.citrusframework.org/schema/websocket/config
http://www.citrusframework.org/schema/websocket/config/citrus-websocket-
config.xsd">

[...]

</beans>

Now our project is ready to use the Citrus WebSocket support. First of all let us send a message via
WebSocket connection to some server.

19.1. WebSocket client

On the client side Citrus offers a client component that goes directly to the Spring bean application
context. The client needs a server endpoint uri. This is a WebSocket protocol endpoint uri.

246

<citrus-websocket:client id="helloWebSocketClient"
url="http://localhost:8080/hello"
timeout="5000"/>

The url defines the endpoint to send messages to. The server has to be a WebSocket ready web
server that supports Http connection upgrade for WebSocket protocols. WebSocket by its nature is
an asynchronous bidirectional protocol. This means that the connection between client and server
remains open and both server and client can send and receive messages. So when the Citrus client
is waiting for a message we need a timeout that stops the asynchronous waiting. The receiving test
action and the test case will fail when such a timeout is raised.

The WebSocket client will automatically open a connection to the server and ask for a connection
upgrade to WebSocket protocol. This handshake is done once when the connection to the server is
established. After that the client can push messages to the server and on the other side the server
can push messages to the client. Now lets first push some messages to the server:

<send endpoint="helloWebSocketClient">
<message>
<payload>
<TestMessage>
<Text>Hello WebSocketServer</Text>
</TestMessage>
</payload>
</message>
</send>

The connection handshake and the connection upgrade is done automatically by the client. After
that the message is pushed to the server. As WebSocket is a bidirectional protocol we can also
receive messages on the WebSocket client. These messages are pushed from server to all connected
clients.

<receive endpoint="helloWebSocketClient">
<message>
<payload>
<TestMessage>
<Text>Hello WebSocketClient</Text>
</TestMessage>
</payload>
</message>
</receive>

We just use the very same client endpoint component in a message receive action. The client will
wait for messages from the server and once received perform the well known message validation.
Here we expect some XML message payload. This completes the client side as we are able to push
and consumer messages via WebSocket connections.

247

Up to now we have used static WebSocket endpoint URIs in our client component
configurations. This can be done with a more powerful dynamic endpoint URI in

Q WebSocket client. Similar to the endpoint resolving mechanism in SOAP you can
dynamically set the called endpoint uri at test runtime through message header
values. By default Citrus will check a specific header entry for dynamic endpoint
URI which is simply defined for each message sending action inside the test.

The dynamicEndpointResolver bean must implement the EndpointUriResolver interface in order
to resolve dynamic endpoint uri values. Citrus offers a default implementation, the
DynamicEndpointUriResolver, which uses a specific message header for setting dynamic
endpoint uri. The message header needs to specify the header citrus_endpoint_uri with a valid
request uri.

<header>

<element name="citrus_endpoint_uri"
value="ws://localhost:8080/customers/${customerId}"/>
</header>

The specific send action above will send its message to the dynamic endpoint
(ws://localhost:8080/customers/${customerlId}[ws://localhost:8080/customers/${customerlId}]) which
is set in the header citrus_endpoint_uri .

19.2. WebSocket server endpoints

On the server side Citrus has a Http server implementation that we can easily start during test
runtime. The Http server accepts connections from clients and also supports WebSocket upgrade
strategies. This means clients can ask for a upgrade to the WebSocket standard. In this handshake
the server will upgrade the connection to WebSocket and afterwards client and server can
exchange messages over this connection. This means the connection is kept alive and multiple
messages can be exchanged. Lets see how WebSocket endpoints are added to a Http server
component in Citrus.

<citrus-websocket:server id="helloHttpServer"
port="8080"
auto-start="true"
resource-base="src/it/resources">
<citrus-websocket:endpoints>
<citrus-websocket:endpoint ref="websocket1"/>
<citrus-websocket:endpoint ref="websocket2"/>
</citrus-websocket:endpoints>
</citrus-websocket:server>

<citrus-websocket:endpoint id="websocket1" path="/test1"/>
<citrus-websocket:endpoint id="websocket2" path="/test2" timeout="10000"/>

The embedded Jetty WebSocket server component in Citrus now is able to define multiple

248

WebSocket endpoints. The WebSocket endpoints match to a request path on the server and are
referenced by a unique id. Each WebSocket endpoint can follow individual timeout settings. In a
test we can use these endpoints directly to receive messages.

<testcase name="httpWebSocketServerTest">
<actions>
<receive endpoint="websocket1">
<message>
<data>

[...]
</data>
</message>
</receive>

<send endpoint="websocket1">
<message>
<data>
[...]
</data>
</message>
</send>
</actions>
</testcase>

As you can see we reference the endpoint id in both receive and send actions. Each WebSocket
endpoint holds one or more open connections to its clients. Each message that is sent is pushed to
all connected clients. Each client can send messages to the WebSocket endpoint.

The WebSocket endpoint component handles connection handshakes automatically and caches all
open sessions in memory. By default all connected clients will receive the messages pushed from
server. This is done completely behind the scenes. The Citrus server is able to handle multiple
WebSocket endpoints with different clients connected to it at the same time. This is why we have to
choose the WebSocket endpoint on the server by its identifier when sending and receiving
messages.

With this WebSocket endpoints we change the Citrus server behavior so that clients can upgrade to
WebSocket connection. Now we have a bidirectional connection where the server can push
messages to the client and vice versa.

19.3. WebSocket headers

The WebSocket standard defines some default headers to use during connection upgrade. These
headers are made available to the test case in both directions. Citrus will handle these header
values with special care when WebSocket support is activated on a server or client. Now WebSocket
messages can also be split into multiple pieces. Each message part is pushed separately to the
server but still is considered to be a single message payload. The server has to collect and aggregate
all messages until a special message header isLast is set in one of the message parts.

249

The Citrus WebSocket client can slice messages into several parts.

<send endpoint="webSocketClient">
<message type="json">
<data>

[

"event" : "client_message_1",
"timestamp" : "citrus:currentDate()"
b
</data>
</message>
<header>
<element name="citrus_websocket is_last" value="false"/>
</header>
</send>

<sleep milliseconds="500"/>

<send endpoint="webSocketClient">
<message type="json">
<data>
{
"event" : "client_message_2",
"timestamp" : "citrus:currentDate()"

}

]
</data>
</message>
<header>
<element name="citrus_websocket is_last" value="true"/>
</header>
</send>

The test above has two separate send operations both sending to a WebSocket endpoint. The first
sending action sets the header citrus_websocket_is_last to false which indicates that the message
is not complete yet. The 2nd send action pushes the rest of the message to the server and set the
citrus_websocket_is_last header to true . Now the server is able to aggregate the message pieces to
a single message payload. The result is a valida JSON array with both events in it.

250

{
"event" : "client_message_1",
"timestamp" : "2015-01-01"

I

{
"event" : "client_message_2",
"timestamp" : "2015-01-01"

}

]

Now the server part in Citrus is able to handle these sliced messages, too. The server will
automatically aggregate those message parts before passing it to the test case for validation.

251

Chapter 20. SOAP WebServices

SOAP Web Services over HTTP is a widely used communication scenario in modern enterprise
applications. A SOAP Web Service client is posting a SOAP request via HTTP to a server. SOAP via
HTTP is a synchronous message protocol by default so the client is waiting synchronously for the
response message. Citrus provides both SOAP client and server components in order to meet both
directions of this scenario. The components used are very similar to the HTTP components that
were have discussed in the sections before.

The SOAP WebService components in Citrus are kept in a separate Maven
module. So you should add the module as Maven dependency to your project
accordingly.

<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-ws</artifactId>
<version>2.7.5</version>
</dependency>

In order to use the SOAP WebService support you need to include the specific XML configuration
schema provided by Citrus. See following XML definition to find out how to include the citrus-ws
namespace.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:citrus="http://www.citrusframework.org/schema/config"
xmlns:citrus-ws="http://www.citrusframework.org/schema/ws/config"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/config
http://www.citrusframework.org/schema/config/citrus-config.xsd
http://www.citrusframework.org/schema/ws/config
http://www.citrusframework.org/schema/ws/config/citrus-ws-config.xsd">

[...]

</beans>

Now you are ready to use the customized soap configuration elements - all using the citrus-ws
prefix - in your Spring configuration.

20.1. SOAP client

Citrus is able to form a proper SOAP request in order to pass it to the server via HTTP and validate
the respective SOAP response message. Let us see how a message client for SOAP looks like in the

252

Spring configuration:

<citrus-ws:client id="soapClient"
request-url="http://localhost:8090/test"
timeout="60000"/>

The client component uses the request-url in order to access the server resource. The client will
automatically build a proper SOAP request message including the SOAP envelope, SOAP header and
the message payload as SOAP body. This means that you as a tester do not care about SOAP
envelope specific logic in the test case. The client endpoint component saves the synchronous SOAP
response so the test case can receive this message with a normal receive test action.

In detail you as a tester just send and receive using the same client endpoint reference just as you
would do with a synchronous JMS or channel communication. In case no response message is
available in time according to the timeout settings Citrus raises a timeout error and the test will fail.

The SOAP client component uses a SoapMessageFactory implementation in order
to create the SOAP messages. This is a Spring bean added to the Citrus Spring

o application context. Spring offers several reference implementations as message
factories so you can choose one of them (e.g. for SOAP 1.1 or 1.2
implementations).

<!-- Default SOAP Message Factory (SOAP 1.1) -->
<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<!-- SOAP 1.2 Message Factory -->
<bean id="soap12MessageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory">
<property name="soapVersion">
<util:constant static-field="org.springframework.ws.soap.SoapVersion.SOAP_12"/>
</property>
</bean>

By default Citrus will search for a bean with id 'messageFactory’' . In case you intend to use
different identifiers you need to tell the SOAP client component which message factory to use:

<citrus-ws:client id="soapClient"
request-url="http://localhost:8090/test"
message-factory="soap12MessageFactory"/>

Up to now we have used a static endpoint request url for the SOAP message
Q sender. Besides that we can use dynamic endpoint uri in configuration. We just
use an endpoint uri resolver instead of the static request url like this:

253

<citrus-ws:client id="soapClient"
endpoint-resolver="dynamicEndpointResolver"
message-factory="soap12MessageFactory"/>

<bean id="dynamicEndpointResolver"
class="com.consol.citrus.endpoint.resolver.DynamicEndpointUriResolver"/>

The dynamicEndpointResolver bean must implement the EndpointUriResolver interface in order
to resolve dynamic endpoint uri values. Citrus offers a default implementation, the
DynamicEndpointUriResolver, which uses a specific message header for setting the dynamic
endpoint uri for each message. The message header needs to specify the header
citrus_endpoint_uri with a valid request uri. Just like this:

<header>
<element name="citrus_endpoint_uri"
value="http://localhost:${port}/${context}" />
</header>

As you can see you can use dynamic test variables then in order to build the request uri to use. The
SOAP client evaluates the endpoint uri header and sends the message to this server resource. You
can use a different uri value then in different test cases and send actions.

20.2. SOAP client interceptors

The client component is able to add custom interceptors that participate in the request/response
processing. The interceptors need to implement the common interface
org.springframework.ws.client.support.interceptor.ClientInterceptor.

<citrus-ws:client id="secureSoapClient"
request-url="http://localhost:8080/services/ws/todolist"
interceptors="clientInterceptors"/>

<util:list id="clientInterceptors">
<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="securementActions" value="Timestamp UsernameToken"/>
<property name="securementUsername" value="admin"/>
<property name="securementPassword" value="secret"/>
</bean>
<bean class="com.consol.citrus.ws.interceptor.LoggingClientInterceptor"/>
</util:list>

The sample above adds Wss4] WsSecurity interceptors in order to add security constraints to the
request messages.

254

When customizing the interceptor chain all default interceptors (like logging

0 interceptor) are lost. You need to add these interceptors explicitly as shown with
the com.consol.citrus.ws.interceptor.LoggingClientInterceptor which is able to log
request/response messages during communication.

20.3. SOAP server

Every client need a server to talk to. When receiving SOAP messages we require a web server
instance listening on a port. Citrus is using an embedded Jetty server instance in combination with
the Spring Web Service API in order to accept SOAP request calls asa server. See how the Citrus
SOAP server is configured in the Spring configuration.

<citrus-ws:server id="helloSoapServer"
port="8080"
auto-start="true"
resource-base="src/it/resources"/>

The server component is able to start automatically when application starts up. In the example
above the server is listening for requests on port 8080 . This setup uses the standard connector
configuration for the Jetty server. For detailed customization the Citrus Jetty server configuration
also supports explicit connector configurations (@connector and @connectors attributes). For more
information please see the Jetty connector documentation.

Test cases interact with this server instance via message channels by default. The server component
provides an inbound channel that holds incoming request messages. The test case can receive those
requests from the channel with a normal receive test action. In a second step the test case can
provide a synchronous response message as reply which will be automatically sent back to the
calling SOAP client as response.

JmsQueueDestination
send(Message}

=50 O
[WS-Server —— (O 0

ReplyDestination

SDAP.I"H TTP

[WS-Client

JmsQueueDestination
send(M essage}

rP
- | (E—@ ()
> [WS-Server — 0

ReplyDestination

The figure above shows the basic setup with inbound channel and reply channel. You as a tester
should not worry about this to much. By default you as a tester just use the server as synchronous
endpoint in your test case. This means that you simply receive a message from the server and send
a response back.

255

<testcase name="soapServerTest">
<actions>
<receive endpoint="helloSoapServer">
<message>
<data>

[...]
</data>
</message>
</receive>

<send endpoint="helloSoapServer">
<message>
<data>
[...]
</data>
</message>
</send>
</actions>
</testcase>

As you can see we reference the server id in both receive and send actions. The Citrus server
instance will automatically send the response back to the calling client. In most cases this is what
you need to simulate a SOAP server instance in Citrus. Of course we have some more customization
possibilities that we will go over later on. This customizations are optional so you can also skip the
next description on endpoint adapters if you are happy with just what you have learned about the
SOAP server component in Citrus.

Just like the HTTP server component the SOAP server component by default uses the channel
endpoint adapter in order to forward all incoming requests to an in memory message channel. This
is done completely behind the scenes. The Citrus configuration has become a lot easier here so you
do not have to configure this by default. When nothing else is set the test case does not worry about
that settings on the server and just uses the server id reference as synchronous endpoint.

The default channel endpoint adapter automatically creates an inbound message
channel where incoming messages are stored to internally. So if you need to clean
up a server that has already stored some incoming messages you can do this

Q easily by purging the internal message channel. The message channel follows a
naming convention {serverName}.inbound where {serverName} is the Spring
bean name of the Citrus server endpoint component. If you purge this internal
channel in a before test nature you are sure that obsolete messages on a server
instance get purged before each test is executed.

However we do not want to loose the great extendability and customizing capabilities of the Citrus
server component. This is why you can optionally define the endpoint adapter implementation
used by the Citrus SOAP server. We provide several message endpoint adapter implementations for
different simulation strategies. With these endpoint adapters you should be able to generate proper
SOAP response messages for the client in various ways. Before we have a closer look at the different
adapter implementations we want to show how you can set a custom endpoint adapter on the

256

server component.

<citrus-ws:server id="helloSoapServer"
port="8080"
auto-start="true"
endpoint-adapter="emptyResponseEndpointAdapter"
resource-base="src/it/resources"/>

<citrus:empty-response-adapter id="emptyResponseEndpointAdapter"/>

With this endpoint adapter configuration above we change the Citrus server behavior from scratch.
Now the server automatically sends back an empty SOAP response message every time. Setting a
custom endpoint adapter implementation with custom logic is easy as defining a custom endpoint
adapter Spring bean and reference it in the server attribute. You can read more about endpoint
adapters in endpoint-adapter.

20.4. SOAP send and receive

Citrus provides test actions for sending and receiving messages of all kind. Different message
content and different message transports are available to these send and receive actions. When
using SOAP message transport we might need to set special information on that messages. These
are special SOAP headers, SOAP faults and so on. So we have created a special SOAP namespace for
all your SOAP related send and receive operations in a XML DSL test:

<spring:beans xmlns="http://www.citrusframework.org/schema/testcase"”
xmlns:spring="http://www.springframework.org/schema/beans"
xmlns:ws="http://www.citrusframework.org/schema/ws/testcase"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/testcase
http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd
http://www.citrusframework.org/schema/ws/testcase
http://www.citrusframework.org/schema/ws/testcase/citrus-ws-testcase.xsd">

Once you have added the ws namespace from above to your test case you are ready to use special
send and receive operations in the test.

257

#endpoint-adapter

XML DSL

<ws:send endpoint="soap(lient" soap-action="MySoapService/sayHello">
<message>

[...]
</message>
</ws:send>

<ws:receive endpoint="soapServer" soap-action="MySoapService/sayHello">
<message>

[...]
</message>
</ws:receive>

The special namespace contains following elements:

send

Special send operation for sending out SOAP message content.

receive

Special receive operation for validating SOAP message content.

send-fault

Special send operation for sending out SOAP fault message content.

assert-fault

Special assertion operation for expecting a SOAP fault message as response.

The special SOAP related send and receive actions can coexist with normal Citrus actions. In fact
you can mix those action types as you want inside of a test case. All test actions that work with
SOAP message content on client and server side should use this special namespace.

In Java DSL we have something similar to that. The Java DSL provides special SOAP related features
when calling the soap() method. With a fluent API you are able to then send and receive SOAP
message content as client and server.

258

Java DSL

@CitrusTest
public void soapTest() {

soap().client("soapClient")
.send()
.so0apAction("MySoapService/sayHello")
.payload("...");

soap().client("soapClient")
.receive()
.payload("...");

In the following sections the SOAP related capabilities are discussed in more detail.

20.5. SOAP headers

SOAP defines several header variations that we discuss in the following sections. First of all we deal
with the special SOAP action header. In case we need to set this SOAP action header we simply
need to use the special soap-action attribute in our test. The special header key in combination
with a underlying SOAP client endpoint component constructs the SOAP action in the SOAP
message.

XML DSL

<ws:send endpoint="soap(Client" soap-action="MySoapService/sayHello">
<message>

[...]
</message>
</ws:send>

<ws:receive endpoint="soapServer" soap-action="MySoapService/sayHello">
<message>

[...]
</message>
</ws:receive>

259

Java DSL

@CitrusTest
public void soapActionTest() {

soap().client("soapClient")
.send()
.so0apAction("MySoapService/sayHello")
.payload("...");

soap().server("soapClient")
.receive()
.soapAction("MySoapService/sayHello")
.payload("...");

The SOAP action header is added to the message before sending and validated when used in a
receive operation.

The soap-action attribute is defined in the special SOAP namespace in Citrus. We
recommend to use this namespace for all your send and receive operations that

o deal with SOAP message content. However you can also set the special SOAP
action header when not using the special SOAP namespace: Just set this header in
your test action:

<header>
<element name="citrus_soap_action" value="sayHello"/>
</header>

Secondly a SOAP message is able to contain customized SOAP headers. These are key-value pairs
where the key is a qualified name (QName) and the value a normal String value.

<header>
<element name="{http://www.consol.de/sayHello}h1:0peration" value="sayHello"/>
<element name="{http://www.consol.de/sayHello}h1:Request" value="HelloRequest"/>
</header>

The key is defined as qualified QName character sequence which has a mandatory XML namespace
and a prefix along with a header name. Last not least a SOAP header can contain whole XML
fragment values. The next example shows how to set these XML fragments as SOAP header in
Citrus:

260

<header>
<data>
<![CDATA[
<User xmlns="http://www.consol.de/schemas/sayHello">
<UserId>123456789</UserId>
<Handshake>S$123456789</Handshake>
</User>
11>
</data>
</header>

You can also use external file resources to set this SOAP header XML fragment as shown in this last
example code:

<header>
<resource file="classpath:request-soap-header.xml"/>
</header>

This completes the SOAP header possibilities for sending SOAP messages with Citrus. Of course you
can also use these variants in SOAP message header validation. You define expected SOAP headers,
SOAP action and XML fragments and Citrus will match incoming request to that. Just use
citrus_soap_action header key in your receiving message action and you validate this SOAP header
accordingly.

When validating SOAP header XML fragments you need to define the whole XML header fragment
as expected header data like this:

261

<receive endpoint="soapMessageEndpoint">
<message>
<data>
<1[CDATA[
<Responselessage xmlns="http://citrusframework.org/schema">
<resultCode>0K</resultCode>

</Responselessage>
11>
</data>
</message>
<header>
<data>
<![CDATA[
<SOAP-ENV:Header
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<customHeader xmlns="http://citrusframework.org/headerschema">
<correlationId>${correlationId}</correlationId>
<applicationId>${applicationId}</applicationld>
<trackingId>${trackingId}</trackingId>
<serviceld>${serviceld}</serviceld>
<interfaceVersion>1.0</interfaceVersion>
<timestamp>@ignore@</timestamp>
</customHeader>
</SOAP-ENV:Header>
11>
</data>
<element name="citrus_soap_action" value="doResponse"/>
</header>
</receive>

As you can see the SOAP XML header validation can combine header element and XML fragment
validation. This is also likely to be used when dealing with WS-Security message headers.

20.6. SOAP HTTP mime headers

Besides the SOAP specific header elements the HTTP mime headers (e.g. Content-Type, Content-
Length, Authorization) might be candidates for validation, too. When using HTTP as transport layer
the SOAP message may define those mime headers. The tester is able to send and validate these
headers inside the test case, although these HTTP headers are located outside of the SOAP envelope.
Let us first of all speak about validating the HTTP mime headers. This feature is not enabled by
default. We have enable this in our SOAP server configuration.

<citrus-ws:server id="helloSoapServer"
port="8080"
auto-start="true"
handle-mime-headers="true"
resource-base="src/it/resources"/>

262

With this configuration Citrus will handle all available mime headers and pass those to the test case
for normal header validation.

<ws:receive endpoint="helloSoapServer">
<message>
<payload>
<SoapMessageRequest xmlns="http://www.consol.de/schemas/sample.xsd">
<Operation>Validate mime headers</Operation>
</SoapMessageRequest>
</payload>
</message>
<header>
<element name="Content-Type" value="text/xml; charset=utf-8"/>
</header>
</ws:receive>

The validation of these HTTP mime headers is as usual now that we have enabled the mime header
handling in the SOAP server. The transport HTTP headers are available in the header just like the
normal SOAP header elements do. So you can validate the headers as usual.

So much for receiving and validating HTTP mime message headers with SOAP communication.
Now we want to send special mime headers on client side. We overwrite or add mime headers to
our sending action. We mark some headers with following prefix "citrus_http"_ . This tells the
SOAP client to add these headers to the HTTP header section outside the SOAP envelope. Keep in
mind that header elements without this prefix go right into the SOAP header section by default.

<ws:send endpoint="soapClient">

[...]
<header>

<element name="citrus_http_operation" value="foo"/>
</header>

[...]

</ws:send>

The listing above defines a HTTP mime header operation . The header prefix citrus_http_ is cut off
before the header goes into the HTTP header section. With this feature we can decide where exactly
our header information is located in our resulting client message.

20.7. SOAP Envelope handling

By default Citrus will remove the SOAP envelope in message converter. Following from that the
Citrus test case is independent from SOAP message formats and is not bothered with handling of
SOAP envelope at all. This is great in most cases but sometimes it might be mandatory to also see
the whole SOAP envelope inside the test case receive action. Therefore you can keep the SOAP
envelope for incoming messages by configuration on the SOAP server side.

263

<citrus-ws:server id="helloSoapServer"
port="8080"
auto-start="true"
keep-soap-envelope="true"/>

With this configuration Citrus will handle all available mime headers and pass those to the test case
for normal header validation.

<ws:receive endpoint="helloSoapServer">
<message>
<payload>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<SoapMessageRequest xmlns="http://www.consol.de/schemas/sample.xsd">
<Operation>Validate mime headers</Operation>
</SoapMessageRequest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
</payload>
</message>
</ws:receive>

So now you are able to validate the whole SOAP envelope as is. This might be of interest in very
special cases. As mentioned by default the Citrus server will automatically remove the SOAP
envelope and translate the SOAP body to the message payload for straight forward validation inside
the test cases.

20.8. SOAP server interceptors

The Citrus SOAP server supports the concept of interceptors in order to add custom logic to the
request/response processing steps. The interceptors need to implement a common interface:
org.springframework.ws.server.Endpointinterceptor. We are able to customize the interceptor
chain on the server component as follows:

264

<citrus-ws:server id="secureSoapServer"
port="8080"
auto-start="true"
interceptors="serverInterceptors"/>

<util:list id="serverInterceptors">
<bean class=
"com.consol.citrus.ws.interceptor.SoapMustUnderstandEndpointInterceptor">
<property name="acceptedHeaders">
<list>
<value>{http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
secext-1.0.xsd}Security</value>
</list>
</property>
</bean>
<bean class="com.consol.citrus.ws.interceptor.LoggingEndpointInterceptor"/>
<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">
<property name="validationActions" value="Timestamp UsernameToken"/>
<property name="validationCallbackHandler">
<bean id="passwordCallbackHandler"
class="org.springframework.ws.soap.security.wss4j.callback.SimplePasswordValidationCal
1backHandler">
<property name="usersMap">
<map>
<entry key="admin" value="secret"/>
</map>
</property>
</bean>
</property>
</bean>
</util:list>

The custom interceptors are used to enable WsSecurity features on the soap server component via
Wss4].

When customizing the interceptor chain of the soap server component all default

0 interceptors (like logging interceptors) are lost. You can see that we had to add the
com.consol.citrus.ws.interceptor.LoggingEndpointinterceptor explicitly in order to
log request/response messages for the server communication.

20.9. SOAP 1.2

By default Citrus components use SOAP 1.1 version. Fortunately SOAP 1.2 is supported same way. As
we already mentioned before the Citrus SOAP components do use a SOAP message factory for
creating messages in SOAP format.

265

<!-- SOAP 1.1 Message Factory -->
<bean id="soapMessageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory">
<property name="soapVersion">
<util:constant static-field="org.springframework.ws.soap.SoapVersion.SOAP_11"/>
</property>
</bean>

<!-- SOAP 1.2 Message Factory -->
<bean id="soap12MessageFactory"
class="org.springframework.ws.soap.saaj.S5aajSoapMessageFactory">
<property name="soapVersion">
<util:constant static-field="org.springframework.ws.soap.SoapVersion.SOAP_12"/>
</property>
</bean>

As you can see the SOAP message factory can either create SOAP 1.1 or SOAP 1.2 messages. This is
how Citrus can create both SOAP 1.1 and SOAP 1.2 messages. Of course you can have multiple
message factories configured in your project. Just set the message factory on a WebService client or
server component in order to define which version should be used.

<citrus-ws:client id="soap12(Client"
request-url="http://localhost:8080/echo"
message-factory="soap12MessageFactory"
timeout="1000"/>

<citrus-ws:server id="soap12Server"
port="8080"
auto-start="true"
root-parent-context="true"
message-factory="soap12MessageFactory"/>

By default Citrus components do connect with a message factory called messageFactory no matter
what SOAP version this factory is using.

20.10. SOAP faults

SOAP faults describe a failed communication in SOAP WebServices world. Citrus is able to send and
receive SOAP fault messages. On server side Citrus can simulate SOAP faults with fault-code, fault-
reason, fault-actor and fault-detail. On client side Citrus is able to handle and validate SOAP faults
in response messages. The next section describes how to deal with SOAP faults in Citrus.

20.11. Send SOAP faults

As Citrus simulates SOAP server endpoints you also need to think about sending a SOAP fault to the
calling client. In case Citrus receives a SOAP request as a server you can respond with a proper
SOAP fault if necessary.

266

Please keep in mind that we use the citrus-ws extension for sending SOAP faults in our test case, as
shown in this very simple example:

XML DSL

<ws:send-fault endpoint="helloSoapServer">
<ws:fault>
<ws:fault-code>{http://www.citrusframework.org/faults}citrus:TEC-
1000</ws: fault-code>
<ws:fault-string>Invalid request</ws:fault-string>
<ws:fault-actor>SERVER</ws:fault-actor>
<ws:fault-detail>
<![CDATA[
<FaultDetail xmlns="http://www.consol.de/schemas/sayHello.xsd">
<Messageld>${messageld}</Messageld>
<CorrelationId>${correlationId}</CorrelationId>
<ErrorCode>TEC-1000</ErrorCode>
<Text>Invalid request</Text>
</FaultDetail>
11>
</ws:fault-detail>
</ws:fault>
<ws:header>
<ws:element name="citrus_soap_action" value="sayHello"/>
</ws:header>
</ws:send-fault>

The example generates a simple SOAP fault that is sent back to the calling client. The fault-actor and
the fault-detail elements are optional. Same with the soap action declared in the special Citrus
header citrus_soap_action . In the sample above the fault-detail data is placed inline as XML data.
As an alternative to that you can also set the fault-detail via external file resource. Just use the file
attribute as fault detail instead of the inline CDATA definition.

XML DSL

<ws:send-fault endpoint="helloSoapServer">
<ws:fault>
<ws:fault-code>{http://www.citrusframework.org/faults}citrus:TEC-
1000</ws: fault-code>
<ws:fault-string>Invalid request</ws:fault-string>
<ws:fault-actor>SERVER</ws:fault-actor>
<ws:fault-detail file="classpath:myFaultDetail.xml"/>
</ws:fault>
<ws:header>
<ws:element name="citrus_soap_action" value="sayHello"/>
</ws:header>
</ws:send-fault>

The generated SOAP fault looks like follows:

267

HTTP/1.1 500 Internal Server Error

Accept: text/xml, text/html, image/gif, image/jpeg, *; q=.2, */*; g=.2
SOAPAction: "sayHello"

Content-Type: text/xml; charset=utf-8

Content-Length: 680

Server: Jetty(7.0.0.preb5)

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode xmlns:citrus="http://www.citrusframework.org/faults"
>citrus:TEC-1000</faultcode>
<faultstring xml:lang="en">Invalid request</faultstring>
<detail>
<FaultDetail xmlns="http://www.consol.de/schemas/sayHello.xsd">
<Messageld>9277832563</Messageld>
<CorrelationId>4346806225</CorrelationId>
<ErrorCode>TEC-1000</ErrorCode>
<Text>Invalid request</Text>
</FaultDetail>
</detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Notice that the send action uses a special XML namespace (ws:send). This ws
namespace belongs to the Citrus WebService extension and adds SOAP specific

o features to the normal send action. When you use such ws extensions you need to
define the additional namespace in your test case. This is usually done in the root
<spring:beans> element where we simply declare the citrus-ws specific
namespace like follows.

<spring:beans xmlns="http://www.citrusframework.org/schema/testcase"
xmlns:spring="http://www.springframework.org/schema/beans"
xmlns:ws="http://www.citrusframework.org/schema/ws/testcase"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/testcase
http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd
http://www.citrusframework.org/schema/ws/testcase
http://www.citrusframework.org/schema/ws/testcase/citrus-ws-testcase.xsd">

20.12. Receive SOAP faults

In case you receive SOAP response messages as a client endpoint you may need to handle and
validate SOAP faults in error situations. Citrus can validate SOAP faults with fault-code, fault-actor,

268

fault-string and fault-detail values.

As a client we send out a request and receive a SOAP fault as response. By default the client sending
action in Citrus throws a specific exception when the SOAP response is a SOAP fault element. This
exception is called SoapFaultClientException coming from the Spring API. You as a tester can
assert this kind of exception in a test case in order to expect the SOAP error.

XML DSL

<assert class="org.springframework.ws.soap.client.SoapFaultClientException">
<send endpoint="soapClient">
<message>
<payload>
<SoapFaultForcingRequest
xmlns="http://www.consol.de/schemas/soap">
<Message>This is invalid</Message>
</SoapFaultForcingRequest>
</payload>
</message>
</send>
</assert>

The SOAP message sending action is surrounded by a simple assert action. The asserted exception
class is the SoapFaultClientException that we have mentioned before. This means that the test
expects the exception to be thrown during the communication. In case the exception is missing the
test is fails.

So far we have used the Citrus core capabilities of asserting an exception. This basic assertion test
action is not able to offer direct access to the SOAP fault-code and fault-string values for validation.
The basic assert action simply has no access to the actual SOAP fault elements. Fortunately we can
use the citrus-ws namespace again which offers a special assert action implementation especially
designed for SOAP faults in this case.

269

XML DSL

<ws:assert-fault fault-code="{http://www.citrusframework.org/faults}TEC-1001"
fault-string="Invalid request">
fault-actor="SERVER">

<ws :when>
<send endpoint="soapClient">
<message>
<payload>
<SoapFaultForcingRequest
xmlns="http://www.consol.de/schemas/soap">
<Message>This is invalid</Message>
</SoapFaultForcingRequest>
</payload>
</message>
</send>
</ws:when>

</ws:assert-fault>

The special assert action offers several attributes to validate the expected SOAP fault. Namely these
are "fault-code", "fault-string" and "fault-actor" . The fault-code is defined as a QName string
and is mandatory for the validation. The fault assertion also supports test variable replacement as
usual.

The time you use SOAP fault validation you need to tell Citrus how to validate the SOAP faults.
Citrus needs an instance of a SoapFaultValitator that we need to add to the Spring application
context. By default Citrus is searching for a bean with the id 'soapFaultValidator' .

<bean id="soapFaultValidator"
class="com.consol.citrus.ws.validation.SimpleSoapAttachmentValidator"/>

Citrus offers several reference implementations for these SOAP fault validators. These are:

* com.consol.citrus.ws.validation.SimpleSoapAttachmentValidator
* com.consol.citrus.ws.validation.SimpleSoapFaultValidator
* com.consol.citrus.ws.validation.XmlSoapFaultValidator
Please see the API documentation for details on the available reference implementations. Of course

you can also define your own SOAP validator logic (would be great if you could share your ideas!).
In the test case you can explicitly choose the validator to use:

270

XML DSL

<ws:assert-fault fault-code="{http://www.citrusframework.org/faults}TEC-1001"
fault-string="Invalid request"
fault-validator="mySpecialSoapFaultValidator">

[...]

</ws:assert-fault>

Another important thing to notice when asserting SOAP faults is the fact, that

o Citrus needs to have a SoapMessageFactory available in the Spring application
context. If you deal with SOAP messaging in general you will already have such a
bean in the context.

<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

Choose one of Spring’s reference implementations or some other implementation as SOAP message
factory. Citrus will search for a bean with id 'messageFactory' by default. In case you have other
beans with different identifiers please choose the messageFactory in the test case assert action:

XML DSL

<ws:assert-fault fault-code="{http://www.citrusframework.org/faults}TEC-1001"
fault-string="Invalid request"
message-factory="mySpecialMessageFactory">
[...]

</ws:assert-fault>

Notice the ws specific namespace that belongs to the Citrus WebService

o extensions. As the ws:assert action uses SOAP specific features we need to refer
to the citrus-ws namespace. You can find the namespace declaration in the root
element in your test case.

<spring:beans xmlns="http://www.citrusframework.org/schema/testcase"”
xmlns:spring="http://www.springframework.org/schema/beans"
xmlns:ws="http://www.citrusframework.org/schema/ws/testcase"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/testcase
http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd
http://www.citrusframework.org/schema/ws/testcase
http://www.citrusframework.org/schema/ws/testcase/citrus-ws-testcase.xsd">

Citrus is also able to validate SOAP fault details. See the following example for understanding how
to do it:

271

XML DSL

<ws:assert-fault fault-code="{http://www.citrusframework.org/faults}TEC-1001"
fault-string="Invalid request">
<ws:fault-detail>
<![CDATA[
<FaultDetail xmlns="http://www.consol.de/schemas/soap">
<ErrorCode>TEC-1000</ErrorCode>
<Text>Invalid request</Text>
</FaultDetail>
11>
</ws:fault-detail>
<ws :when>
<send endpoint="soap(lient">
<message>
<payload>
<SoapFaultForcingRequest
xmlns="http://www.consol.de/schemas/soap">
<Message>This is invalid</Message>
</SoapFaultForcingRequest>
</payload>
</message>
</send>
</ws:when>
</ws:assert-fault>

The expected SOAP fault detail content is simply added to the ws:assert action. The
SoapFaultValidator implementation defined in the Spring application context is responsible for
checking the SOAP fault detail with validation algorithm. The validator implementation checks the
detail content to meet the expected template. Citrus provides some default SoapFaultValidator
implementations. Supported algorithms are pure String comparison
(com.consol.citrus.ws.validation.SimpleSoapFaultValidator) as well as XML tree walk-through
(com.consol.citrus.ws.validation.XmlSoapFaultValidator).

When using the XML validation algorithm you have the complete power as known from normal
message validation in receive actions. This includes schema validation or ignoring elements for
instance. On the fault-detail element you are able to add some validation settings such as schema-
validation=enabled/disabled, custom schema-repository and so on.

272

XML DSL

<ws:assert-fault fault-code="{http://www.citrusframework.org/faults}TEC-1001"
fault-string="Invalid request">
<ws:fault-detail schema-validation="false">
<![CDATA[
<FaultDetail xmlns="http://www.consol.de/schemas/soap">
<ErrorCode>TEC-1000</ErrorCode>
<Text>Invalid request</Text>

</FaultDetail>
11>

</ws:fault-detail>
<ws :when>

<send endpoint="soap(lient">

[...]

</send>

</ws:when>

</ws:assert-fault>

Please see also the Citrus API documentation for available validator implementations and
validation algorithms.

So far we have used assert action wrapper in order to catch SOAP fault exceptions and validate the
SOAP fault content. Now we have an alternative way of handling SOAP faults in Citrus. With
exceptions the send action aborts and we do not have a receive action for the SOAP fault. This
might be inadequate if we need to validate the SOAP message content (SOAPHeader and SOAPBody)
coming with the SOAP fault. Therefore the web service message sender component offers several
fault strategy options. In the following we discuss the propagation of SOAP fault as messages to the
receive action as we would do with normal SOAP messages.

<citrus-ws:client id="soapClient"
request-url="http://localhost:8090/test"
fault-strategy="propagateError"/>

We have configured a fault strategy propagateError so the message sender will not raise client
exceptions but inform the receive action with SOAP fault message contents. By default the fault
strategy raises client exceptions (fault-strategy= throwsException).

So now that we do not raise exceptions we can leave out the assert action wrapper in our test.
Instead we simply use a receive action and validate the SOAP fault like this.

273

<send endpoint="soapClient">
<message>
<payload>
<SoapFaultForcingRequest xmlns="http://www.consol.de/schemas/sample.xsd">
<Message>This 1is invalid</Message>
</SoapFaultForcingRequest>
</payload>
</message>
</send>

<receive endpoint="soapClient" timeout="5000">
<message>
<payload>
<SOAP-ENV:Fault xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/">
<faultcode xmlns:CITRUS="http://citrus.org/soap"
>CITRUS: ${soapFaultCode}</faultcode>
<faultstring xml:lang="en">${soapFaultString}</faultstring>
</SOAP-ENV:Fault>
</payload>
</message>
</receive>

So choose the preferred way of handling SOAP faults either by asserting client exceptions or
propagating fault messages to the receive action on a SOAP client.

20.13. Multiple SOAP fault details

SOAP fault messages can hold multiple SOAP fault detail elements. In the previous sections we have
used SOAP fault details in sending and receiving actions as single element. In order to meet the
SOAP specification Citrus is also able to handle multiple SOAP fault detail elements in a message.
You just use multiple fault-detail elements in your test action like this:

274

<ws:send-fault endpoint="helloSoapServer">
<ws:fault>
<ws:fault-code>{http://www.citrusframework.org/faults}citrus:TEC-
1000</ws: fault-code>
<ws:fault-string>Invalid request</ws:fault-string>
<ws:fault-actor>SERVER</ws:fault-actor>
<ws:fault-detail>
<![CDATA[
<FaultDetail xmlns="http://www.consol.de/schemas/sayHello.xsd">
<Messageld>${messageld}</Messageld>
<CorrelationId>${correlationId}</CorrelationId>
<ErrorCode>TEC-1000</ErrorCode>
<Text>Invalid request</Text>
</FaultDetail>
11>
</ws:fault-detail>
<ws:fault-detail>
<![CDATA[
<ErrorDetail xmlns="http://www.consol.de/schemas/sayHello.xsd">
<ErrorCode>TEC-1000</ErrorCode>
</ErrorDetail>
11>
</ws:fault-detail>
</ws:fault>
<ws:header>
<ws:element name="citrus_soap_action" value="sayHello"/>
</ws:header>
</ws:send-fault>

This will result in following SOAP envelope message:

275

HTTP/1.1 500 Internal Server Error

Accept: text/xml, text/html, image/gif, image/jpeg, *; q=.2, */*; g=.2
SOAPAction: "sayHello"

Content-Type: text/xml; charset=utf-8

Content-Length: 680

Server: Jetty(7.0.0.preb5)

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode xmlns:citrus="http://www.citrusframework.org/faults"
>citrus:TEC-1000</faultcode>
<faultstring xml:lang="en">Invalid request</faultstring>
<detail>
<FaultDetail xmlns="http://www.consol.de/schemas/sayHello.xsd">
<Messageld>9277832563</Messageld>
<Correlationld>4346806225</CorrelationId>
<ErrorCode>TEC-1000</ErrorCode>
<Text>Invalid request</Text>
</FaultDetail>
<ErrorDetail xmlns="http://www.consol.de/schemas/sayHello.xsd">
<ErrorCode>TEC-1000</ErrorCode>
</ErrorDetail>
</detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Of course we can also expect several fault detail elements when receiving a SOAP fault.

276

XML DSL

<ws:assert-fault fault-code="{http://www.citrusframework.org/faults}TEC-1001"
fault-string="Invalid request">
<ws:fault-detail schema-validation="false">
<![CDATA[
<FaultDetail xmlns="http://www.consol.de/schemas/soap">
<ErrorCode>TEC-1000</ErrorCode>
<Text>Invalid request</Text>
</FaultDetail>
11>
</ws:fault-detail>
<ws:fault-detail>
<ITCDATA[
<ErrorDetail xmlns="http://www.consol.de/schemas/soap">
<ErrorCode>TEC-1000</ErrorCode>

</ErrorDetail>
11>

</ws:fault-detail>
<ws:when>

<send endpoint="soap(Client">

[...]

</send>

</ws:when>

</ws:assert-fault>

As you can see we can individually use validation settings for each fault detail. In the example
above we disabled schema validation for the first fault detail element.

20.14. Send HTTP error codes with SOAP

The SOAP server logic in Citrus is able to simulate pure HTTP error codes such as 404 "Not found"
or 500 "Internal server error". The good thing is that the Citrus server is able to receive a request
for proper validation in a receive action and then simulate HTTP errors on demand.

The mechanism on HTTP error code simulation is not different to the usual SOAP request/response
handling in Citrus. We receive the request as usual and we provide a response. The HTTP error
situation is simulated according to the special HTTP header citrus_http_status in the Citrus SOAP
response definition. In case this header is set to a value other than 200 OK the Citrus SOAP server
sends an empty SOAP response with HTTP error status code set accordingly.

277

<receive endpoint="helloSoapServer">
<message>
<payload>
<Message xmlns="http://consol.de/schemas/sample.xsd">
<Text>Hello SOAP server</Text>
</Message>
</payload>
</message>
</receive>

<send endpoint="helloSoapServer">
<message>
<data></data>
</message>
<header>
<element name="citrus_http_status_code" value="500"/>
</header>
</send>

The SOAP response must be empty and the HTTP status code is set to a value other than 200, like
500. This results in a HTTP error sent to the calling client with error 500 "Internal server error".

20.15. SOAP attachment support

Citrus is able to add attachments to a SOAP request on client and server side. As usual you can
validate the SOAP attachment content on a received SOAP message. The next chapters describe how
to handle SOAP attachments in Citrus.

20.16. Send SOAP attachments

As client Citrus is able to add attachments to the SOAP message. I think it is best to go straight into
an example in order to understand how it works.

<ws:send endpoint="soap(lient">
<message>
<payload>
<SoapMessagellithAttachment xmlns="http://consol.de/schemas/sample.xsd">
<Operation>Read the attachment</Operation>
</SoapMessagellithAttachment>
</payload>
</message>
<ws:attachment content-id="MySoapAttachment" content-type="text/plain">
<ws:resource file="classpath:com/consol/citrus/ws/soapAttachment.txt"/>
</ws:attachment>
</ws:send>

278

In the previous chapters you may have already noticed the citrus-ws namespace

o that stands for the SOAP extensions in Citrus. Please include the citrus-ws
namespace in your test case as described earlier in this chapter so you can use
the attachment support.

The special send action of the SOAP extension namespace is aware of SOAP attachments. The
attachment content usually consists of a content-id a content-type and the actual content as plain
text or binary content. Inside the test case you can use external file resources or inline CDATA
sections for the attachment content. As you are familiar with Citrus you may know this already
from other actions.

Citrus will construct a SOAP message with the SOAP attachment. Currently only one attachment per
message is supported.

20.17. Receive SOAP attachments

When Citrus calls SOAP WebServices as a client we may receive SOAP responses with attachments.
The tester can validate those received SOAP messages with attachment content quite easy. As usual
let us have a look at an example first.

<ws:receive endpoint="soapClient">
<message>
<payload>
<SoapMessagellithAttachmentRequest
xmlns="http://consol.de/schemas/sample.xsd">
<Operation>Read the attachment</Operation>
</SoapMessagellithAttachmentRequest>
</payload>
</message>
<ws:attachment content-id="MySoapAttachment"
content-type="text/plain"
validator="mySoapAttachmentValidator">
<ws:resource file="classpath:com/consol/citrus/ws/soapAttachment.txt"/>
</ws:attachment>
</ws:receive>

Again we use the Citrus SOAP extension namespace with the specific receive action that is aware of
SOAP attachment validation. The tester can validate the content-id, the content-type and the
attachment content. Instead of using the external file resource you could also define an expected
attachment template directly in the test case as inline CDATA section.

279

The ws:attachment element specifies a validator instance. This validator
determines how to validate the attachment content. SOAP attachments are not
limited to XML content. Plain text content and binary content is possible, too. So

0 each SOAP attachment validating action can use a different
SoapAttachmentValidator instance which is responsible for validating and
comparing received attachments to expected template attachments. In the Citrus
configuration the validator is set as normal Spring bean with the respective
identifier.

<bean id="soapAttachmentValidator"
class="com.consol.citrus.ws.validation.SimpleSoapAttachmentValidator"/>
<bean id="mySoapAttachmentValidator"
class="com.company.ws.validation.MySoapAttachmentValidator"/>

You can define several validator instances in the Citrus configuration. The validator with the
general id "soapAttachmentValidator" is the default validator for all actions that do not explicitly
set a validator instance. Citrus offers a set of reference validator implementations. The
SimpleSoapAttachmentValidator will use a simple plain text comparison. Of course you are able
to add individual validator implementations, too.

20.18. SOAP MTOM support

MTOM (Message Transmission Optimization Mechanism) enables you to send and receive large
SOAP message content using streamed data handlers. This optimizes the resource allocation on
server and client side where not all data is loaded into memory when marshalling/unmarshalling
the message payload data. In detail MTOM enabled messages do have a XOP package inside the
message payload replacing the actual large content data. The content is then streamed aas separate
attachment. Server and client can operate with a data handler providing access to the streamed
content. This is very helpful when using large binary content inside a SOAP message for instance.

Citrus is able to both send and receive MTOM enabled SOAP messages on client and server. Just use
the mtom-enabled flag when sending a SOAP message:

280

<ws:send endpoint="soapMtomClient" mtom-enabled="true">
<message>
<data>
<I[CDATA[
<image:addImage xmlns:image="http://www.citrusframework.org/imageService/">

</image:addImage>
11>
</data>
</message>
<ws:attachment content-id="IMAGE" content-type="application/octet-stream">
<ws:resource file="classpath:com/consol/citrus/hugeImageData.png"/>
</ws:attachment>
</ws:send>

As you can see the example above sends a SOAP message that contains a large binary image
content. The actual binary image data is referenced with a content id marker cid:IMAGE inside the
message payload. The actual image content is added as attachment with a separate file resource.
Important is here the content-id which matches the id marker in the SOAP message payload
(IMAGE).

Citrus builds a proper SOAP MTOM enabled message automatically adding the XOP package inside
the message. The binary data is sent as separate SOAP attachment accordingly. The resulting SOAP
message looks like this:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header></SOAP-ENV:Header>
<SOAP-ENV:Body>
<image:addImage xmlns:image="http://www.citrusframework.org/imageService/">

</image:addImage>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

On the server side Citrus is also able to handle MTOM enabled SOAP messages. In a server receive
action you can specify the MTOM SOAP attachment content as follows.

281

<ws:receive endpoint="soapMtomServer" mtom-enabled="true">
<message schema-validation="false">
<data>
<I[CDATA[
<image:addImage xmlns:image="http://www.citrusframework.org/imageService/">

</image:addImage>
11>
</data>
</message>
<ws:attachment content-id="IMAGE" content-type="application/octet-stream">
<ws:resource file="classpath:com/consol/citrus/hugeImageData.png"/>
</ws:attachment>
</ws:receive>

We define the MTOM attachment content as separate SOAP attachment. The content-id is
referenced somewhere in the SOAP message payload data. At runtime Citrus will add the XOP

package definition automatically and perform validation on the message and its streamed MTOM
attachment data.

Next thing that we have to talk about is inline MTOM data. This means that the content should be
added as either base64Binary or hexBinary encoded String data directly to the message content.
See the following example that uses the mtom-inline setting:

<ws:send endpoint="soapMtomClient" mtom-enabled="true">

<message>

<data>

<I[CDATAL
<image:addImage xmlns:image="http://www.citrusframework.org/imageService/">

<icon>cid:ICON</icon>
</image:addImage>
11>

</data>
</message>
<ws:attachment content-id="IMAGE" content-type="application/octet-stream"

mtom-inline="true" encoding-type="baseb64Binary">

<ws:resource file="classpath:com/consol/citrus/image.png"/>
</ws:attachment>
<ws:attachment content-id="ICON" content-type="application/octet-stream"

mtom-inline="true" encoding-type="hexBinary">

<ws:resource file="classpath:com/consol/citrus/icon.ico"/>

</ws:attachment>
</ws:send>

The listing above defines two inline MTOM attachments. The first attachment cid:IMAGE uses the
encoding type base64Binary which is the default. The second attachment cid:ICON uses

282

hexBinary encoding. Both attachments are added as inline data before the message is sent. The
final SOAP message looks like follows:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header></SOAP-ENV:Header>
<SOAP-ENV:Body>

<image:addImage xmlns:image="http://www.citrusframework.org/imageService/">

<image>VGhpcyBpcyBhIGIpbmFyeSBpbWFnZSBhdHRhY2htZW50IQpWYXIpYWIsZXMgIXt@ZXNefSBzaG91bGQ
gbm90IGI1IHI1cGxhY2VkIQ==</1mage>

<icon>5468697320697320612062696E6172792069636F6E206174746163686D656E74210A566172696162
6C657320257B746573747D2073686F756C64206E6F74206265207265706C6163656421</1con>
</image:addImage>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The image content is a base64Binary String and the icon a heyBinary String. Of course this
mechanism also is supported in receive actions on the server side where the expected message
content is added als inline MTOM data before validation takes place.

20.19. SOAP client basic authentication

As a SOAP client you may have to use basic authentication in order to access a server resource.
Basic authentication via HTTP stands for username/password authentication where the credentials
are transmitted in the HTTP request header section as base64 encoded entry. As Citrus uses the
Spring WebService stack we can use the basic authentication support there. We set the user
credentials on the HttpClient message sender which is used inside the Spring WebServiceTemplate

Citrus provides a comfortable way to set the HTTP message sender with basic authentication
credentials on the WebServiceTemplate . Just see the following example and learn how to do that.

283

<citrus-ws:client id="soapClient"
request-url="http://localhost:8090/test"
message-sender="basicAuthClient"/>

<bean id="basicAuthClient"
class="org.springframework.ws.transport.http.HttpComponentsMessageSender">
<property name="authScope">
<bean class="org.apache.http.auth.AuthScope">
<constructor-arg value="localhost"/>
<constructor-arg value="8090"/>
<constructor-arg value=""/>
<constructor-arg value="basic"/>
</bean>
</property>
<property name="credentials">
<bean class="org.apache.http.auth.UsernamePasswordCredentials">
<constructor-arg value="someUsername"/>
<constructor-arg value="somePassword"/>
</bean>
</property>
</bean>

The above configuration results in SOAP requests with authentication headers properly set for
basic authentication. The special message sender takes care on adding the proper basic
authentication header to each request that is sent with this Citrus message sender. By default
preemptive authentication is used. The message sender only sends a single request to the server
with all authentication information set in the message header. The request which determines the
authentication scheme on the server is skipped. This is why you have to add some auth scope so
Citrus can setup an authentication cache within the HTTP context in order to have preemptive
authentication.

You can also skip the message sender configuration and set the Authorization
header on each request in your send action definition on your own. Be aware of

Q setting the header as HTTP mime header using the correct prefix and take care on
using the correct basic authentication with base64 encoding for the
username:password phrase.

<header>

<element name="citrus_http_Authorization" value="Basic
c29tZVVzZXJuYW110nNvbWVQYXNzd29yZA=="/>
</header>

For base64 encoding you can also use a Citrus function, see functions-encode-base64

284

#functions-encode-base64

20.20. SOAP server basic authentication

When providing SOAP WebService server functionality Citrus can also set basic authentication so
all clients need to authenticate properly when accessing the server resource.

<citrus-ws:server id="simpleSoapServer"
port="8080"
auto-start="true"
resource-base="src/it/resources"
security-handler="basicSecurityHandler"/>

<bean id="securityHandler"
class="com.consol.citrus.ws.security.SecurityHandlerFactory">
<property name="users">
<list>
<bean class="com.consol.citrus.ws.security.User">
<property name="name" value="citrus"/>
<property name="password" value="secret"/>
<property name="roles" value="CitrusRole"/>
</bean>
</list>
</property>
<property name="constraints">
<map>
<entry key="/foo/*">
<bean class="com.consol.citrus.ws.security.BasicAuthConstraint">
<constructor-arg value="CitrusRole"/>
</bean>
</entry>
</map>
</property>
</bean>

We have set a security handler on the server web container with a constraint on all resources with
/foo/*. Following from that the server requires basic authentication for these resources. The
granted users and roles are specified within the security handler bean definition. Connecting
clients have to set the basic auth HTTP header properly using the correct user and role for
accessing the Citrus server now.

You can customize the security handler for your very specific needs (e.g. load users and roles with
JDBC from a database). Just have a look at the code base and inspect the settings and properties
offered by the security handler interface.

Q This mechanism is not restricted to basic authentication only. With other settings
you can also set up digest or form-based authentication constraints very easy.

285

20.21. WS-Addressing support

The web service stack offers a lot of different technologies and standards within the context of
SOAP WebServices. We speak of WS-* specifications in particular. One of these specifications deals
with addressing. On client side you may add wsa header information to the request in order to give
the server instructions how to deal with SOAP faults for instance.

In Citrus WebService client you can add those header information using the common configuration
like this:

<citrus-ws:client id="soapClient"
request-url="http://localhost:8090/test"
message-converter="wsAddressingMessageConverter"/>

<bean id="wsAddressingMessageConverter"
class="com.consol.citrus.ws.message.converter.WsAddressingMessageConverter">
<constructor-arg>
<bean id="wsAddressing200408"
class="com.consol.citrus.ws.addressing.WsAddressingHeaders">
<property name="version" value="VERSION200408"/>
<property name="action" value="http://citrus.sample/sayHello"/>
<property name="to" value="http://citrus.sample/server"/>
<property name="from">
<bean
class="org.springframework.ws.soap.addressing.core.EndpointReference">
<constructor-arg value="http://citrus.sample/client"/>
</bean>
</property>
<property name="replyTo">
<bean
class="org.springframework.ws.soap.addressing.core.EndpointReference">
<constructor-arg value="http://citrus.sample/client"/>
</bean>
</property>
<property name="faultTo">
<bean
class="org.springframework.ws.soap.addressing.core.EndpointReference">
<constructor-arg value="http://citrus.sample/fault/resolver"/>
</bean>
</property>
</bean>
</constructor-arg>
</bean>

The WsAddressing header values will be used for all request messages that are sent with the soap
client component soapClient. You can overwrite the WsAddressing header in each send test action
in your test though. Just set the special WsAddressing message header on your request. You can use
the following message header names in order to overwrite the default addressing headers specified
in the message converter configuration (also see the class

286

com.consol.citrus.ws.addressing. WsAddressingMessageHeaders).

citrus_soap_ws_addressing_messageld

addressing message id as URI

citrus_soap_ws_addressing_from

addressing from endpoint reference as URI

citrus_soap_ws_addressing_to

addressing to URI

citrus_soap_ws_addressing_action

addressing action URI

citrus_soap_ws_addressing_replyTo

addressing reply to endpoint reference as URI

citrus_soap_ws_addressing_faultTo

addressing fault to endpoint reference as URI

When using this message headers you are able to explicitly overwrite the WsAddressing headers.
Test variables are supported of course when specifying the values. Most of the values are parsed to
a URI value at the end so please make sure to use correct URI String representations.

0 The WS-Addressing specification knows several versions. Supported version are:

VERSION10
WS-Addressing 1.0 May 2006

VERSION200408
August 2004 edition of the WS-Addressing specification

The addressing headers find a place in the SOAP message header with respective namespaces and
values. A possible SOAP request with WS addressing headers looks like follows:

287

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
<wsa:To SOAP-ENV:mustUnderstand="1">http://citrus.sample/server</wsa:To>
<wsa:From>
<wsa:Address>http://citrus.sample/client</wsa:Address>
</wsa:From>
<wsa:ReplyTo>
<wsa:Address>http://citrus.sample/client</wsa:Address>
</wsa:ReplyTo>
<wsa:FaultTo>
<wsa:Address>http://citrus.sample/fault/resolver</wsa:Address>
</wsa:FaultTo>
<wsa:Action>http://citrus.sample/sayHello</wsa:Action>
<wsa:MessageID>urn:uuid:4c4d8af2-b402-4bc0-a2e3-ad33b910e394</wsa:MessageID>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<cit:HelloRequest xmlns:cit="http://citrus/sample/sayHello">
<cit:Text>Hello Citrus!</cit:Text>
</cit:HelloRequest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

By default when not set explicitly on the message headers the WsAddressing

o message id property is automatically generated for each request. You can set the
message id generation strategy in the Spring application context message
converter configuration:

<bean id="wsAddressingMessageConverter"
class="com.consol.citrus.ws.message.converter.WsAddressingMessageConverter">
<property name="messageldStrategy">
<bean
class="org.springframework.ws.soap.addressing.messageid.UuidMessageIdStrategy"/>
</property>
</bean>

By default the strategy will create a new Java UUID for each request. The strategy also uses a
common resource name prefix urn:uuid:. You can overwrite the message id any time for each
request explicitly by setting the message header citrus_soap_ws_addressing messageld with a
respective value on the message in your test.

20.22. SOAP client fork mode

SOAP over HTTP uses synchronous communication by nature. This means that sending a SOAP
message in Citrus over HTTP will automatically block further test actions until the synchronous
HTTP response has been received. In test cases this synchronous blocking might cause problems for
several reasons. A simple reason would be that you need to do further test actions in parallel to the
synchronous HTTP SOAP communication (e.g. simulate another backend system in the test case).

288

You can separate the SOAP send action from the rest of the test case by using the "fork" mode. The
SOAP client will automatically open a new Java Thread for the synchronous communication and
the test is able to continue with execution although the synchronous HTTP SOAP response has not
arrived yet.

<ws:send endpoint="soapClient" fork="true">
<message>
<payload>
<SoapRequest xmlns="http://www.consol.de/schemas/sample.xsd">
<Operation>Read the attachment</Operation>
</SoapRequest>
</payload>
</message>
</ws:send>

With the "fork" mode enabled the test continues with execution while the sending action waits for
the synchronous response in a separate Java Thread. You could reach the same behaviour with a
complex <parallel>/<sequential> container construct, but forking the send action is much more
straight forward.

It is highly recommended to use a proper "timeout" setting on the SOAP receive
action when using fork mode. The forked send operation might take some time
and the corresponding receive action might run into failure as the response was
has not been received yet. The result would be a broken test because of the

o missing response message. A proper "timeout" setting for the receive action
solves this problem as the action waits for this time period and occasionally
repeatedly asks for the SOAP response message. The following listing sets the
receive timeout to 10 seconds, so the action waits for the forked send action to
deliver the SOAP response in time.

<ws:receive endpoint="soapClient" timeout="10000">
<message>
<payload>
<SoapResponse xmlns="http://www.consol.de/schemas/sample.xsd">
<Operation>Did something</Operation>
<Success>true</Success>
</SoapResponse>
</payload>
</message>
</ws:receive>

20.23. SOAP servlet context customization

For highly customized SOAP server components in Citrus you can define a full servlet context
configuration file. Here you have the full power to add Spring endpoint mappings and custom
endpoint implementations. You can set the custom servlet context as external file resource on the

289

server component:

<citrus-ws:client id="soapClient"

Now let us have a closer look at the context-config-location attribute. This configuration defines the
Spring application context file for endpoints, request mappings and other SpringWsS specific
information. Please see the official SpringWS documentation for details on this Spring based
configuration. You can also just copy the following example application context which should work

context-config-location="classpath:citrus-ws-servlet.xml"
message-factory="soap11MessageFactory"/>

for you in general.

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="loggingInterceptor"

class="org.springframework.ws.server.endpoint.interceptor.PayloadlLoggingInterceptor">

<description>
This interceptor logs the message payload.
</description>

</bean>

<bean id="helloServicePayloadMapping"

class="org.springframework.ws.server.endpoint.mapping.PayloadRootQNameEndpointMapping"

>

<property name="mappings">
<props>
<prop
key="{http://www.consol.de/schemas/sayHello}HelloRequest">
helloServiceEndpoint
</prop>
</props>
</property>
<property name="interceptors">
<list>
<ref bean="loggingInterceptor"/>
</list>
</property>

</bean>

<bean id="helloServiceEndpoint"

class="com.consol.citrus.ws.server.WebServiceEndpoint">

290

<property name="endpointAdapter" ref="staticResponseEndpointAdapter"/>

</bean>

<citrus:static-response-adapter id="staticResponseEndpointAdapter">
<citrus:payload>
<![CDATAL
<HelloResponse xmlns="http://www.consol.de/schemas/sayHello">
<Messageld>123456789</Messageld>
<CorrelationId>CORR123456789</CorrelationId>
<User>WebServer</User>
<Text>Hello User</Text>
</HelloResponse>
11>
</citrus:payload>
<citrus:header>
<citrus:element
name="{http://www.consol.de/schemas/samples/sayHello.xsd}ns@:0peration”
value="sayHelloResponse"/>
<citrus:element
name="{http://www.consol.de/schemas/samples/sayHello.xsd}ns@:Request"
value="HelloRequest"/>
<citrus:element name="citrus_soap_action"
value="sayHello"/>
</citrus:header>
</citrus:static-response-adapter>
</beans>

The program listing above describes a normal SpringWS request mapping with endpoint
configurations. The mapping is responsible to forward incoming requests to the endpoint which
will handle the request and provide a proper response message. First of all we add a logging
interceptor to the context so all incoming requests get logged to the console first. Then we use a
payload mapping (PayloadRootQNameEndpointMapping) in order to map all incoming
'HelloRequest' SOAP messages to the 'helloServiceEndpoint' . Endpoints are of essential nature in
Citrus SOAP WebServices implementation. They are responsible for processing a request in order to
provide a proper response message that is sent back to the calling client. Citrus uses the endpoint in
combination with a message endpoint adapter implementation.

¥ 4

SDAP.I"HTTP InboundChannel
send(Message}
[WS-Client [WS-Server j . =0 0O
receive() (- O
ReplyChannel
d(M } InboundChannel
san essage
WS-Server] - (=" 0
) receive() (- O
ReplyChannel

The endpoint works together with the message endpoint adapter that is responsible for providing a
response message for the client. The various message endpoint adapter implementations in Citrus
were already discussed in endpoint-adapter.

291

#endpoint-adapter

In this example the 'helloServiceEndpoint' uses the 'static-response-adapter’ which is always
returning a static response message. In most cases static responses will not fit the test scenario and
you will have to respond more dynamically.

Regardless of which message endpoint adapter setup you are using in your test case the endpoint
transforms the response into a proper SOAP message. You can add as many request mappings and
endpoints as you want to the server context configuration. So you are able to handle different
request types with one single Jetty server instance.

That’s it for connecting with SOAP WebServices! We saw how to send and receive SOAP messages
with Jetty and Spring WebServices. Have a look at the samples coming with your Citrus archive in
order to learn more about the SOAP message handling.

292

Chapter 21. FTP support

With Citrus it is possible to start your own ftp server for accepting incoming client requests. You
can also use Citrus as a FTP client to send FTP commands. The next sections deal with FTP

connectivity.

0 The FTP components in Citrus are maintained in their own Maven module. So
you should add the module as Maven dependency to your project accordingly.

<dependency>

<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-ftp</artifactId>

<version>2.7.

</dependency>

5</version>

As Citrus provides a customized FTP configuration schema for the Spring application context
configuration files we have to add name to the top level beans element. Simply include the ftp-
config namespace in the configuration XML files as follows.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:citrus="http://www.citrusframework.org/schema/config"
xmlns:citrus-ftp="http://www.citrusframework.org/schema/ftp/config"
xsi:schemalocation="

http://www.

http://www
http://www
http://www

[...]

</beans>

springframework.

.springframework.
http://www.
.citrusframework.
http://www.
.citrusframework.

citrusframework.

citrusframework.

org/schema/beans
org/schema/beans/spring-beans.xsd
org/schema/config
org/schema/config/citrus-config.xsd
org/schema/http/config
org/schema/ftp/config/citrus-ftp-config.xsd">

Now we are ready to use the customized Citrus FTP configuration elements with the citrus-ftp

namespace prefix.

21.1. FTP client

We want to use Citrus fo connect to dome FTP server as a client sending commands such as creating
a directory or listing all files. Citrus offers a client component doing exactly this FTP client

connection.

293

<citrus-ftp:client id="ftpClient"
host="1ocalhost"
port="22222"
username="admin"
password="admin"
timeout="10000"/>

The configuration above describes a Citrus ftp client connected to a ftp server with
ftp://localhost:22222. For authentication username and password are defined as well as the global
connection timeout. The client will automatically send username and password for proper
authentication to t