Citrus Simulator

Authors: The Citrus Community

Version 3.0.0, 2024-06-21

citrus-simulator

Introduction

Citrus Spring-Boot Simulator
Project Status
Prerequisites
Java 17
Browser Compatibility
Compatibility Matrix

Installation

Build with Gradle
Writing your first Scenario

Build with Maven

Maven Archetypes

Development

Building a Docker Container
Creating a Dockerfile
Building the Docker Image
Running the Docker Container
Best Practices

1. Concepts

1.1. Simulator Application
1.2. Simulator Properties
1.2.1. System Properties
1.2.2. Environment Variables
1.3. Spring Bean Configuration
1.4. REST API
1.4.1. Receive SINGLE Test-Parameter
1.4.2. Scenario Resource
1.4.3. Pagination
1.4.4. Filtering
1.5. Scenario Mapper
1.5.1. Default Mapping Behavior
1.5.2. Custom Mapper Configuration
1.6. Simulator Scenarios
1.7. Intermediate Messages
1.8. Simulation Errors Handling

2. Advanced Concepts

2.1. Execution Modes in Citrus Simulator
2.1.1. Synchronous Execution Mode

O© 00 O U1 b b W DN DN DN DD NN

NN N NN N N N N R R R R s s s s s s s s
© © © I b W N =B, O © 0 0 0 3 J O Ul b W W kKL =k = O O

2.1.2. Asynchronous Execution Mode

2.1.3. Custom Executors
2.2. Best Practices
2.3. Database Schema

2.4. Registering Simulator Scenarios at Runtime
3. REST Support

3.1. Configuration

3.2. Advanced Customizations
3.3. Request Mapping

3.4. HTTP Responses

3.5. Swagger Support

4. Web Service Support

4.1. Configuration
4.2. Advanced Customizations
4.3. SOAP Response
4.4. SOAP Faults
4.5. WSDL Support
4.5.1. WSDL System Properties

Data dictionaries

5. JMS support

5.1. Configuration
5.2. Asynchronous communication

5.3. Synchronous communication

6. Endpoint support

6.1. Configuration

7. User Interface

7.1. Integrating the Angular-based Ul
7.2. Scenarios
7.3. Scenario Executions

7.3.1. Viewing Execution Results
7.4. Exploring Database Entities

7.4.1. Accessing Database Entities

8. Starter

8.1. Starter Parameter

9. Samples

9.1. REST sample
9.2. SOAP sample
9.3. JMS sample
9.4. Mail sample

9.5. Combined sample

10. Links & Further reading

29
30
30
30
31
33
33
35
37
37
38
43
43
45
46
47
48
50
50
53
54
56
57
59
39
63
63
64
65
66
67
67
68
69
71
71
71
71
71
72
73

CITRUSS

Introduction

The Citrus Framework Simulator is a comprehensive tool that allows for the simulation of various
messaging transports including HTTP REST, SOAP WebService, JMS, RMI, mail messaging, and more.
This simulator stands out with its robust server APIs that interact with client requests, delivering
predefined messages tailored to specific scenarios. The power of the simulator’s response logic
cannot be overstated; it is designed to emulate any server interface effortlessly.

Citrus Spring-Boot Simulator

Utilizing the synergy of Spring Boot and the Citrus testing framework, the citrus-spring-boot-
simulator empowers you to craft your simulator scenarios using either Java or XML. Each
interaction with the simulator is logged in an internal database, accessible for review through the
REST API or the web UIl. We welcome your feedback and contributions with great appreciation!

Project Status

We are proud to announce that the simulator application is stable and reliable for general use.
However, it is important to note that certain experimental features are included as part of our
commitment to innovation. These features are introduced with "feature flags" and are still in the
developmental phase:

Experimental Features

WSDL Generated Scenarios: Automatically create simulator scenarios from a WSDL file.
Swagger Generated Scenarios: Automatically create simulator scenarios from a Swagger API file.

These features are evolving, and with the valuable insights we receive from our community, we are
optimistic that they will achieve stability in due course.

Prerequisites

Before embarking on your journey with the simulator application, ensure you meet the following
prerequisites:

Java 17

The simulator is built with Java 17 and is compatible with versions up to Java 21. As such, Java 17 or
later must be installed on your machine. Confirm that your Java Development Kit (JDK) is properly
installed and configured with the following command in a new terminal window:

java -version

Browser Compatibility

The simulator boasts a compact web interface that springs to life upon startup. You can access it on

https://projects.spring.io/spring-boot/
https://citrusframework.org

the root URL of your simulator application.

The citrus-simulator-ui module enriches this experience further with a sophisticated Angular
-based application. This UI is best accessed through a web browser . It’s important to note that we
do not perform cross-browser testing during our pipeline. Thus, we cannot guarantee compatibility
in all browsers. Development and testing are primarily done on Chrome and Firefox, which are
likely to yield the best experience.

Compatibility Matrix

The below table depicts the compatible version ranges of the citrus-simulator, the citrusframework
and Spring Boot.

The compatible java version is derived from the combination of the underlying frameworks.

Simulator Citrus Spring-Boot Java
v3.0.0 >v4.2.0 >v3.2.5 17 to 21
v2.1.1 <v3.4.0 <v3.0.0 8to 11

https://angular.io/
https://github.com/citrusframework/citrus-simulator
https://github.com/citrusframework/citrus-simulator
https://spring.io/projects/spring-boot

Installation

The Citrus simulator is a web application that leverages Spring Boot and Angular. It can be run as a
Java application on your local machine or as a container/pod in Docker, Kubernetes, or OpenShift.

While any build system can be used to build the simulator, we will illustrate how to set up the
project using Gradle and Maven.

Build with Gradle

Gradle uses Groovy-based build scripts which we need to add when starting a new simulator
project.

buildscript {
repositories {
mavenCentral()
}
dependencies {
classpath("org.springframework.boot:spring-boot-gradle-plugin:3.1.5")
}
}

apply plugin: 'java'

apply plugin: ‘'eclipse’

apply plugin: 'idea’

apply plugin: 'org.springframework.boot'

jar {
group = "org.citrusframework.simulator"
baseName = 'citrus-simulator-sample’
version = '1.0.0'

¥

repositories {
mavenCentral()

}

sourceCompatibility = 17

targetCompatibility = 17

dependencies {
implementation("org.springframework.boot:spring-boot-starter-web")
implementation("org.citrusframework:citrus-spring-boot-simulator:3.0.0")
testImplementation("junit:junit")

The above build script will set up the necessary Spring Boot dependencies and include the basic
citrus-spring-boot-simulator dependency. With the Gradle build complete, we’re now ready to

https://projects.spring.io/spring-boot/
https://angular.io/
https://gradle.org/
https://maven.apache.org/

build and run the simulator.

Writing your first Scenario
Let’s add a basic Spring Boot main class to our project next.

sr¢/main/java/org/citrusframework/simulator/Simulator.java
package org.citrusframework.simulator;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

Additionally, we’ll implement a default scenario that will be triggered by incoming requests.

DefaultScenario.java
package org.citrusframework.simulator;

import org.citrusframework.simulator.scenario.AbstractSimulatorScenario;
import org.citrusframework.simulator.scenario.Scenario;

import org.citrusframework.simulator.scenario.ScenarioRunner;

import org.springframework.http.HttpStatus;

@Scenario("Default")
public class DefaultScenario extends AbstractSimulatorScenario {

@0verride
public void run(ScenarioRunner scenario) {
scenario.$(scenario.http()
.receive().post());

scenario.$(scenario.http()
.send()
.response(HttpStatus.0K)
.message()
.body("<DefaultResponse>This is a default response!</DefaultResponse>"));

This default scenario will respond with an Http 200 OK.

To build and run the simulator application, use the following commands:

Gradle build

./gradlew build bootRun

Upon execution, the application should start up and the console will display log output detailing the
process. The web server should be active within seconds. After the application is running, open
your browser and go to http://localhost:8080 to see the basic simulator user interface. For a more
detailed interface, please consult the chapter on the user interface.

The REST default scenario that we’ve included is reachable at http://localhost:8080/services/rest/,
where youw’ll encounter the default message Welcome to the Citrus simulator.

You are now prepared to utilize the Citrus simulator. The next steps involve comprehending the
concepts and crafting some simulator scenarios.

Build with Maven

Using Maven, you can easily incorporate the simulator into your project. Maven automatically
manages the download of all necessary dependencies and project artifacts. Once configured, the
simulator can be executed using Spring’s embedded web servers.

Below is a sample pom.xml for a Maven project configured as a Spring Boot application.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.orqg/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance’
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>org.citrusframework</groupld>
<artifactId>citrus-simulator-sample</artifactId>
<version>1.0.0</version>
<name>${project.artifactId}</name>

<properties>
<java.version>17</java.version>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<citrus.simulator.version>3.0.0</citrus.simulator.version>
<spring.boot.version>3.1.5</spring.boot.version>

</properties>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>

http://localhost:8080
http://localhost:8080/services/rest/

<artifactId>spring-boot-dependencies</artifactId>
<version>${spring.boot.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<!-- Citrus Simulator -->
<dependency>
<groupId>org.citrusframework</groupId>
<artifactId>citrus-spring-boot-simulator</artifactId>
<version>${citrus.simulator.version}</version>
</dependency>
<!-- Other dependencies -->
</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<configuration>
<source>${java.version}</source>
<target>${java.version}</target>
<encoding>${project.build.sourceEncoding}</encoding>
</configuration>
</plugin>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>${spring.boot.version}</version>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
<configuration>
<fork>true</fork>
</confiquration>
</plugin>
</plugins>
</build>
</project>

The pom.xml file above sets up the Spring Boot application and includes the Citrus Simulator

dependency. With this setup complete, the simulator is ready to be built and run.
That’s it, you're read to write your first Scenario.

To build and run the simulator with Maven, execute the following commands from the command
line:

Maven build

mvn clean install
mvn spring-boot:run

Upon execution, the application should start up and the console will display log output detailing the
process. The web server should be active within seconds. After the application is running, open
your browser and go to http://localhost:8080 to see the basic simulator user interface. For a more
detailed interface, please consult the chapter on the user interface.

The REST default scenario that we’ve included is reachable at http://localhost:8080/services/rest/,
where you’ll encounter the default message Welcome to the Citrus simulator.

You are now prepared to utilize the Citrus simulator. The next steps involve comprehending the
concepts and crafting some simulator scenarios.

Maven Archetypes

Maven archetypes are templates that can quickly set up a new project structure for you. When
starting a new Citrus Simulator project, using a Maven archetype can save you time and effort.

To generate a new project using the Citrus Simulator archetype, run the following command in
your terminal:

mvn archetype:generate -B \
-DarchetypeGroupId=org.citrusframework.archetypes \
-DarchetypeArtifactId=citrus-simulator-archetype-rest \
-DarchetypeVersion=3.0.0 \ @
-DgroupId=org.citrusframework.simulator \
-DartifactId=citrus-simulator-rest \
-Dversion=1.0.0

@ Replace 3.0.0 with the version of Citrus Simulator you wish to use.

The -B flag indicates batch mode, which makes the command non-interactive. If you omit this,
Maven will interactively ask you for any required values not provided as -D options.

Upon executing the command, Maven will generate a new project based on the specified archetype.
This project will be placed in a new directory corresponding to the artifactId you provided.
Change into this directory to proceed with building your new simulator project.

Citrus provides various archetypes for different types of simulators, each tailored to a specific

http://localhost:8080
http://localhost:8080/services/rest/

protocol or data format:

Maven Archetypes
citrus-simulator-archetype-rest

citrus-simulator-archetype-ws

citrus-simulator-archetype-jms

citrus-simulator-archetype-mail

citrus-simulator-archetype-swagger

citrus-simulator-archetype-wsdl

Initializes a sample HTTP REST simulator.

Sets up a SOAP web service simulator sample.

Creates a JMS simulator sample.

Generates a mail simulator sample.

(Experimental) Auto-generates a simulator from a
Swagger OpenAPI specification.

(Experimental) Auto-generates a simulator from a SOAP
WSDL specification.

Choose the archetype that best matches the needs of your project.

Development

With the project’s build and source code established, you can begin coding your simulator
scenarios. This project is a standard Java application, which you can develop within your preferred
Java IDE. Tools like Maven or Gradle are used to compile and package your simulator into an
executable artifact, typically a Spring Boot executable jar.

To optimize your development process, consider using Spring Boot DevTools. This library provides
additional development-time features that can greatly enhance your productivity:

* Automatic restart: Any changes to your code trigger a quick application restart, making it
faster to see the changes in action without manually restarting the server.

* LiveReload: Spring Boot DevTools includes a LiveReload server that can automatically trigger a
browser refresh when a resource is changed.

* Property defaults: DevTools sets sensible development-time property defaults, reducing the

need for manual configuration.

* Remote development: It is possible to remotely debug Spring applications.

To use DevTools, include the following dependency in your build configuration:

Maven Dependency for Spring Boot DevTools

<dependencies>
<!-- Other dependencies... -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<scope>runtime</scope>
<optional>true</optional>
</dependency>
</dependencies>

With Spring Boot DevTools included, every time you compile your code, the application will restart,
recognizing your changes immediately. This makes the development loop much faster and
feedback-oriented.

Ensure that your IDE is configured to build the project automatically on each save. If you’re using
an IDE like Eclipse or Intelli] IDEA, they have built-in support for automatic compilation which
integrates seamlessly with DevTools.

Remember to disable the DevTools in production environments, as its features are only beneficial
in a development setting and may have performance implications for production deployments.

With your development environment optimized, you can now focus on adding functionality and

creating comprehensive simulation scenarios for thorough testing and robust service emulation.

Building a Docker Container

Containerizing your Spring Boot application using Docker simplifies deployment and ensures
consistency across different environments. There is lots of documentation about this process
available online. It’s best to consider multiple sources, especially for a production build! To get
started, here’s how to package your Citrus Simulator into a Docker container.

Creating a Dockerfile

The first step in containerizing your application is to create a Dockerfile. This text document
contains all the commands a user could call on the command line to assemble an image. Below is a
simple Dockerfile to get you started:

10

Dockerfile

Start with a base image containing Java runtime
FROM openjdk:17-jdk-slim as build

The application's jar file
ARG JAR_FILE=target/*.jar

Add the application's jar to the container
COPY ${JAR_FILE} app.jar

Run the jar file
ENTRYPOINT ["java","-jar","/app.jar"]

This Dockerfile starts with a lightweight JDK 17 image, copies your application’s JAR file into the
image, and sets the entry point to run the JAR file.

Building the Docker Image

After creating your Dockerfile, use the Docker CLI to build the image:
docker build -t citrus-simulator .

The -t flag tags your Docker image, so it’s easier to find later. The . at the end of the command tells
Docker to look for the Dockerfile in the current directory.

Running the Docker Container

Once the image is built, you can run it as a container:
docker run -p 8080:8080 citrus-simulator

The -p flag publishes a container’s port to the host. This command maps the application’s port 8080
to the same port on the host machine, so you can access the application through
http://localhost:80860.

Best Practices

1. Multi-stage Builds: For a more efficient build process, especially if you need to build the JAR
file within Docker, consider using a multi-stage Dockerfile.

2. Avoid running as root: For security reasons, it’s best practice to not run the application as the
root user. You can create a user within your Dockerfile and run the application as this user.

3. Configuration: Externalize your configuration. For instance, you can use environment
variables to configure your application for different environments.

4. Health checks: Implement health checks in your application and add a HEALTHCHECK instruction

11

http://localhost:8080

to your Dockerfile.

5. Logs: Make sure your application logs to the console so that Docker can capture the logs.

By following these steps and best practices, you will have a Docker container for your Citrus
Simulator that can be deployed to any environment that supports Docker.

12

Chapter 1. Concepts

The Citrus simulator’s primary focus is to provide a simple means to simulate one or more
endpoints (HTTP, JMS, SMTP, etc). Once the simulator is up and running, it waits for an incoming
request (JSON, SOAP, XML, etc.) to arrive at any of its configured endpoints and reacts accordingly.
The simulator examines the incoming request and determines which simulator scenario should be
executed for handling the request. Typically, the selected scenario creates a response message to
send back to the calling client.

A scenario mapper is used to help the simulator determine the correct scenario to be executed.
Different scenario mappers are supported that use the request header data or payload data to
determine the appropriate scenario to run.

A simulator scenario is capable of handling one or more request messages. When executed, it
receives the request and can return an appropriate response message to the calling client. By
defining multiple simulator scenarios, the Citrus simulator is able to respond to different requests
accordingly.

A simulator scenario is composed of one or more actions. For the most trivial scenarios, there is
generally an action for receiving a request and an action for sending a response. Because the Citrus
simulator has access to the underlying Citrus framework functionality, you can access a wide range
of actions that are available within the Citrus framework and use these when configuring a
scenario.

To keep an eye on what the simulator is doing, what requests were received or sent, or what
scenarios were executed, a user interface is provided. In addition to seeing what is going on, it is
also possible to trigger scenarios manually.

1.1. Simulator Application

The simulator is a standard Spring Boot application. This means we have a main class that loads the
Spring Boot application. If you haven’t set one up already, see how to get started with Gradle or
Maven.

This class is the main entrance for all configuration and customization statements. By default, REST
support is enabled with all configuration needed. You can enable or disable the message transport
support for different technologies via application properties.

application.properties

citrus.simulator.rest.enabled=true
citrus.simulator.jms.enabled=true
citrus.simulator.ws.default-support=true
citrus.simulator.ws.client.enabled=true
citrus.simulator.endpoint.enabled=true
spring.webservices.autoconfiguration.enabled=false

When enabled, the simulator’s autoconfiguration for this specific message transport is activated,

13

#scenarios
#scenario-mapper
#scenarios

and all required beans and configuration are loaded at startup.

Simulator support
citrus.simulator.rest.enabled Enables Http REST support
citrus.simulator.ws.enabled Enables WS support
citrus.simulator.ws.client.enabled Enables SOAP web services client support
citrus.simulator.jms.enabled Enables JMS support
citrus.simulator.endpoint.enabled Enables generic endpoint component support
Zpring.webservices.autoconfiguration.enable Enables automatic Spring WS configuration.

You can also combine message transports in the simulator application, although this feature is of
experimental nature up to now.

1.2. Simulator Properties

The simulator is capable of loading configuration from system properties, environment variables,
and property files. First, the default Spring Boot properties configuration mechanism is supported.
Following from that, you can add properties to the application.properties file in your project
resources to adjust simulator behavior.

citrus.simulator.rest.enabled=true
citrus.simulator.default-timeout=10000
citrus.simulator.template-path=com/company/simulator/templates

The available simulator properties are grouped into the following configuration classes:
org.citrusframework.simulator.config.Simula prefix=citrus.simulator
torConfigurationProperties

org.citrusframework.simulator.http.Simulato prefix=citrus.simulator.rest
rRestConfigurationProperties

org.citrusframework.simulator.ws.SimulatorlW prefix=citrus.simulator.ws
ebServiceConfigurationProperties

org.citrusframework.simulator.ws.SimulatorW prefix=citrus.simulator.ws.client
ebServiceClientConfigurationProperties

org.citrusframework.simulator.jms.Simulator prefix=citrus.simulator.jms
JmsConfigurationProperties

There are several properties that you can use to customize the simulator behavior, such as:

Spring Boot application properties

14

citrus.

citrus.

citrus.

citrus.

citrus.

citrus.

citrus.

citrus.

citrus.

citrus.

simulator.

simulator.

simulator.

simulator.

simulator.

simulator.

simulator.

simulator.

simulator.

simulator.

template-path

default-scenario

default-timeout

template-validation

exception-delay

executor-threads

rest.url-mapping

ws.servlet-mappings

jms.inbound-destination

jms.reply-destination

Default path to message payload template files.

Default scenario name.

Timeout when waiting for inbound messages.

Enable/disable schema validation.

Default delay in milliseconds to wait after
uncategorized exceptions.

The number of threads available for parallel
scenario execution.

Handler adapter URL mapping for inbound
requests.

Message dispatcher servlet mappings for
inbound SOAP requests.

JMS destination name to consume inbound
messages from.

JMS destination name to publish reply messages
to.

Please refer to the respective configuration property classes to see in detail what property settings
are supported.

1.2.1. System Properties

In addition to the default Spring Boot property replacement, the simulator also supports system
properties and environment variables. The properties include:

System property names

citrus.simulator.configuration.class

citrus.simulator.template-path

citrus.simulator.default-scenario

citrus.simulator.default-timeout

Java configuration class that is automatically
loaded (default is
org.citrusframework.simulator.SimulatorConfig).

Default path to message payload template files.

Default scenario name.

Timeout when waiting for inbound messages.

15

citrus.simulator.template-validation Enable/disable schema validation.

citrus.simulator.exception-delay Default delay in milliseconds to wait after
uncategorized exceptions.

citrus.simulator.executor-threads The number of threads available for parallel
scenario execution.

citrus.simulator.rest.url-mappings Handler adapter URL mappings for inbound
requests.
citrus.simulator.ws.servlet-mappings Message dispatcher servlet mappings for

inbound SOAP requests.

citrus.simulator. jﬂ'IS .inbound-destination]MS destination name to consume inbound
messages from.

citrus.simulator. jms.reply-destination JMS destination name to publish outbound
messages to.

You can set these properties as system properties when starting the Spring Boot application, or you
can add the properties to the default Spring Boot application properties file, application.properties,
located as a resource file in your project.

The simulator will automatically load these properties during startup and respect this
configuration.

1.2.2. Environment Variables

The same settings that are editable via system properties are also accessible via environment
variables. This is extremely helpful when running the simulator in containerized infrastructure
such as Docker or Kubernetes.

Environment settings

CITRUS_SIMULATOR_CONFIGURATION_CLASS Java configuration class that is automatically
loaded (default is
org.citrusframework.simulator.SimulatorConfig).

CITRUS_SIMULATOR_TEMPLATE_PATH Default path to message payload template files.
CITRUS_SIMULATOR_DEFAULT_SCENARIO Default scenario name.
CITRUS_SIMULATOR_DEFAULT_TIMEOUT Timeout when waiting for inbound messages.
CITRUS_SIMULATOR_TEMPLATE_VALIDATION Enable/disable schema validation.

16

CITRUS_SIMULATOR_EXCEPTION_DELAY Default delay in milliseconds to wait after
uncategorized exceptions.

CITRUS_SIMULATOR_EXECUTOR_THREADS The number of threads available for parallel
scenario execution.

CITRUS_SIMULATOR_REST_URL_MAPPINGS Handler adapter URL mappings for inbound
requests.

CITRUS_SIMULATOR_WS_SERVLET_MAPPINGS Message dispatcher servlet mappings for
inbound SOAP requests.

CITRUS_SIMULATOR_JMS_INBOUND_DESTINATION]MS destination name to consume inbound

messages from.

CITRUS_SIMULATOR_JMS_REPLY_DESTINATION]MS destination name to pubhsh outbhound
messages to.

If these environment variables are present on your local system, the simulator will automatically
load these settings during startup and honor the configuration.

1.3. Spring Bean Configuration

Citrus operates within the Spring framework ecosystem, and the simulator is constructed as a
Spring Boot application. Consequently, configuration is primarily conducted through the addition
and customization of Spring beans within the application context. The simulator automatically
loads Spring beans defined in the following locations:

* META-INF/citrus-simulator.xml — An XML Spring bean configuration file.
 org.citrusframework.simulator.SimulatorConfig — A Java configuration class. You can tailor

this class to your needs by specifying the property citrus.simulator.configuration.class.

All beans delineated within these files are seamlessly integrated into the simulator’s Spring
application context upon loading. This process ensures that all necessary configurations are applied
to facilitate the desired behavior of the simulator. Furthermore, customizations and additional
beans can be added to adapt to more complex scenarios or to extend the simulator’s capabilities
beyond its default configuration set.

1.4. REST API

The simulator offers a comprehensive REST API for interacting with system entities. The following
resources are available:

* /api/messages

* /api/message-headers

17

» /api/scenario-actions
e /api/scenario-executions

* /api/scenario-parameters

/api/test-parameters

* /api/test-results
For each listed resource, the following operations are supported:

« Listing all entries with a GET request to the root URL
- Pagination and filtering are supported.
* Counting all entries with a GET /count endpoint.

* Retrieving a single resource using the GET /{id} endpoint.

All REST resources adhere to this pattern, with exceptions noted in subsequent sections.

1.4.1. Receive SINGLE Test-Parameter

A TestParameter is uniquely identified by a composite key, consisting of the TestResult ID and the
TestParameter key. To retrieve a single TestParameter, use the GET /{testResultId}/{key} endpoint.

1.4.2. Scenario Resource

The Scenario resource is an exception to the standard pattern. The GET / endpoint returns a list of
scenarios with their unique names and types, indicating whether it’s a SimulatorScenario
(MESSAGE_TRIGGERED) or a ScenarioStarter (STARTER). This resource supports pagination, sorting and
simple filtering.

Use the optional query parameter nameContains to filter scenarios by name containing the given
value - case-sensitive!

This resource does not have a single resource endpoint, as scenarios are identified by name, which
provides sufficient detail. However, you can view a scenario’s parameters with the GET
/{scenarioName}/parameters endpoint or launch scenarios with the POST /{scenarioName}/launch
endpoint, which accepts an array of parameters in the request body.

1.4.3. Pagination

All GET endpoints retrieving lists of resources support pagination. This allows clients to request
subsets of records for easier navigation and processing.

Query Parameters
* page: Page index, starting at 0.
* size: Number of records per page.

* sort: Sorting criteria in the format property, (asc|desc).

Request Example

18

To retrieve the first page with 10 records sorted by id in ascending order:
GET http://localhost:9000/api/{resource}?page=0&size=10&sort=id,asc

Replace {resource} with the appropriate resource name, see REST API.

Paginated Response Structure

Responses include pagination metadata in the HTTP Link header, in addition to the response body.
For example:

 First page: <http://localhost:9000/api/{resource}?page=0&size=10&sort=id,asc>; rel="first"

» Last page: <http://localhost:9000/api/{resource}?page=9&size=10&sort=id,asc>; rel="last"

1.4.4. Filtering

All GET endpoints retrieving lists of resources support attribute-based filtering. This allows for
refined searches based on the attributes of the REST resource.

Let’s consider a simplified version of the ScenarioExecution entity as an example:

@Entity
public class ScenarioExecution implements Serializable {

private Long executionId;
private Integer status = Status.UNKNOWN.getId();
private final Set<ScenarioAction> scenarioActions = new HashSet<>();

To filter all successful executions, you can use the following query parameter: ?status=2. To retrieve
a single execution by its ID: 7executionId=1234.

Filtering across relationships is also possible. For instance, to find all executions associated with a
specific action, the query parameter would be: ?scenarioActionsId.in=1234.

For more advanced filtering options, please refer to the criteria documentation.

Range Filter

Numerical and date-related values support the following filters:

o ?fieldName=42 or ?fieldName.equals=42 for exact matches.

o 7fieldName.notEquals=42 for exclusion.

o ?fieldName.specified=true to find records where fieldName is not null.
» ?fieldName.in=43,42 for inclusion in a list.

» ?fieldName.notIn=43,42 for exclusion from a list.

o 7fieldName.greaterThan=41 for values greater than the specified number.

19

http://localhost:9000/api/{resource}?page=0&size=10&sort=id,asc>
http://localhost:9000/api/{resource}?page=9&size=10&sort=id,asc>
https://github.com/citrusframework/citrus-simulator/blob/main/simulator-starter/src/main/java/org/citrusframework/simulator/model/ScenarioExecution.java
https://github.com/citrusframework/citrus-simulator/blob/main/simulator-starter/src/main/java/org/citrusframework/simulator/model/ScenarioExecution.java
https://github.com/citrusframework/citrus-simulator/tree/main/simulator-starter/src/main/java/org/citrusframework/simulator/service/criteria

o ?fieldName.lessThan=44 for values less than the specified number.
o 7fieldName.greaterThanOrEqual=42 for values greater or equal to the specified number.

o ?fieldName.lessThanOrEqual=44 for values less or equal to the specified number.

String Filter

String attributes support the following filters:

o ?fieldName=something or ?fieldName.equals=something for exact matches.
» ?fieldName.notEquals=something for exclusion.

o ?fieldName.in=something,other for inclusion in a list.

o ?fieldName.notIn=something,other for exclusion from a list.

» ?fieldName.contains=thing for substring matches.

o ?fieldName.doesNotContain=thing for exclusion of substring matches.

Remember to URL-encode query parameters to ensure proper handling of special characters and
spaces.

1.4.4.1. Scenario Executions

The scenario execution filter has one special parameter called headers that accepts a very specific
syntax.

« If you don’t specify a key or comparator, the filter will search for messages where any header
value contains the provided string. (e.g., myValue)

To filter based on a specific key, use key=value. (e.g., source=myApp)

* You can also use the CONTAINS operator (~) to search within a key’s value. (e.g., name~something-
like-this)

* For numeric keys, you can use comparison operators like <, <=, >, >=. (e.g., priority>3)

Combining multiple patterns: Separate multiple filter expressions with a semicolon (;). They will
be combined using logical AND operators. (e.g., source=myApp; status=active)

1.5. Scenario Mapper

The scenario mapper implementation determines the association between incoming request
messages and simulator scenarios. For each incoming request, a predefined scenario is triggered,
which in turn generates the response message for the client. The scenario is selected based on a
mapping key, which is extracted from the incoming request.

The simulator utilizes several methods to ascertain the correct scenario from incoming request
messages:

Scenario mapping identifiers

20

Message-Type Differentiates scenarios based on the request message type
(XML root QName).

Content based Xpath Applies Xpath expressions to the request payload, using the
result as the scenario identifier.

Content based JsonPath Applies JsonPath expressions to the request payload, using
the result as the scenario identifier.

Header value Determines the scenario based on a specific header value in
the request.

SOAP action Selects the scenario according to the SOAP action header in
the request.

REST request mappings Chooses the scenario based on the HTTP method and
resource path.

Request mapping annotations Employs Spring @RequestMapping annotations to map
requests to scenarios based on method and path values.

When a scenario is identified using a specific mapping key, it is subsequently loaded and executed.
Each scenario performs test logic, as defined by Citrus, to provide a suitable response message.
Through this mechanism, the simulator can generate complex and dynamic responses.

The following classes implement the various scenario mapping strategies:

Scenario mapper implementations

HttpRequestAnnotationScenarioMapper Assesses REST request mappings.

SoapActionScenarioMapper Analyzes the SOAP action header.
HeaderValueScenarioMapper Evaluates message headers.
ContentBasedXPathScenarioMapper Applies an XPath expression to the message payload.
ContentBasedJsonPathScenarioMapper Applies a JsonPath expression to the message payload.

Custom scenario mapper implementations are also possible. To introduce a custom mapper, one
simply implements the interface methods of the corresponding API and incorporates the custom
class into the simulator configuration, as will be detailed later in this documentation.

1.5.1. Default Mapping Behavior

By default, the mapping key is derived from the type of message in incoming requests, via an XPath
expression targeting the root element of the message. This unique element dictates the simulator

21

scenario to be invoked.

For example, consider three message types: successMessage, warningMessage, and
errorMessage. A corresponding simulator scenario is crafted for each message type, named
accordingly. Incoming requests such as those below will prompt the simulator to select and execute
the appropriate scenario:

<successMessage>
<text>This is a success message</text>
</successMessage>

<warningMessage>
<text>This is a warning message</text>
</warningMessage>

<errorMessage>
<text>This is an error message</text>
</errorMessage>

The root element name of each request is evaluated by the simulator to map to the respective
scenario. Each scenario yields a distinct logic for response generation, enabling tailored responses
to different message types like successMessage as opposed to errorMessage.

1.5.2. Custom Mapper Configuration

The default scenario mapper can be replaced with a custom configuration in your simulator:

@Component
public class SimulatorAdapter extends SimulatorRestAdapter {
@0verride
public ScenarioMapper scenarioMapper() {
HeaderValueScenarioMapper scenarioMapper = new HeaderValueScenarioMapper();
scenarioMapper.setHeaderName("X-simulator-scenario");
return scenarioMapper;

In the configuration example above, the HeaderValueScenarioMapper is utilized, which assesses the
value of the header X-simulator-scenario for each incoming request message. The scenario
executed corresponds to the value of this header. As a bean in the Spring application context, the
scenario mapper comes with a default implementation, but it can be overridden in the simulator
adapter configuration. For further details on adding simulator adapter configuration classes, see
the configuration chapters REST configuration, WS configuration, JMS configuration and endpoint
configuration.

22

1.6. Simulator Scenarios

Simulator scenarios are defined to generate responses for incoming requests, with each scenario
corresponding to distinct logic and messages. A scenario first assigns a name for identification by
mapping strategies. It is represented by a Java class implementing the SimulatorScenario interface.

package org.citrusframework.simulator.scenario;
public interface SimulatorScenario {
ScenarioEndpoint getScenarioEndpoint();

default void run(ScenarioRunner runner) {}

Scenarios grant access to the invoked endpoint and allow message transactions through it. Default
run methods determine the logic execution pathway, depending on the desired Java DSL APIL
Inheriting from org.citrusframework.simulator.scenario.AbstractSimulatorScenario is typical for
simplifying scenario creation.

Consider the example below for a standard scenario.

@Scenario("Hello")
public class HelloScenario extends AbstractSimulatorScenario {

@0verride
public void run(ScenarioRunner scenario) {
scenario.$(scenario.soap()
.receive()
.message()
.body("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Say Hello!" +
"</Hello>")
.soapAction("Hello"));

scenario.$(scenario.soap()

.send()

.message()

.body("<HelloResponse xmlns=\"http://citrusframework.org/schemas/hello\">"
+

"Hi there!" +
"</HelloResponse>"));
}

}

By extending AbstractSimulatorScenario, we insert receive and send logic into the run method. The
@Scenario annotation defines the scenario name. Citrus Java DSL methods facilitate message
handling in the implementation.

23

Dynamic value extraction from requests for use in responses is also supported:

@Scenario("Hello")
public class HelloScenario extends AbstractSimulatorScenario {

@lverride
public void run(ScenarioRunner scenario) {
scenario.$(scenario.soap()
.receijve()
.message()
.body("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"<user>@ignore@</user>" +
"</Hello>")
.extract(fromBody().expression("/Hello/user", "userName")));

scenario.$(scenario.soap()

.send()

.message()

.body("<HelloResponse xmlns=\"http://citrusframework.org/schemas/hello\">"
+

"<text>Hi there ${userName}!</text>" +
"</HelloResponse>"));
}

¥

The ${userName} variable is derived from the request and used to personalize the response. This
approach leverages Citrus’s capability to create dynamic responses. Both XML, JSON, and Plaintext
payload types are supported by this dynamic mechanism.

Writing various scenarios enables the generation of diverse responses, with unique scenario names
linked to values determined by the scenario mapper. This setup allows for the creation of scenarios
specific to incoming request messages. Additionally, Citrus’s send and receive operations handle
messages across different transport types.

For more information on message transport support, see the chapters REST configuration, WS
configuration, JMS configuration and endpoint configuration.

1.7. Intermediate Messages

The simulator starts a new scenario instance for each incoming request based on the defined
scenario mapping. Sometimes a running scenario instance needs to receive another incoming
request. In such cases, the simulator handles the process differently, as the incoming request should
not trigger a new scenario instance but should be forwarded to the running scenario.

This process is referred to as intermediate message handling within scenarios. A scenario can
activate message correlation for specific requests. Before initiating a new scenario, the simulator
always checks all running scenarios for matches with intermediate message correlations. This
allows us to receive additional incoming requests within the same scenario instance.

24

To explain this concept, consider the following simple example.

@Scenario("GoodNight")
public class GoodNightScenario extends AbstractSimulatorScenario {

private static final String CORRELATION_ID = "x-correlationid";

@0verride
public void run(ScenarioRunner scenario) {
scenario.$(scenario.http()
.receive()
.post()
.message()
.body("<GoodNight xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Go to sleep!" +
"</GoodNight>")
.extract(fromHeaders().header (CORRELATION ID, "correlationId")

));

scenario.$(correlation().start()
.onHeader (CORRELATION ID, "${correlationId}")

)

scenario.$(scenario.http()
.send()
.response(HttpStatus.0K)
.message()

.body("<GoodNightResponse
xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Good Night!" +

"</GoodNightResponse>"));

scenario.$(scenario.http()
.receive()

.post()
.selector("x-correlationid = '1${correlationId}'")

.message()
.body("<InterveningRequest>In between!</InterveningRequest>"));

scenario.$(scenario.http()
.send()
.response(HttpStatus.0K)

.message()
.body("<InterveningResponse>In between!</InterveningResponse>"));

In the scenario above, a new correlation starts on the header entry X-CorrelationId and the
variable value ${correlationId} extracted from the first request. This allows the scenario to receive
further incoming request messages with the correlation identifier, ensuring it receives the specific

25

message first, before any other running scenarios.

This mechanism enables a scenario instance to handle more than one incoming request. Message
correlation can be based on header values or XPath expressions evaluated within the message
payload.

@Scenario("FaxCancelled")
public class FaxCancelledScenario extends AbstractFaxScenario {

public static final String ROOT_ELEMENT_XPATH = "string:local-name(/*)";
public static final String REFERENCE_ID_XPATH = "//fax:referenceld";
public static final String REFERENCE_ID_VAR = "referenceld";

public static final String REFERENCE_ID_PH = "${referenceld}";

@0verride
public void run(ScenarioRunner scenario) {
scenario.$(scenario.receive()
.message()
.validate(xpath().expression(ROOT_ELEMENT_XPATH, "SendFaxMessage"))
.extract(
fromBody().expression(REFERENCE_ID_XPATH, REFERENCE_ID_VAR)));

scenario.$(correlation().start()
.onPayload(REFERENCE_ID_XPATH, REFERENCE_ID_PH));

scenario.$(send()
.endpoint(getStatusEndpoint())
.message()
.body(
new MarshallingPayloadBuilder(
getPayloadHelper().generateFaxStatusMessage(
REFERENCE _ID_PH,
"QUEUED",
"The fax message has been queued and will be send shortly"
b
getPayloadHelper().getMarshaller())
));

scenario.$(scenario.receive()
.message()
.validate(xpath()
.expression(ROOT_ELEMENT_XPATH, "CancelFaxMessage")
.expression(REFERENCE_ID_XPATH, REFERENCE_ID_PH)));

scenario.$(send()
.endpoint(getStatusEndpoint())
.message()
.body(
new MarshallingPayloadBuilder(
getPayloadHelper().generateFaxStatusMessage(

26

REFERENCE_ID_PH,
"CANCELLED",
"The fax message has been cancelled"

)
getPayloadHelper().getMarshaller())

));

The above example uses XPath expressions to establish a new correlation within the scenario. This
ensures that the second incoming request CancelFaxMessage is directed to the same scenario
instance.

Intermediate message handling enables the creation of complex scenarios that involve multiple
request-response interactions. Message correlation ensures that the relevant requests are
processed within the same scenario, without interference from other concurrent scenarios.

1.8. Simulation Errors Handling

It might be possible that unexpected errors occur during simulations. But how would you know
that this is the case, you might ask yourself? It could as well be, that someone just wanted this
simulation to respond with an HTTP 500 code.

That’s why we’ve invented the custom HTTP 555 status code: Simulation failed with an Exception!

The error can be asserted from the client side, the body containing more detailed information.

27

class SimulatorRestIT {

/**

* Sends a request to the server, expecting it to execute a simulation.

response should indicate the unexpected

* error, returning a {@link HttpStatus#INTERNAL_SERVER_ERROR}.

*

* @see org.citrusframework.simulator.sample.scenario.ThrowScenario

*/

@CitrusTest

public void testSimulationWithUnexpectedError() {

$(http().client(simulatorClient)

.send()
.get("throw")
.message()
.accept(MediaType.APPLICATION_JSON_VALUE));

$(http().client(simulatorClient)
.receijve()
.response(HttpStatus.INTERNAL_SERVER_ERROR)
.message()
.body(
// language=json

{
"timestamp":"@ignore@",
"status":555,
"error":"Http Status 555",
"path":"/services/rest/simulator/throw"

}

));

28

The

Chapter 2. Advanced Concepts

2.1. Execution Modes in Citrus Simulator

The Citrus Simulator offers different modes of operation to accommodate various testing scenarios
and requirements. These modes dictate how the simulator executes the test scenarios. It comes with
two modes, a synchronous and an asynchronous one, providing flexibility in how interactions are
simulated and tested.

2.1.1. Synchronous Execution Mode

The synchronous execution mode ensures that scenarios are executed one after the other, in a
single thread. This mode is beneficial for scenarios where operations need to be performed in a
strict sequence, and data consistency is crucial.

2.1.1.1. Configuration

To configure the simulator in synchronous mode, set the citrus.simulator.mode property in your
application’s configuration file (application.properties or application.yml) to sync. If this property
is not set at all, the simulator defaults to synchronous mode.

Example application.properties

citrus.simulator.mode=sync

Example application.yml

citrus:
simulator:
mode: sync

2.1.2. Asynchronous Execution Mode

In asynchronous execution mode, scenarios are executed concurrently in separate threads,
allowing for parallel processing. This mode is suitable for more complex simulations where
scenarios do not depend on the execution order or when simulating high concurrency.

2.1.2.1. Configuration

To enable asynchronous mode, set the citrus.simulator.mode property to async. Additionally, you
can configure the number of executor threads that handle the parallel execution of scenarios
through the citrus.simulator.executor.threads property.

Example application.properties

citrus.simulator.mode=async
citrus.simulator.executor.threads=10

29

Example application.yml

citrus:
simulator:
mode: async
executor:
threads: 10

2.1.3. Custom Executors

For advanced scenarios, you have the flexibility to provide custom executors by implementing the
ScenarioExecutorService interface. This allows for tailored execution strategies, such as custom
thread management, prioritization of scenarios, or integration with external systems for scenario
execution.

To use a custom executor, define your implementation of the ScenarioExecutorService and register
it as a bean in your Spring application context. Ensure that your custom executor is appropriately
configured to be recognized by the simulator in place of the default synchronous or asynchronous
executors. To disable the default synchronous executor, set the following property:
citrus.simulator.mode=custom.

Example Custom Executor Bean Definition

@Bean
public ScenarioExecutorService customScenarioExecutorService() {
return new MyCustomScenarioExecutorService();

This custom executor will then be used by the simulator to execute scenarios according to the logic
you’ve implemented.

2.2. Best Practices
» Use the synchronous mode as the standard, for linear simulations where data consistency
matters or when debugging to ensure straightforward tracing of actions and outcomes.
* Opt for the asynchronous mode only when explicitly needed, when simulating more complex

scenarios that involve intermediate synchronous messages.

By understanding and appropriately configuring the execution modes of the Citrus Simulator, you
can tailor the simulation environment to best suit your testing needs, whether you require precise
control over scenario execution or need to simulate high-volume, concurrent interactions.

2.3. Database Schema

In some cases, it may be useful to keep the database schema in mind. The following diagram
illustrates the database schema as defined in the package org.citrusframework.simulator.model,
which should be considered the source of truth. This visual representation can help understand the

30

relationships and structure of the database entities.

@ test_result
status: integer

error_message: text
stack_trace: text
id: bigint

created_date: timestamp(6) with time zone
last_modified_date: timestamp(6) with time zane
class_name: varchar(255)

failure_type: varchar(255)

test_name: varchar(255)

[] *
test_result_id:id test_result_id:id
© scenario_execution © test_parameter
test_result_id: bigint test_result_id: bigint

execution_id- bigint created_date: timestamp(6) with time zone

end_date: timestamp(6) with time zone last_modified_date: timestamp(6) with time zane
start_date: timestamp(&) with time zone parameter_value: varchar(255)
scenario_name: varchar(255) parameter_key. varchar(255)

scenario_execution_execution_id: execution_id

scenario_execution_sgxecution_id:execution) id
scenario_expcution_execution_id:execution_id @ scenario_parameter

message
@ 9 contral_type: integer

direction: integer required: boolean
scenario_execution_execution_id: bigint scenario_execution_execution_id: bigint scenario_execution_execution_id: bigint
payload: text action_id: higint parameter_walue: text

message_id: bigint parameter_id: bigint

@ scenario_action

end_date: timestamp(6) with time zane

created_date: timestamp(6) with time zane start_date: timestamp(6) with time zane created_date: timestamp(6) with time zane
last_modified_date: timestamp(6) with time zane name: varchar(255) last_modified_date: timestamp(6) with time zane
citrus_message_id: varchar(255) label varchar(255)

name: varchar(255)

message_id

@ message_header

message_id: bigint
header_id: bigint

created_date: timestamp(6) with time zone
last_modified_date: timestamp(6) with time zane
header_value: varchar(255)

name: varchar({255)

Figure 1. Database Schema of the Citrus Simulator

2.4. Registering Simulator Scenarios at Runtime

Registering simulator scenarios at runtime is a perfectly valid approach. However, it’s crucial to
ensure that the scenario cache used by the simulator remains synchronized.

A "Scenario" in this context is not a database entity but rather a conceptual object that exists only
during runtime. Essentially, these are simply Spring beans. The ScenariolookupService is
responsible for tracking these scenarios but cannot do so automatically. Therefore, after making
modifications, it’s necessary to call ScenarioLookupService#evictAndReloadScenarioCache() to update
the cache.

The following Java source code illustrates how to register a custom scenario and update the
scenario cache:

31

32

import org.citrusframework.simulator.service.ScenariolLookupService;

import org.springframework.beans.factory.config.ConfiqgurablelListableBeanFactory;
import org.springframework.context.ApplicationContext;

import org.springframework.context.annotation.Configuration;

@Configuration
public class MyCustomBeanConfiguration {

public MyCustomBeanConfiguration(ApplicationContext applicationContext,
ScenariolookupService scenariolookupService) {
// Replace 'MyCustomSimulatorScenario' with your custom scenario class
SimulatorScenario simulatorScenario = new MyCustomSimulatorScenario();

ConfigurablelistableBeanFactory beanFactory =
((ConfigurableApplicationContext) applicationContext).getBeanFactory();

beanFactory.registerSingleton(simulatorScenario.getClass().getSimpleName(),

simulatorScenario);

scenariolookupService.evictAndReloadScenarioCache();

Chapter 3. REST Support

The Citrus simulator can serve as an Http REST API server, handling client requests using HTTP
methods such as GET, POST, PUT, DELETE, etc.

Enable generic REST support by setting the property citrus.simulator.rest.enabled=true in the
application.properties file or via system property or environment variable.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

Setting citrus.simulator.rest.enabled triggers autoconfiguration steps and loads the required
beans into the Spring application context.

3.1. Configuration

With REST support enabled, various configuration options are available, typically via a
SimulatorRestAdapter implementation:

public abstract class SimulatorRestAdapter implements SimulatorRestConfigurer {

@0verride
public ScenarioMapper scenarioMapper() {
return new HttpRequestAnnotationScenarioMapper();

}

@0verride
public HandlerInterceptor[] interceptors() {
return new HandlerInterceptor[] { new LoggingHandlerInterceptor() };

}

@lverride
public List<String> urlMappings() {
return singletonlist("/services/rest/**");

}

The adapter allows customization of REST handling, such as implementing different scenario
mappers or adding handler interceptors.

33

Note: By default, the REST support uses the HttpRequestAnnotationScenarioMapper to search for
@RequestMapping annotations on scenario classes.

The urlMappings method defines the access path to the simulator’s REST API. Assuming the Spring
Boot application runs on port 8080, the API would be accessible at:

http://localhost:8080/services/rest/*

Clients can send requests like GET, POST, DELETE to this endpoint, and the simulator will respond
based on the executed scenario.

Customize the simulator REST support by extending SimulatorRestAdapter in a custom class:

@Component
public class MySimulatorRestAdapter extends SimulatorRestAdapter {

@0verride
public List<String> urlMappings() {

return singletonList("/my-rest-service/**");

}

Annotate your custom class with @Component to override the default REST adapter behavior. Now,
the REST API will be accessible at http://localhost:8080/my-rest-service/*.

Extend the adapter directly in the main application class for further customizations:

34

http://localhost:8080/my-rest-service/*

import org.citrusframework.simulator.http.SimulatorRestAdapter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorRestAdapter {

@0verride
public List<String> urlMappings() {
return singletonList("/my-rest-service/**");

}

@0verride

public ScenarioMapper scenarioMapper() {
HeaderValueScenarioMapper scenarioMapper = new HeaderValueScenarioMapper();
scenarioMapper.setHeaderName("X-simulator-scenario");
return scenarioMapper;

}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

3.2. Advanced Customizations

For more advanced configurations, extend SimulatorRestSupport:

35

import org.citrusframework.simulator.http.SimulatorRestAutoConfiguration;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorRestAutoConfiguration {

@Override
protected String getUr1lMapping() {
return "/my-rest-service/**";

}

@Override
public FilterRegistrationBean requestCachingFilter() {
FilterRegistrationBean filterRegistrationBean = new FilterRegistrationBean(new
RequestCachingServletFilter());

String urlMapping = getUrlMapping();
if (urlMapping.endsWith("**")) {

urlMapping = urlMapping.substring(@, urlMapping.length() - 1);
}
filterRegistrationBean.setUr1Patterns(Collections.singleton(urlMapping));
return filterRegistrationBean;

}

@0verride

public HandlerMapping handlerMapping(ApplicationContext applicationContext) {
SimpleUr1lHandlerMapping handlerMapping = new SimpleUrlHandlerMapping();
handlerMapping.setOrder(Ordered.HIGHEST_PRECEDENCE);
handlerMapping.setAlwaysUseFullPath(true);

Map<String, Object> mappings = new HashMap<>();
mappings.put(getUrlMapping(), getRestController(applicationContext));

handlerMapping.setUr1lMap(mappings);
handlerMapping.setInterceptors(interceptors());

return handlerMapping;
}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

This approach allows you to override auto-configuration features like requestCachingFilter
handlerMapping

36

or

3.3. Request Mapping

By default, the simulator maps incoming requests to scenarios using mapping keys evaluated from
the requests. When utilizing REST support, @RequestMapping annotations on scenarios can also be

used:

@Scenario("Hello")

@RequestMapping(value = "/services/rest/simulator/hello"”, method = RequestMethod.POST,
params = {"user"})

public class HelloScenario extends AbstractSimulatorScenario {

@0verride

public void run(ScenarioRunner scenario) {

scenario.

$(scenario.http()

.receijve()

.post()

.message()

.body("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +

scenario.

"Say Hello!" +
"</Hello>"));

$(scenario.http()

.send()
.response(HttpStatus.0K)
.message()
.body("<HelloResponse

xmlns=\"http://ci

trusframework.org/schemas/hello\">" +
"Hi there!" +
"</HelloResponse>"));

In the above example, any POST request to /services/rest/simulator/hello with the user query
parameter will be mapped to the HelloScenario.

3.4. HITTP Responses

HTTP responses in REST APIs should include appropriate status codes. This can be easily specified
using Citrus’s Java DSL:

37

@Scenario("Hello")
@RequestMapping(value = "/services/rest/simulator/hello", method = RequestMethod.POST)
public class HelloScenario extends AbstractSimulatorScenario {

@0verride
public void run(ScenarioRunner scenario) {
scenario.$(scenario.http()

.receive()

.post()

.message()

.body("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Say Hello!" +

"</Hello>"));

scenario.$(scenario.http()

.send()

.response(HttpStatus.0K)

.message()

.payload("<HelloResponse

xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Hi there!" +

"</HelloResponse>"));

Citrus’s HTTP Java DSL simplifies setting request methods, query parameters, and status codes.
Refer to the Citrus documentation for more details on using this API.

3.5. Swagger Support

The simulator is equipped to interpret Swagger (OpenAPI V3.0) specifications, using them to
automatically generate scenarios for each defined operation. This feature streamlines the process
of creating a simulator that mirrors real-world API behavior based on the Swagger documentation.

To utilize this feature, the Swagger API file should be configured within the simulator’s settings.
Below is an example of how to set up Swagger support:

38

@SpringBootApplication
public class Simulator extends SimulatorRestAdapter {

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

@0verride
public ScenarioMapper scenarioMapper() {
return new HttpRequestPathScenarioMapper();

}

@0verride
public List<String> urlMappings(SimulatorRestConfigurationProperties
simulatorRestConfiguration) {
return singletonlList("/petstore/v2/**");

}

@0verride
public EndpointAdapter fallbackEndpointAdapter() {
return new StaticEndpointAdapter() {
@0verride
protected Message handleMessageInternal(Message message) {
return new HttpMessage().status(HttpStatus.NOT_FOUND);
}
b
}

@Bean
public static HttpScenarioGenerator scenarioGenerator() {
HttpScenarioGenerator generator = new HttpScenarioGenerator(new
(lassPathResource("swagger/petstore-api.json"));
generator.setContextPath("/petstore");
return generator;

In the above configuration, the HttpScenarioGenerator bean is defined with the location of the
Swagger API file (swagger/petstore-api.json) and the context path for the API. The
HttpRequestPathScenarioMapper is set to handle the REST scenarios generated from the Swagger
specification.

Additionally, a custom fallback endpoint adapter is defined for handling unmatched requests or
validation errors.

Upon startup, the simulator dynamically generates scenarios for each operation in the Swagger API
file. These scenarios are available for review in the simulator’s user interface.

Consider the following sample operation from the Swagger API file:

39

40

"/pet/findByStatus": {
"get": {
"tags": [
"pet”
1
"summary": "Finds Pets by status",
"description”: "Multiple status values can be provided with comma separated
strings",
"operationId": "findPetsByStatus",
"produces": [
"application/xml",
"application/json"
1
"parameters": [
{
"name": "status",
"in": "query",
"description": "Status values that need to be considered for filter",
"required": true,
"type": "array",
"items": {
"type": "string",
"enum": [
"available",
"pending",
"sold"
1,
"default": "available"
}
}
1
"responses”: {
"200": {
"description": "successful operation”,
"schema": {
"type": "array",
"items": {
"$ref": "#/definitions/Pet"
}
}
Iy,
"400": {
"description”: "Invalid status value"
}
lis
"security": [
{
"petstore_auth": [
"write:pets",
"read:pets"

ollectionFormat": "multi"

This operation would prompt the simulator to generate scenarios that validate requests against the
defined criteria and provide appropriate responses, including handling different HTTP methods
and query parameters.

Important: The current implementation primarily focuses on generating scenarios for successful
cases, like 200 0K responses. Other variations, such as error responses, are not automatically
generated but can be manually added.

Request and Response Examples

The simulator’s response to requests is based on the generated scenarios. For a valid request, it
would provide a response as defined in the Swagger specification. Conversely, for an invalid
request (e.g., missing required parameters), the simulator would respond with an error, such as 404
NOT_FOUND.

Additional Configuration Options

Swagger support can also be configured using system properties or environment variables,
providing an alternative to programmatically setting up the HttpScenarioGenerator.

Example system properties for enabling Swagger support
citrus.simulator.rest.swagger.enabled=true
citrus.simulator.rest.swagger.api=classpath:swagger/petstore-api.json
citrus.simulator.rest.swagger.contextPath=/petstore

Of course, the same can be achieved using environment variables.

CITRUS_SIMULATOR_REST_SWAGGER_ENABLED=true
CITRUS_SIMULATOR_REST_SWAGGER_API=classpath:swagger/petstore-api.json
CITRUS_SIMULATOR_REST_SWAGGER_CONTEXT_PATH=/petstore

Data Dictionary Integration

To further enhance dynamic message handling, data dictionaries can be used. These dictionaries
allow for centralized manipulation of message content via JsonPath expressions, making the
interaction with the simulator more dynamic and adaptable.

Defining Data Dictionaries

Data dictionaries are defined in property files, with mappings that dictate how message content
should be manipulated:

41

inbound mappings

Example inbound data dictionary mappings
$.category.name=@assertThat(any0f(is(dog),is(cat)))e
$.status=@matches(available|pending|sold|placed)@
$.quantity=@greaterThan(0)@

outbound mappings

Example outbound data dictionary mappings
$.category.name=citrus:randomEnumValue('dog', 'cat')
$.name=citrus:randomEnumValue('hasso', 'cutie', 'fluffy')

These mappings apply to both incoming and outgoing messages, ensuring that the simulator’s
responses are dynamic and contextually relevant, adhering to the constraints and possibilities
defined in the Swagger specification.

42

Chapter 4. Web Service Support

The simulator is capable of handling SOAP Web Service calls as a server. To activate generic SOAP
web service support, set the property citrus.simulator.ws.enabled=true in the
application.properties file, or through a system property or environment variable.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

Setting citrus.simulator.ws.enabled triggers auto-configuration steps and loads the required beans
for the Spring application context.

SOAP web service support is not included by default, so you must add Citrus dependencies to your
project. In Maven, add the following dependency:

<!-- Citrus web service support -->
<dependency>
<groupId>org.citrusframework</groupId>
<artifactId>citrus-ws</artifactId>
<version>${citrus.version}</version>
</dependency>

With these configurations, the simulator is ready to handle incoming SOAP Web Service calls. When
SOAP web service handling is enabled, the simulator manages the SOAP envelope automatically,
meaning you don’t have to deal with the SOAP envelope in scenario operations. The scenario
receive operation can access the SOAP action of the incoming request, and it is also possible to
return a SOAP fault message as a scenario outcome.

Let’s proceed to review the SOAP-related configuration options as described in the following
sections.

4.1. Configuration

Once SOAP support is enabled in the simulator, various configuration options become available.
The most straightforward method is to add a SimulatorWebServiceAdapter implementation to the
classpath. This adapter provides several configuration methods.

43

public abstract class SimulatorWebServiceAdapter implements
SimulatorWebServiceConfigurer {

@0verride
public List<String> servletMappings() {
return singletonlList("/services/ws/*");

}

@0verride
public ScenarioMapper scenarioMapper() {
return new ContentBasedXPathScenarioMapper().addXPathExpression("local-
name(/*)");

}

@verride
public EndpointInterceptor[] interceptors() {

return new EndpointInterceptor[] { new LoggingEndpointInterceptor() };
}

This adapter defines methods to configure the simulator’s SOAP message handling, such as adding
different scenario mapper implementations or endpoint interceptors. The servletMappings method
defines client access to the simulator’s SOAP service. For example, if the Spring Boot application
runs on port 8080, the SOAP service would be accessible at:

http://localhost:8080/services/ws/*

Clients can send SOAP calls to this endpoint, and the simulator will respond with appropriate SOAP
responses based on the executed scenario. You can customize the simulator’s SOAP support by
extending SimulatorWebServiceAdapter in a custom class:

@Component
public class MySimulatorWebServiceAdapter extends SimulatorWebServiceAdapter {

@override
public List<String> servletMappings() {
return singletonList("/my-soap-service/*");

}

The class is annotated with @Component so that Spring recognizes it and overrides the default SOAP
adapter behavior. By customizing the servletMappings method, the SOAP simulator API will be
accessible under a new endpoint URI:

http://localhost:8080/my-soap-service/*

44

For direct integration with the Spring Boot main application class, extend
SimulatorWebServiceAdapter as shown:

import org.citrusframework.simulator.ws.SimulatorWebServiceAdapter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorWebServiceAdapter {

@verride
public List<String> servletMappings() {
return singletonList("/my-soap-service/*");

}

@0verride
public ScenarioMapper scenarioMapper() {
return new SoapActionScenarioMapper();

}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

4.2. Advanced Customizations

For more advanced configurations, extend SimulatorWebServiceSupport:

45

import org.citrusframework.simulator.ws.SimulatorWebServiceAutoConfiguration;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorWebServiceAutoConfiguration {

@Override
protected String getServletMapping() {
return "/my-soap-service/**";

}

@Bean
public ServletRegistrationBean messageDispatcherServlet(ApplicationContext
applicationContext) {
MessageDispatcherServlet servlet = new MessageDispatcherServlet();
servlet.setApplicationContext(applicationContext);
servlet.setTransformWsdlLocations(true);
return new ServletRegistrationBean(servlet, getDispatcherServletMapping());

}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

This configuration allows overriding features like the messageDispatcherServlet in the SOAP support
auto-configuration.

4.3. SOAP Response

When using SOAP services, you might want to respond synchronously with a SOAP message. Since
the simulator handles SOAP communication automatically, you can define the response message
directly in the scenario.

46

@Scenario("Hello")
public class HelloScenario extends AbstractSimulatorScenario {

@override
public void run(ScenarioRunner scenario) {
scenario.$(scenario.soap()
.receive()
.message()
.body("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Say Hello!" +
"</Hello>")
.soapAction("Hello"));

scenario.$(scenario.soap()

.send()

.message()

.body("<HelloResponse xmlns=\"http://citrusframework.org/schemas/hello\">"
+

"Hi there!" +
"</HelloResponse>"));
}

}

The Citrus Java DSL provides SOAP-specific methods for specifying request and response data. The
SOAP envelope is handled automatically, so there’s no need to include it here. The receive operation
verifies the SOAP action header value, and you can specify the synchronous SOAP response
message.

Next, we will discuss how to send SOAP faults as response messages.

4.4. SOAP Faults

When using SOAP, you may need to send back a SOAP fault message. The default Web Service
scenario implementation allows sending fault responses.

47

In
th

@Scenario("GoodNight")
public class GoodNightScenario extends AbstractSimulatorScenario {

@override
protected void configure() {
scenario.$(scenario.soap()
.receijve()
.message()
.body("<GoodNight xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Go to sleep!" +
"</GoodNight>")
.soapAction("GoodNight"));

scenario.$(scenario.soap()
.sendFault()
.message()
.faultCode("{http://citrusframework.org}CITRUS:SIM-1001")
.faultString("No sleep for me!"));

this example, the sendFault() method is used to create a SOAP fault message. The simulator adds
e SOAP envelope and fault details, allowing you to choose between a success response or a SOAP

fault.

4

.5. WSDL Support

The simulator can read WSDL specifications to auto-generate scenarios for each defined operation.
These operations include request and response message data, which the simulator uses to generate
basic scenarios.

To set up WSDL support, see the following example:

48

@SpringBootApplication
public class Simulator extends SimulatorWebServiceAdapter {

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

@lverride
public List<String> servletMappings(SimulatorWebServiceConfigurationProperties
simulatorWebServiceConfiguration) {
return singletonlList("/services/ws/HelloService/v1/*");

}

@0verride
public EndpointAdapter fallbackEndpointAdapter() {
// Implementation details...

}

@Bean
public static Wsd1lScenarioGenerator scenarioGenerator() {
Wsd1ScenarioGenerator generator = new Wsd1ScenarioGenerator(new
ClassPathResource("xsd/Hello.wsd1l"));
return generator;

}

In the configuration above, a Wsd1ScenarioGenerator bean is set up with the WSDL file location
xsd/Hello.wsdl. A custom fallback endpoint adapter is also defined for handling unmatched
requests or validation errors.

Upon startup, the generator creates scenarios for each operation in the WSDL file.

Consider the following WSDL file sample:

<!-- Example WSDL content -->

This WSDL defines operations like hello, with request and response message structures.

Generated scenarios validate requests against the XSD schema in the WSDL and generate
appropriate responses. Dynamic values in responses adhere to the schema rules.

Communication in generated scenarios follows this pattern:

Request

<!-- Example SOAP request -->

49

Response

<!-- Example SOAP response -->

For invalid requests, such as those with incorrect SOAP actions, the simulator responds with a
default SOAP fault, as defined in the fallback endpoint adapter.

4.5.1. WSDL System Properties

The WSDL auto-generation feature can be activated using system properties in the Spring Boot
application, providing an alternative to programmatically setting up the Wsd1ScenarioGenerator.

System properties for enabling WSDL support
citrus.simulator.ws.wsdl.enabled=true
citrus.simulator.ws.wsdl.location=classpath:xsd/Hello.wsdl

Environment variables can also be used for configuration.

Environment variables for enabling WSDL support
CITRUS_SIMULATOR_WS_WSDL_ENABLED=true
CITRUS_SIMULATOR_WS_WSDL_LOCATION=classpath:xsd/Hello.wsdl

Data dictionaries

Auto-generated WSDL scenarios utilize data dictionaries to create dynamic values in both request
and response messages. Data dictionaries are a well-known Citrus functionality that centralizes
data manipulation, often using XPath expressions. In XML message processing, each construction
step consults the data dictionary for potential modifications to elements and attributes.

Auto-generated scenarios reference both inbound and outbound data dictionaries. To enable these

dictionaries, activate them in the Spring Boot application.properties file:

citrus.simulator.inbound.xml.dictionary.enabled=true
citrus.simulator.outbound.xml.dictionary.enabled=true

Activating these settings automatically enables data dictionaries, generating random numbers and
strings in all auto-generated WSDL messages. For incoming requests, the dictionary ensures
elements and attributes are ignored by default during validation. This approach is beneficial, as it’s
impossible to predict all data sent to the simulator.

You can define specific mappings in the dictionaries using XPath expressions:

50

citrus.simulator.inbound.xml.dictionary.enabled=true
citrus.simulator.inbound.xml.dictionary.location=classpath:dictionary/inbound_mappings
.xml

citrus.simulator.outbound.xml.dictionary.enabled=true
citrus.simulator.outbound.xml.dictionary.location=classpath:dictionary/outbound_mappin
gs.xml

Inbound and outbound mapping files are specified for the dictionaries. For example, an inbound
mapping file could look like this:

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="//sim:Hello">Say Hello!</entry>

<entry key="//sim:GoodBye">Say GoodBye!</entry>
</properties>

The inbound mappings define XPath expressions to set pre-defined values for incoming requests.
For instance, the above mappings set specific string values for <Hello> and <GoodBye> elements.
When using XPath in XML, proper namespace handling is crucial. In the provided XPath
expressions, the sim: prefix corresponds to a namespace in the WSDL schema for Hello messages.

You can define a global namespace context in your Spring application to facilitate namespace
handling:

@Bean
public NamespaceContextBuilder namespaceContextBuilder() {
NamespaceContextBuilder namespaceContextBuilder = new NamespaceContextBuilder();
namespaceContextBuilder.getNamespaceMappings().put("sim",
"http://citrusframework.org/schemas/hello");
return namespaceContextBuilder;

}

After setting up this namespace context, the sim prefix can be globally used in XPath expressions.

Outbound mappings can also be specified to create specific response values.

<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="//sim:HelloResponse">Hello!</entry>

<entry key="//sim:GoodByeResponse">GoodBye!</entry>
</properties>

For instance, the above outbound mappings ensure that HelloResponse messages always contain
"Hello!". Citrus functions can be used to define more complex values in auto-generated messages.

31

32

<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<entry key="//sim:HelloResponse">citrus:randomString(10)</entry>
<entry key="//sim:GoodByeResponse">citrus:randomEnumValue('GoodBye!"', 'SeeYalater!',
'ByeBye!')</entry>
</properties>

Chapter 5. JMS support

The simulator is able to receive messages from message brokers using the Java Message Service
API (JMS). As a consumer the simulator constantly polls JMS destinations (queue or topic) for
incoming request messages. When the queue is of synchronous nature the simulator is able to send
synchronous response messages.

The generic jms support is activated by setting the property citrus.simulator.jms.enabled=true.
You can do so in the basic application.properties file or via system property or environment
variable setting.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

The citrus.simulator.jms.enabled property performs some auto configuration steps and loads
required beans for the Spring application context in the Spring boot application.

As JMS support is not included by default in the simulator we need to add some Citrus
dependencies to our project. In Maven we simply add the following dependency to the project POM.

<!-- Citrus web service support -->
<dependency>
<groupId>org.citrusframework</groupId>
<artifactId>citrus-jms</artifactId>
<version>${citrus.version}</version>
</dependency>

We may also want to add JMS provider-specific connection factory implementations, depending on
which JMS message broker you use:

<!-- ActiveMQ Artemis message broker support -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-artemis</artifactId>
<version>${spring.boot.version}</version>
</dependency>

With that piece of configuration we are ready to handle incoming JMS messages on the simulator.
Of course we need a JMS connection factory and other JMS related configuration options as

33

described in the following sections.

5.1. Configuration

Once the JMS support is enabled on the simulator we have different configuration options. The
most comfortable way is to add a SimulatorJmsAdapter implementation to the project. The
adapter provides several configuration methods.

public abstract class SimulatorJmsAdapter implements SimulatorJImsConfigurer {
@0verride
public ConnectionFactory connectionFactory() {
return new SingleConnectionFactory();

}

@0verride
public String destinationName() {
return System.getProperty("citrus.simulator.jms.destination",
"Citrus.Simulator.Inbound");

}

@0verride
public boolean useSoapEnvelope() {
return false;

}

@verride
public ScenarioMapper scenarioMapper() {
return new ContentBasedXPathScenarioMapper().addXPathExpression("local-
name(/*)");
}
}

The adapter defines methods that configure the simulator JMS handling. For instance we can add
another scenario mapper implementation or enable automatic SOAP envelope handling.

The destinationName defines the incoming JMS destination to poll as a consumer. The
connectionFactory is mandatory in order to connect to a JMS message broker.

You can simply extend the adapter in a custom class for adding customizations.

54

@Component
public class MySimulatorImsAdapter extends SimulatorJmsAdapter {

@0verride
public String destinationName() {
return "JMS.Queue.simulator.inbound";

}

@0verride
public ConnectionFactory connectionFactory() {

return new ActiveMQConnectionFactory("tcp://localhost:61616");
}

As you can see the class is annotated with @Component annotation. This is because the adapter
should be recognized by Spring in order to overwrite the default JMS adapter behavior. The custom
adapter just overwrites the connectionFactory and destinationName methods so the JMS
simulator will connect to the ActiveMQ message broker and listen for incoming requests on that
queue JMS.Queue.simulator.inbound.

This is the simplest way to customize the simulator JMS support. We can also use the adapter
extension directly on the Spring boot main application class:

import org.citrusframework.simulator.jms.SimulatorJmsAdapter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorJImsAdapter {

@0verride
public String destinationName() {
return "JMS.Queue.simulator.inbound";

}

@0verride
public ConnectionFactory connectionFactory() {

return new ActiveMQConnectionFactory("tcp://localhost:61616");
}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

Once this is done the simulator polls the target destination for new incoming request messages. As
usual the simulator maps incoming requests to simulator scenarios for execution. Inside the
scenario you can receive the JMS request messages as usual using the scenario endpoint. The

55

scenario logic is then able to provide a response message that is sent back to the synchronous reply
destination if any is specified.

5.2. Asynchronous communication

For asynchronous communication we can define normal JMS destination endpoints in Citrus in
order to autowire those in the scenario.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

@0verride
public String destinationName() {
return "JMS.Queue.simulator.inbound";

}

@0verride
public ConnectionFactory connectionFactory() {
return new ActiveMQConnectionFactory("tecp://localhost:61616");

}

@Bean
public ImsEndpoint replyEndpoint() {
return CitrusEndpoints.jms()
.asynchronous()
.destinationName("JMS.Queue.simulator.reply")
.connectionFactory(connectionFactory())
.build();

As you can see we are able to create several JMS endpoints in Citrus. We can autowire those
endpoints in a scenario for sending back an asynchronous response.

36

@Scenario("Hello")
public class HelloJmsScenario extends AbstractSimulatorScenario {

@Autowired
private JmsEndpoint replyEndpoint;

@0verride
public void run(ScenarioRunner scenario) {
scenario.$(scenario.receive()

.message()
.body("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Say Hello!" +

"</Hello>"));

scenario.$(scenario.send()
.message()
.body("<HelloResponse xmlns=\"http://citrusframework.org/schemas/hello\">"

"Hi there!" +
"</HelloResponse>"));

In this sample above we receive the scenario request message as usual using the scenario endpoint.
After that we send back a response on the replyEndpoint which has been injected to the scenario
using the @Autowired annotation.

In general scenarios can interact with all Citrus endpoints that get defined as Spring beans in the
application context configuration.

5.3. Synchronous communication

When dealing with synchronous communication the message producer waits for a reply message
on a reply destination. This reply destination handling is automatically done within the simulator.
So when we have synchronous communication we simply send back a response message using the
scenario endpoint. The simulator makes sure that the response is provided to the waiting producer
on the reply destination.

The synchronous JMS communication needs to be enabled on the JMS simulator adapter.

57

import org.citrusframework.simulator.jms.SimulatorJmsAdapter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorJmsAdapter {

@0verride
public String destinationName() {
return "JMS.Queue.simulator.inbound";

}

@0verride
public ConnectionFactory connectionFactory() {

return new ActiveMQConnectionFactory("tcp://localhost:61616");
}

@0verride
public boolean synchronous(SimulatorJmsConfigurationProperties
simulatorJmsConfiguration) {
return true;

}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

This completes the JMS communication support within the simulator. Read more about other
messaging transports such as Http REST or SOAP in this documentation.

38

Chapter 6. Endpoint support

We have seen how the simulator handles different transports such as Http REST, SOAP web services
and JMS. Now the simulator is also able to handle other message transports such as mail
communication, JMX mbean server, RMI invocations and much more. The simulator is able to deal
with any kind of endpoint component that is supported in Citrus framework.

The generic endpoint support is activated by setting the property
citrus.simulator.endpoint.enabled=true. You can do so in the basic application.properties file or
via system property or environment variable setting.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

The citrus.simulator.endpoint.enabled property performs some auto configuration steps and
loads required beans for the Spring application context in the Spring boot application. Once we use
that feature we can have any Citrus endpoint component as inbound source for simulator
scenarios. This means we can have a mail server or a RMI server that is simulated with proper
response messages.

6.1. Configuration

As we are using generic Citrus endpoint components as inbound source we need to configure those
endpoint components. The most comfortable way is to add a
SimulatorEndpointComponentAdapter implementation to the classpath. The adapter provides
several configuration methods.

39

#rest
#web-service
#jms

public abstract class SimulatorEndpointComponentAdapter implements
SimulatorEndpointComponentConfigurer {

@0verride
public abstract Endpoint endpoint(ApplicationContext applicationContext);

@0verride
public boolean useSoapEnvelope() {
return false;

}

@0verride
public ScenarioMapper scenarioMapper() {

return new ContentBasedXPathScenarioMapper().addXPathExpression("local-
name(/*)");

}
}

The adapter defines methods that configure the endpoint component used as inbound source. As
usual we can set the scenario mapper implementation or add automatic SOAP envelope support.

More importantly we need to define an inbound endpoint that is used as source for scenarios. Let’s
have a simple endpoint component adapter example.

60

import org.citrusframework.simulator.endpoint.SimulatorEndpointComponentAdapter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorEndpointComponentAdapter {

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

@0verride

public Endpoint endpoint(ApplicationContext applicationContext) {
MailServer mailServer = new MailServer();
mailServer.setPort(2222);
mailServer.setAutoStart(true);

return mailServer;

}

@0verride
public ScenarioMapper scenarioMapper() {
return new ContentBasedXPathScenarioMapper()
.addNamespaceMapping("mail",
"http://www.citrusframework.org/schema/mail/message")
.addXPathExpression("/mail:mail-message/mail:subject");

}

The custom adapter defines a Citrus mail server endpoint that should be used as inbound source.
Any mail message that arrives at this mail server component will trigger a new simulator scenario
then. Also we overwrite the scenario mapper implementation. The sample uses a content based
XPath mapper that uses the mail subject value as scenario mapping key.

As mail server endpoint support is not included by default in the simulator we need to add some
Citrus dependencies to our project. In Maven we simply add the following dependency to the
project POM.

<!-- Citrus web service support -->
<dependency>
<groupId>org.citrusframework</groupId>
<artifactId>citrus-mail</artifactId>
<version>${citrus.version}</version>
</dependency>

This configuration would lead us to a mail server that responds to incoming mail messages base on
the mail subject. So we can have several simulator scenarios for different mail messages.

61

@Scenario("Hello")
public class HelloScenario extends AbstractSimulatorScenario {

@0verride
public void run(ScenarioRunner scenario) {
scenario
.receijve()
.payload("<mail-message
xmlns=\"http://www.citrusframework.org/schema/mail/message\">" +
"<from>user@citrusframework.org</from>" +
"<to>citrus@citrusframework.org</to>" +
"<ce></ee>" +
"<bce></bee>" +
"<subject>Hello</subject>" +
"<body>" +
"<contentType>text/plain; charset=utf-8</contentType>" +
"<content>Say Hello!</content>" +
"</body>" +
"</mail-message>");

scenario
.send()
.payload(
"<mail-response
xmlns=\"http://www.citrusframework.org/schema/mail/message\">" +
"<code>250</code>" +
"<message>0K</message>" +
"</mail-response>");

The scenario implementation above is listening for mail messages of subject Hello. The mail XML
marshalling is automatically done by Citrus. This is the usual way how the Citrus mail component
handles mail messages and responses. That means we can use the default Citrus features in our
simulator, too. The scenario sends back a positive mail response to the calling client.

This is how we can use any Citrus endpoint component as simulator inbound source. This gives us
the opportunity to support a huge set of message transports and message types in our simulator
applications. Each incoming request on the endpoint component triggers a new simulator scenario.

62

Chapter 7. User Interface

The simulator application, initiated as a Spring Boot web application, offers an intuitive user
interface to enhance user interaction and efficiency. Upon launching the simulator and navigating
to http://localhost:8080 in your browser, you are greeted with the default welcome page, designed
for straightforward interaction and focused on displaying JSON response data from the simulator
REST API.

Citrus Simulator

Welcome to the standalone Citrus simulator application!

Summary
Active
Activity
Scenarios
Messages

https://citrusframework.org
Sponsored by ConSol Software GmbH

For an enriched experience, the simulator supports a more advanced user interface built with
Angular, providing comprehensive administrative capabilities. This enhanced UI allows users to
effortlessly monitor the simulator’s status and review detailed logs of executed scenarios and their
outcomes.

7.1. Integrating the Angular-based Ul

To integrate the advanced Angular-based UI into your simulator project, add the following Maven
dependency:

<!-- Simulator web ui -->

<dependency>
<groupId>org.citrusframework</groupId>
<artifactId>citrus-simulator-ui</artifactId>
<version>${citrus.simulator.version}</version>

</dependency>

Replace ${citrus.simulator.version} with the appropriate version of the Citrus Simulator you are
using. This information can typically be found in the project documentation or the repository
where the simulator is hosted.

Upon successful integration and starting the simulator, the Angular-based UI becomes accessible at
http://localhost:8080, automatically enhancing the default user interface without any additional
configuration. The simulator dashboard provides a comprehensive overview of your project,
presenting key metrics and insights at a glance.

63

http://localhost:8080
http://localhost:8080

rio Executions B3 Entil

REST Simulator

Version 3.0.0-SNAPSHOT

Disclaimer!

B
We are excited to announce that the Simulator Ul has been comprehensively updated in our latest 3.0.0 release. This marks a significant advancement for our development team. The updated Ul
adheres to current best practices, utilizes up-to-date dependencies, and features well-structured, formatted, and thoroughly tested code. This transformation not only brings the praject back to a
state of sustainable maintainability but also allows us to roll out updates and new releases mare swiftly.

However, for our valued users, these changes may present a different experience from the previous Ul. The interface now sports a fresh look, and you might natice alterations in behavior.
Additionally, some functionalities might differ fram those in earlier versions, impacting the UI's interaction.

We greatly appreciate your feedback and suggestions! Especially regarding features or aspects you might miss from the previous versions. As we continue to enhance the simulator, please
remember that much of this work is a labor of love, carried out in our spare time. Qur commitment to citrus stems frem our belief in its petential and our desire to provide you with the best
possible tools for software development. We kindly ask for your constructive and respectful feedback to help us improve further.

If you like Citrus and the Simulator, don't forget to give us a star on GitHub !

@ Simulations
=i e [l Reset
Total: Successful: Failed:
& Detail & Det: b Details
.

10 (100 %) 8 (809%)

©2023 to the original author or authors. Citrusframework/Simulator Finduson: @

7.2. Scenarios

The "Scenarios" tab within the user interface displays all scenarios available for automatic mapping
upon handling incoming requests. This tab not only lists the scenarios but also offers functionalities
such as initiating scenario executions directly from the Ul

64

€ citrus simulator voev
@&

Home

& Scenarios

@ Scenario Executions

B Entities ~ @ Resources ~

Scenarios

Scenario Name
Filter by name...
Name +
Default

Eail

GoodBye

GoodByeStarter

GoadNight

Hello

HelloStarter

Howdy

Parameter

Type

MESSAGE_TRIGGERED

MESSAGE_TRIGGERED

MESSAGE_TRIGGERED

STARTER

MESSAGE_TRIGGERED

MESSAGE TRIGGERED

STARTER

MESSAGE_TRIGGERED

MESSAGE_TRIGGERED

Items per
Page

10

X Clear Filter ESAREIE=NNES

B Scenario Executions @ View
I Scenario Executions @ View
I Scenario Executions @ View

P Launch [Scenario Executions @ View

P Launch [Scenaric Executions @ View

@ Scenaric Executions @ View
B Scenario Executions @ View

B Scenario Executions @ View

B Scenario Executions @ View
B Scenario Executions @ View

Throw MESSAGE_TRIGGERED

Showing 1- 10 of 10 items.
1

©2023 to the original author or authors. Citrusframework/Simulator Finduson: ©

Selecting any scenario from the list opens a detailed view of that specific scenario. This view
includes comprehensive information about the scenario, such as the messages processed during
executions and the results of each execution, providing valuable insights into the behavior and
outcome of the scenario.

Each scenario detail page is designed to offer a deep dive into the scenario’s workings, including
the input and output data, any validations or assertions applied, and a step-by-step breakdown of
the scenario’s execution path. This level of detail aids in understanding each scenario’s role within
the simulator and troubleshooting any issues that may arise.

7.3. Scenario Executions

Every execution of a scenario within the simulator is meticulously recorded, with the results
readily accessible through the user interface for review and analysis.

This view also provides rich filter possibilities, by name, status and so on. Even by headers of
recorded messages.

Message Header Filtering

65

Message header filtering uses a specific syntax.

 If you don’t specify a key or comparator, the filter will search for messages where any header
value contains the provided string. (e.g., myValue)

To filter based on a specific key, use key=value. (e.g., source=myApp)

* You can also use the CONTAINS operator (~) to search within a key’s value. (e.g., name~something-
like-this)

 For numeric keys, you can use comparison operators like <, ‘<, >, >=. (e.g., priority<3)

Combining multiple patterns: Separate multiple filter expressions with a semicolon (;). They will be
combined using logical AND operators. (e.g., source=myApp; status=active)

There is a helping dialog available to the right of the message-header input field.

7.3.1. Viewing Execution Results

The results of each scenario execution provide a comprehensive overview, including the outcome
(such as Passed, Failed, or Errored), execution duration, and the parameters and data utilized
during the execution. You can even see full stacktraces to debug your scenario failures. To access
the detailed results of a specific execution, simply select the desired entry from the list.

Detailed Execution Insights

Upon opening an execution entry, you will be presented with a detailed account of the scenario’s
activity, including:

* Error Details: In cases of failure, detailed error information, including stack traces, is provided
to aid in diagnosing and resolving issues.

* Request and Response Messages: The exact data sent and received, allowing for a detailed
inspection of the scenario’s external interactions.

» Actions: All actions that were recorded during execution, provides additional information about
the course of the scenario.

Navigation and Analysis

The user interface is designed to facilitate easy navigation through the execution history. Use
available tools such as filters to narrow down the list by status, date range, or specific keywords.
Each execution entry is designed to offer a quick summary, with more in-depth data just a click
away for those requiring further analysis.

Troubleshooting with Execution Details

The detailed view of scenario executions is an invaluable tool for troubleshooting. By examining
the requests and responses, users can identify discrepancies or unexpected behavior. Furthermore,
the detailed logs and error messages serve as a direct insight into the scenario’s runtime, aiding in
rapid diagnosis and resolution of any issues encountered.

66

Leveraging the execution details effectively can significantly enhance the efficiency of testing cycles
and contribute to a more robust and reliable testing process within the Citrus framework.

7.4. Exploring Database Entities

For instances when you require more detailed information or are unable to locate specific data
within the simulator’s UL the "Entities" drop-down menu offers a solution. Located at the top of the
user interface, this menu provides direct access to all database entities used by the simulator,
allowing for an in-depth review of the underlying data.

7.4.1. Accessing Database Entities
To explore the database entities:

1. Navigate to the top menu of the simulator’s user interface.
2. Locate and click on the "Entities” drop-down menu.
3. Select the specific entity you wish to review from the list that appears.
Each selection provides a detailed view of the chosen entity, including all relevant records and their

attributes. This feature is particularly useful for advanced users who need to analyze the
simulator’s data storage, audit logs, or troubleshoot specific issues related to the data.

67

Chapter 8. Starter

Usually the simulator provides simulation for server APIs so clients are able to call the simulator. In
some cases things may go the other way round. The simulator is able to start scenarios via web user
interface. This way the simulator is able to start a communication instead of waiting for requests to
arrive. In this case the simulator is able to act as client in order to call other server APIs.

This mechanism is covered by starter implementations on the simulator. In fact the starter
implementations are simulator scenarios that also implement the ScenarioStarter interface.

public interface ScenarioStarter extends SimulatorScenario {

default Collection<ScenarioParameter> getScenarioParameters() {
return Collections.EMPTY_LIST;

The ScenarioStarter extends the SimulatorScenario interface. So each scenario can also act as a
starter. See the following sample starter implementation.

@Starter("HelloStarter")
public class HelloStarter extends AbstractScenarioStarter {

@Autowired
private JmsEndpoint outboundEndpoint;

@0verride
public void run(ScenarioRunner scenario) {
scenario.send(outboundEndpoint)
.payload("Hello from simulator!");

The starter class is annotated with @Starter annotation and gets a unique name. The class extends
from AbstractScenarioStarter for most comfortable setup. In the run method we can add custom
scenario logic as usual. Inthe sample above we send a JMS message to some endpoint that has been
injected as Spring bean component.

All these starter implementations in the project are automatically loaded in the simulator user
interface so you can launch those scenarios.

68

. Simulator € Status 8 Activity & Scenarios I Messages

& Scenarios

Filter By Name + Starter + Non-Starter

Name
Default
GoodBye

GoodByeStarter

GoodNight

Hello

HelloStarter ===3

The list of available scenarios now also contains the starter implementations. The launch button
brings you to the starter detail page.

@ Simulator ¢ status 2 Activity & Scenarios [Messages © About

& Start scenario: HelloStarter

Greeting Text Hi there!

Payload <?xml version="1.0" encoding="UTF-8"?>
<Hello xmins="http://citrusframework.org/schemas/hello">Say Hello!</Hello>

The scenario starter is able to define parameters that need to be filled before the starter is
executed. In case you press the Launch button the scenario is executed with those parameters. The
parameter HTML form is auto generated from the starter class. In the following section we see how
the starter class is able to define those parameters.

8.1. Starter Parameter

Starter implementations are executable in the simulator user interface. The starter is able to define
parameters that should be filled out before the starter performs its actions. In the starter class you
can specify the parameters as follows:

69

@Starter ("HelloStarter")
public class HelloStarter extends AbstractScenarioStarter {

@Autowired
private JmsEndpoint outboundEndpoint;

@0verride
public void run(ScenarioRunner scenario) {
scenario.send(outboundEndpoint)
.payload("${greeting}");
}

@0verride
public List<ScenarioParameter> getScenarioParameters() {
List<ScenarioParameter> scenarioParameters = new ArraylList<>();

// greeting (text box)
scenarioParameters.add(new ScenarioParameterBuilder()
.name("greeting")
.label("Greeting Text")
.required()
.textbox()
.value("Hi there!")
.build());

return scenarioParameters;

The sample above defines a parameter called greeting. The parameter is of type textbox and has a
default value Hi there!. This parameter information is used to aut generate a HTML form in the
simulator user interface. You can specify as multiple parameters of different types.

Parameter types

texthox Renders a normal HTML input field
textarea Renders a textarea input field

dropdown Renders a dropdown select field with predefined options

Parameters can be required or optional and receive a label that is displayed in the HTML form. Also
you can add default values.

70

Chapter 9. Samples

Documentation can only provide theoretical insights of what the application is capable to do or not
to do. Good sample projects help both beginners and experts to reach complete understanding of
how the simulator works in different environments.

Following from that we try to provide sample project that demonstrate the simulator usage in real
world examples. Please see the following sample projects with complete code available on github.

9.1. REST sample

Sample repositories
Http REST

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-rest

Auto generated from swagger

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-
swagger

9.2. SOAP sample

Sample repositories
Http SOAP

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-ws

Http SOAP client

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-ws-
client

Auto generated from WSDL

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-wsdl

9.3. JMS sample

Sample repositories
JMS synchronous

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-jms

JMS asynchronous

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-jms-
fax

9.4. Mail sample

Sample repositories

71

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-rest
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-swagger
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-swagger
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-ws
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-ws-client
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-ws-client
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-wsdl
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-jms
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-jms-fax
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-jms-fax

Mail endpoint simulator

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-mail

9.5. Combined sample

Sample repositories
Http REST and JMS combined

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-
combined

72

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-mail
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-combined
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-combined

Chapter 10. Links & Further reading

Reading material

Citrus manual gives you a detailed description of all Citrus features
Sample projects demonstrate typical simulator scenarios with different message transports
ChangeLog shows the release history

Contributing explains how you can contribute to this project

73

https://www.citrusframework.org/reference/html/
https://github.com/citrusframework/citrus-simulator/blob/master/simulator-samples
https://www.citrusframework.org/docs/history
https://github.com/citrusframework/citrus-simulator/blob/master/simulator-docs/contributing.md

	Citrus Simulator
	citrus-simulator
	Introduction
	Citrus Spring-Boot Simulator
	Project Status
	Prerequisites
	Java 17
	Browser Compatibility
	Compatibility Matrix

	Installation
	Build with Gradle
	Writing your first Scenario

	Build with Maven
	Maven Archetypes
	Development
	Building a Docker Container
	Creating a Dockerfile
	Building the Docker Image
	Running the Docker Container
	Best Practices

	Chapter 1. Concepts
	1.1. Simulator Application
	1.2. Simulator Properties
	1.2.1. System Properties
	1.2.2. Environment Variables

	1.3. Spring Bean Configuration
	1.4. REST API
	1.4.1. Receive SINGLE Test-Parameter
	1.4.2. Scenario Resource
	1.4.3. Pagination
	1.4.4. Filtering

	1.5. Scenario Mapper
	1.5.1. Default Mapping Behavior
	1.5.2. Custom Mapper Configuration

	1.6. Simulator Scenarios
	1.7. Intermediate Messages
	1.8. Simulation Errors Handling

	Chapter 2. Advanced Concepts
	2.1. Execution Modes in Citrus Simulator
	2.1.1. Synchronous Execution Mode
	2.1.2. Asynchronous Execution Mode
	2.1.3. Custom Executors

	2.2. Best Practices
	2.3. Database Schema
	2.4. Registering Simulator Scenarios at Runtime

	Chapter 3. REST Support
	3.1. Configuration
	3.2. Advanced Customizations
	3.3. Request Mapping
	3.4. HTTP Responses
	3.5. Swagger Support

	Chapter 4. Web Service Support
	4.1. Configuration
	4.2. Advanced Customizations
	4.3. SOAP Response
	4.4. SOAP Faults
	4.5. WSDL Support
	4.5.1. WSDL System Properties
	Data dictionaries

	Chapter 5. JMS support
	5.1. Configuration
	5.2. Asynchronous communication
	5.3. Synchronous communication

	Chapter 6. Endpoint support
	6.1. Configuration

	Chapter 7. User Interface
	7.1. Integrating the Angular-based UI
	7.2. Scenarios
	7.3. Scenario Executions
	7.3.1. Viewing Execution Results

	7.4. Exploring Database Entities
	7.4.1. Accessing Database Entities

	Chapter 8. Starter
	8.1. Starter Parameter

	Chapter 9. Samples
	9.1. REST sample
	9.2. SOAP sample
	9.3. JMS sample
	9.4. Mail sample
	9.5. Combined sample

	Chapter 10. Links & Further reading

