Citrus

Authors: The Citrus Community

Version 4.5.1, 2025-01-20

citrus

1. Preface
2. Introduction
2.1. Overview
2.2. Usage scenarios
3. Setup
3.1. Using Maven
3.2. Using Gradle
4. Runtimes
4.1. TestNG
4.2. JUnit5
4.3. JUnit4
4.4. QuarkusTest
4.5. Cucumber
4.6. Main CLI
4.7. JBang

4.8. Sharding Test Cases

5. Run tests
5.1. Run Java tests
5.2. Test source loader
5.3. XML
5.4. YAML
5.5. Groovy
5.6. Spring Bean XML
6. Test variables
6.1. Global variables
6.2. Extract variables
6.3. Path expressions
6.4. Escape variables
7. Message validation
7.1. Validation registry

7.2. Validation modules

7.3. Json validation
7.4. XML validation
7.5. Schema validation

7.6. Plain text validation

7.7. Binary validation

7.8. Hamcrest validation

7.9. Custom validation

o U1 U1 W W W N

10
10
15
19
21
30
40
41
47
48
48
62
65
73
80
91
102
102
104
106
109
110
110
111
112
126
156
161
167
170
171

8. Test actions
8.1. Send
8.2. Receive
8.3. SQL
8.4. Sleep
8.5. Delay
8.6. Java
8.7. Expect timeout
8.8. Echo
8.9. Print

8.10.
8.11.
8.12.
8.13.
8.14.
8.15.
8.16.
8.17.
8.18.
8.19.
8.20.
8.21.
8.22.
8.23.
8.24.
8.25.
8.26.

Stop time

Create variables

Trace variables
Transform

Groovy script execution
Failing the test

Input

Load Properties

Purging JMS destinations
Purging Spring Message Channels
Purging endpoints
Assert failure

Catch exceptions

Apache Ant build
Start/Stop server

Stop Timer

Custom action

9. Containers

9.1. Sequential
9.2. Conditional
9.3. Parallel
9.4. Iterate

9.5. Repeat

9.6. Repeat on error

9.7. Timer
9.8. Async
9.9. Wait

9.10.

Custom containers

10. Endpoints

10.1.
10.2.

Send messages

Receive messages

175
175
192
221
235
236
238
241
244
245
247
252
254
256
262
270
271
274
275
280
285
290
291
293
298
303
306
310
310
311
315
321
324
327
332
337
343
349
353
354
356

10.3. Local message store 358

11. Direct endpoint 360
11.1. Channel endpoint 360
11.2. Synchronous direct endpoints 362
11.3. Message selectors 365
11.4. Payload matching selector 366
11.5. Root QName selector 367
11.6. Xpath selector 369
11.7. JsonPath selector 370

12. JMS support 372
12.1. JMS endpoints 372
12.2. JMS synchronous endpoints 376
12.3. JMS topics 380
12.4. JMS topic durable subscription 382
12.5. JMS message headers 385
12.6. Dynamic destination names 386
12.7. SOAP over JMS 387

13. Apache Kafka Support 388
13.1. Kafka Endpoint 388
13.2. Kafka Synchronous Endpoints 394
13.3. Kafka Message Headers 394
13.4. Kafka Message 396
13.5. Kafka Message Selector 397
13.6. Dynamic Kafka Endpoints 400
13.7. Embedded Kafka Server 401

14. Http REST support 403
14.1. Http REST client 404
14.2. Http client interceptors 412
14.3. Http REST server 413
14.4. Http headers 417
14.5. Http query parameter 421
14.6. Http server interceptors 423
14.7. Http form urlencoded data 424
14.8. Http error handling 427
14.9. Http client basic authentication 429
14.10. Http server basic authentication 432
14.11. Http client SSL 434
14.12. Http server SSL 436
14.13. Http cookies 437
14.14. Http Gzip compression 442

14.15. Http servlet filters 444

14.16
15. SOA
15.1.
15.2.
15.3.
15.4.
15.5.
15.6.
15.7.
15.8.
15.9.

15.10.
15.11.
15.12.
15.13.
15.14.
15.15.
15.16.
15.17.
15.18.
15.19.
15.20.
15.21.
15.22.
15.23.

. Http servlet context customization
P WebServices

SOAP client

SOAP client interceptors

SOAP server

SOAP send and receive

SOAP headers

SOAP HTTP mime headers

SOAP Envelope handling

SOAP server interceptors

SOAP 1.2

SOAP faults

Send SOAP faults

Receive SOAP faults

Multiple SOAP fault details

Send HTTP error codes with SOAP
SOAP attachment support

Send SOAP attachments

Receive SOAP attachments

SOAP MTOM support

SOAP client basic authentication
SOAP server basic authentication
WS-Addressing support

SOAP client fork mode

SOAP servlet context customization

16. Apache Camel support

16.1.
16.2.
16.3.
16.4.
16.5.
16.6.
16.7.
16.8.
16.9.
16.10

Camel endpoint
Synchronous Camel endpoint
Camel exchange headers
Camel exception handling
Camel context handling
Camel route actions

Camel controlbus actions
Camel endpoint DSL

Camel processor support

. Camel data format support

17. Message channel support

17.1.
17.2.

Channel endpoint

Synchronous channel endpoints

17.3. Message selectors

17.4. Payload matching selector

446
450
450
452
453
455
457
459
460
461
462
463
463
465
471
474
475
475
476
477
480
482
483
485
486
490
491
494
496
497
500
502
505
508
509
512
514
514
516
519
520

17.5. Root QName selector
17.6. Xpath selector
17.7. JsonPath selector
18. WebSocket support
18.1. WebSocket client
18.2. WebSocket server endpoints
18.3. WebSocket headers
19. Mail support
19.1. Mail client
19.2. Mail server
20. FTP support
20.1. FTP client
20.2. FTP server
21. SFTP/SCP support
21.1. SFTP client
21.2. SFTP server
21.3. SCP client
22. File support
22.1. Write files
22.2. Read files
23. Selenium support
23.1. Selenium browser
23.2. Selenium actions
23.3. Start/stop browser
23.4. Find
23.5. Click
23.6. Hover
23.7. Form input actions
23.8. Fill form
23.9. Page actions
23.10. Page validation
23.11. Wait
23.12. Navigate
23.13. Window actions
23.14. Alert
23.15. Make screenshot
23.16. Clear browser cache
24. Vert.x event bus support
24.1. Vert.x endpoint
24.2. Synchronous Vert.x endpoint

24.3. Vert.x instance factory

521
523
525
526
526
528
529
532
533
536
540
540
556
571
571
379
584
589
589
590
592
592
593
597
597
598
599
599
600
601
602
604
605
605
606
606
607
609
609
611
612

25. JDBC support
25.1. The Citrus-JDBC-Driver
25.2. The Citrus-JDBC-Server
25.3. JdbcMessage
26. Docker support
26.1. Docker client
26.2. Docker commands
27. SSH support
27.1. SSH Client
27.2. SSH Server
28. RMI support
28.1. RMI client
28.2. RMI server
29. JMX support
29.1. JMX client
29.2. JMX server
30. Zookeeper support
30.1. Zookeeper client
30.2. Zookeeper commands
31. Spring Restdocs support
31.1. Spring Restdocs using Http
31.2. Spring Restdocs using SOAP
31.3. Spring Restdocs in Java DSL
32. Dynamic endpoint components
33. Endpoint adapter
33.1. Empty response endpoint adapter
33.2. Static response endpoint adapter
33.3. Request dispatching endpoint adapter
33.4. Channel endpoint adapter
33.5. JMS endpoint adapter
34. Connectors
35. OpenAPI support
35.1. OpenAPI specification
35.2. OpenAPI client
35.3. OpenAPI server
36. JBang support
36.1. JBang action
37. Kubernetes support
37.1. Kubernetes client
37.2. Kubernetes actions
37.3. Create Labels

614
614
615
621
626
626
627
632
633
635
638
639
646
653
654
662
672
672
673
678
678
681
682
685
691
691
691
693
695
695
697
698
698
698
703
706
706
708
708
710
710

37.4. Create Annotations 711

37.5. Create Service 713
37.6. Create ConfigMap 714
37.7. Create Secret 716
37.8. Create Resources 718
37.9. Delete Resources 720
37.10. Create Custom Resource 722
37.11. Delete Custom Resource 723
37.12. Verify Custom Resource 724
37.13. Verify Pod Status 726
37.14. Verify Pod Logs 727
37.15. Spring bean config 728
37.16. Kubernetes commands 730
37.17. Kubernetes command bus 742
38. Knative support 746
38.1. Knative client 746
38.2. Knative broker 747
38.3. Verify broker status 748
38.4. Send events 749
38.5. Receive events 752
38.6. Knative channels 758
38.7. Knative subscription 758
39. Testcontainers support 759
39.1. Start and stop Testcontainers 759
39.2. PostgreSQL 763
39.3. MongoDB 765
39.4. LocalStack 766
39.5. Kafka 768
39.6. Redpanda 770
39.7. Docker compose 771
40. Functions 775
40.1. concat() 775
40.2. substring() 776
40.3. stringLength() 777
40.4. translate() 777
40.5. substringBefore() 778
40.6. substringAfter() 778
40.7. round() 778
40.8. floor() 779
40.9. ceiling() 779

40.10. randomNumber() 779

40.11.
40.12.
40.13.
40.14.
40.15.
40.16.
40.17.
40.18.
40.19.
40.20.
40.21.
40.22.
40.23.
40.24.
40.25.
40.26.
40.27.
40.28.
40.29.
40.30.
40.31
40.32.
40.33.
40.34.
40.35.
40.36.
40.37.
40.38.

randomString()
randomEnumValue()
currentDate()
upperCase()
lowerCase()
average()
minimum()
maximum()

sum()

absolute()
mapValue()
randomUUID()
encodeBase64()
decodeBase64()
escapeXml()
escapeJson()
cdataSection()
digestAuthHeader()
localHostAddress()
changeDate()

. readFile()

message()

xpath()

jsonPath()
urlEncode()/urlDecode()
systemProperty()

env()

unixTimestamp()

41. Validation Matchers

41.1. ignore()
41.2. matchesXml()
41.3. equalsIgnoreCase()

41.4. contains()

41.5. startsWith()

41.6. endsWith()

41.7. matches()

41.8. matchesDatePattern()
41.9. isNumber()

41.10.
41.11.
41.12.

lowerThan()
greaterThan()
isWeekday()

780
780
781
782
782
782
783
783
783
783
783
784
784
785
785
785
786
786
787
787
788
789
790
790
791
792
792
792
793
794
795
796
796
796
796
796
797
797
797
797
797

41.13. variable()
41.14. dateRange()
41.15. assertThat()
41.16. ignoreNewLine()
41.17. trim()
41.18. trimAllWhitespaces()
41.19. isUUIDv4()
42. Data dictionaries
42.1. XML data dictionaries
42.2.JSON data dictionaries
42.3. Dictionary scopes
42.4. Path mapping strategies
43. Test actors
43.1. Create test actors
43.2. Reference test actors
43.3. Disable test actors
43.4. Test actor environment settings
44. Test suite actions
44.1. Before suite
44.2. After suite
44.3. Before test
44.4. After test
45. Customize meta information
46. Tracing incoming/outgoing messages
47. Reporting and Test Results
47.1. Console logging
47.2. JUnit reports
47.3. HTML reports
48. Configuration options
48.1. Environment settings
48.2. Spring configuration settings
48.3. Property file settings
49. Spring support
49.1. Spring XML application context
49.2. Spring Java config
50. Samples
50.1. The FlightBooking sample
51. Appendix

Maven archetype

798
798
799
800
801
801
801
803
803
805
806
808
810
810
812
814
816
817
817
820
823
826
829
831
833
833
834
835
836
836
837
838
839
839
840
842
842
852
852

CITRUS

Chapter 1. Preface

Integration tests are a critical part of software testing. In contrast to unit tests where the primary
goal is to verify a single class or method in isolation to other parts of the software the integration
tests look at a wider scope with several components and software parts interacting with each other.

Integration tests often rely on infrastructure components such as I/0, databases, 3rd party services
and so on. In combination with messaging and multiple message transports as client and/or server
the automated tests become a tough challenge. Testers need sufficient tool support to master this
challenge for automated integration test. Citrus as an Open Source framework is here to help you
master this challenge.

In a typical enterprise application and middleware scenario automated integration testing of
message-based interfaces is exhausting and sometimes barely possible. Usually the tester is forced
to simulate several interface partners in an end-to-end integration test.

The first thing that comes to one’s mind is manual testing. No doubt manual testing is fast. In a long
term perspective manual testing is time-consuming and causes severe problems regarding
maintainability as they are error prone and not repeatable.

Citrus provides a complete test automation tool for integration testing of message-based enterprise
applications. You can test your message interfaces (Http REST, SOAP, JMS, Kafka, TCP/IP, FTP, ...) to
other applications as client and server. Every time a code change is made all automated Citrus tests
ensure the stability of software interfaces and its message communication.

Regression testing and continuous integration is very easy as Citrus fits into your build lifecycle
(Maven or Gradle) as usual Java unit test (JUnit, TestNG, Cucumber).

With powerful validation capabilities for various message formats like XML, CSV or JSON Citrus is
ready to provide fully automated integration tests for end-to-end use cases. Citrus effectively
composes complex messaging use cases with response generation, error simulation, database
interaction and more.

This documentation provides a reference guide to all features of the Citrus test framework. It gives
a detailed picture of effective integration testing with automated integration test environments.
Since this document is open, please do not hesitate to give feedback in form of comments, change
requests, fixes and pull requests. We are more than happy to continuously improve this
documentation with your help!

Chapter 2. Introduction

Citrus provides automated integration tests for message-based enterprise applications. The
framework is Open Source and supports various messaging transports (Http REST, SOAP, JMS,
Kafka, TCP/IP, FTP, ...) and data formats (XML, Json, plaintext, binary).

The Citrus tests use well-known unit test frameworks (JUnit, TestNG, Cucumber) for execution and
integrates with build tools like Maven or Gradle. In addition, Citrus leverages standard libraries like
Quarkus, the Spring Framework or Apache Camel.

It is also good to know that Citrus is written purely in Java. Thus, it is also fully compatible with
Kotlin.

2.1. Overview

Citrus supports simulating interface partners across different messaging transports. You can easily
produce and consume messages with a wide range of protocols like HTTP, JMS, TCP/IP, FTP, SMTP
and more. The framework is able to act both as a client and server. In each communication step
Citrus is able to validate message contents towards syntax and semantics.

In addition to that the Citrus framework offers a wide range of test actions to take control of the
process flow during a test (e.g. iterations, system availability checks, database connectivity,
parallelism, delays, error simulation, scripting and many more).

The test is able to describe a whole use case scenario including several interface partners that
exchange many messages with each other. The composition of complex message flows in a single
test case with several test steps is one of the major features in Citrus.

You can choose how to describe the test case definition either with pure XML or a Java domain
specific language. The tests can be executed multiple times as automated integration test.

With JUnit and TestNG integration Citrus can easily be integrated into your build lifecycle process
(Maven or Gradle). During a test Citrus simulates all surrounding interface partners (client or
server) without any coding effort. With easy definition of expected message content (header and
body) for XML, CSV, SOAP, JSON or plaintext messages Citrus is able to validate the incoming data
towards syntax and semantics.

2.2. Usage scenarios

Citrus should help you whenever it comes to verify a message-based software with its interfaces to
other components and partners using automated integration tests. Every project that interacts with
other components over messaging transports needs to simulate these interface partners on the
client or server side in a test scenario. Citrus is here to help you master these test automation tasks.

SOAP
SOAP suT JMS
o) |0 e || ()
Client Application
Under Test
Huep
<::>
\ v L J

This test set up is typical for a Citrus use case. In such a test scenario we have a system under test
(SUT) with several messaging interfaces to other applications. A client application invokes services
on the SUT and triggers business logic. The SUT is linked to several backend applications over
various messaging transports (here SOAP, JMS, and Http). As part of the business logic one or more
of these backend services is called and interim message notifications and responses are sent back to
the client application.

This generates a bunch of messages that are exchanged throughout the components involved.

In the automated integration test Citrus needs to send and receive those messages over different
transports. Citrus takes care of all interface partners (ClientApplication, Backend1, Backend2,
Backend3) and simulates their behavior by sending proper response messages in order to keep the
message flow alive.

Each communication step comes with message validation and comparison against an expected
message template (e.g. XML or JSON data). In addition to messaging steps Citrus is also able to
perform arbitrary other test actions (e.g. perform a database query between requests).

In fact a Citrus test case is nothing but a normal JUnit or TestNG test case. This makes it very
straight forward to run the tests from your favorite Java IDE (Eclipse, Intelli], VSCode, ...) and as
part of your software build process (Maven or Gradle). The Citrus tests become repeatable and give
you fully automated integration tests to ensure software quality and interface stability.

The following reference guide walks through all Citrus capabilities and shows how to have a great
integration test experience.

Chapter 3. Setup

This chapter discusses how to get started with Citrus. It deals with the installation and set up of the
framework, so you are ready to start writing test cases after reading this chapter.

Usually you add Citrus as a test-scoped dependency library in your project. Build tools like Maven
or Gradle provide standard integration for test libraries such as Citrus. As Citrus tests are nothing
but normal unit tests (JUnit, TestNG, Cucumber) you can run the tests with the standard unit test
build integration (e.g. via maven-failsafe plugin).

This chapter describes the Citrus project setup possibilities, choose one of them that fits best to
include Citrus into your project.

3.1. Using Maven

Citrus uses Maven internally as a project build tool and provides extended support for Maven
projects. Maven will ease up your life as it manages project dependencies and provides extended
build life cycles and conventions for compiling, testing, packaging and installing your Java project.

In case you already use Maven in your project you can just add Citrus as a test-scoped dependency.

As Maven handles all project dependencies automatically you do not need to download any Citrus
project artifacts in advance. If you are new to Maven please refer to the official Maven
documentation and find out how to set up a Maven project.

Assuming you have a proper Maven project setup you can integrate Citrus with it. Just add the
Citrus project dependencies in your Maven pom.xml as a dependency like follows.

* We add Citrus as test-scoped project dependency to the project POM (pom.xml)

Add Citrus base dependency

<dependency>
<groupIld>org.citrusframework</groupId>
<artifactId>citrus-base</artifactId>
<version>${citrus.version}</version>
<scope>test</scope>

</dependency>

* The dependency above adds the base functionality of Citrus. You need to add modules as you
require them.

https://maven.apache.org/
https://maven.apache.org/

Add modules as required in your project. For instance Http support

<dependency>
<groupId>org.citrusframework</groupId>
<artifactId>citrus-http</artifactId>
<version>${citrus.version}</version>
<scope>test</scope>

</dependency>

Choose test runtime (JUnit, TestNG, Cucumber) that is used to run the tests.

<dependency>
<groupId>org.citrusframework</groupId>
<artifactId>citrus-testng</artifactId>
<version>${citrus.version}</version>
<scope>test</scope>

</dependency>

 Citrus integrates nicely with the Spring framework. In case you want to use the Spring
dependency injection and bean configuration capabilities just add the Spring support in Citrus.

Add Spring support

<dependency>
<groupld>org.citrusframework</groupId>
<artifactId>citrus-spring</artifactId>
<version>${citrus.version}</version>
<scope>test</scope>

</dependency>

* Also, Citrus provides a Maven plugin that you can add. The plugin provides some convenience
functionalities such as creating new tests from command line.

Add Citrus Maven plugin

<plugin>
<groupId>org.citrusframework.mvn</groupId>
<artifactId>citrus-maven-plugin</artifactId>
<version>${citrus.version}</version>
<configuration>
<author>Donald Duck</author>
<targetPackage>org.citrusframework</targetPackage>
</configuration>
</plugin>

The Maven project is now ready to use Citrus. You can start writing new test cases with the Citrus
Maven plugin:

https://spring.io/projects/spring-framework

Create new test

mvn citrus:create-test

The command above starts an interactive command line interface that helps you to create a test.

Once you have written the Citrus test cases you can execute them automatically in your Maven
software build lifecycle. The tests will be included into your project’s integration-test phase using
the Maven failsafe plugin. Here is a sample failsafe configuration for Citrus.

Maven failsafe plugin

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<version>${maven.failsafe.version}</version>
<executions>
<execution>
<id>integration-tests</id>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
</execution>
</executions>
</plugin>

The Citrus test sources go to the default Maven test source directory src/test/java and
src/test/resources.

You are now ready to call the usual Maven verify goal (mvn verify) in order to build your project
and run the tests. The Citrus integration tests are executed automatically during the build process.

Run all tests with Maven

mvn verify

Run single test by its name

mvn verify -Dit.test=MyFirstCitrusIT

The Maven failsafe plugin by default executes tests with specific name pattern.

o This is because integration tests should not execute in Maven unit test phase, too.
Your integration tests should follow the failsafe name pattern with each test name
beginning or ending with 'IT".

o If you need additional assistance in setting up a Citrus Maven project please visit
our Maven setup tutorial on https://citrusframework.org/tutorials.html.

3.2. Using Gradle

As Citrus tests are nothing but normal JUnit or TestNG tests the integration to Gradle as build tool is
as easy as adding the source files to a folder in your project. With the Gradle task execution for
integration tests you are able to execute the Citrus tests like you would do with normal unit tests.

The Gradle build configuration goes to the build.gradle and settings.gradle files. The files define
the project name and the project version.

Gradle project configuration

rootProject.name = 'citrus-sample-gradle’
group 'org.citrusframework.samples'
version '${citrus.version}'

The Citrus libraries are available on Maven central repository. This means you should add this
repository so Gradle knows how to download the required Citrus artifacts.

Add Maven central repository

repositories {
mavenCentral()

}

Citrus stable release versions are available on Maven central. Now let’s move on with adding the
Citrus libraries to the project.

Add Citrus test scoped dependencies

dependencies {

testCompile group: 'org.citrusframework', name: 'citrus-base', version:
'${citrus.version}'

testCompile group: 'org.citrusframework', name: 'citrus-http', version:
'${citrus.version}'

testCompile group: 'org.testng', name: 'testng', version: '6.11"

[...]

Citrus provides various modules that encapsulate different functionalities. The citrus-base module
is the basis and holds core functionality. In addition, you may add further modules that match your
project needs (e.g. add Http support with citrus-http).

As a runtime the project chose to use TestNG. You can also use JUnit or Cucumber as a test runtime.
Each of those frameworks integrates seamlessly with the Gradle build.

https://citfrusframework.org

Choose test runtime provider

test {
useTestNG()

Of course JUnit is also supported. This completes the Gradle build configuration settings. You can
move on to writing some Citrus integration tests and add those to src/test/java directory.

You can use the Gradle wrapper for compile, package and test the sample with Gradle build
command line.

Run the build with Gradle

gradlew clean build

This executes all Citrus test cases during the build. You will be able to see Citrus performing some
integration test logging output.

If you just want to execute all tests you can call:

Run all tests

gradlew clean check

Of course, you can also run the Citrus tests from your favorite Java IDE. Just start the Citrus test as a
normal unit test using the Gradle integration in Intelli], Eclipse or VSCode.

Chapter 4. Runtimes

A Citrus test case is nothing but Java unit test leveraging well-known standard tools such as JUnit,
TestNG or Cucumber as a runtime.

Chances are very high that Java developers are familiar with at least one of the standard tools.
Everything you can do with JUnit and TestNG you can do with Citrus tests as well (e.g. Maven build
integration, run tests from your favorite IDE, include tests into a continuous build tool).

Why is Citrus related to unit test frameworks, although it represents a framework
for integration testing? The answer to this question is quite simple: This is because

o Citrus wants to benefit from standard libraries such as JUnit and TestNG for Java
test execution. Both unit testing frameworks offer various ways of execution and
are widely supported by other tools (e.g. continuous build, build lifecycle,
development IDE).

You can write the Citrus test code in a Java domain specific language or in form of an XML test
declaration file that gets loaded as part of the test. The Java domain specific language in Citrus is a
set of classes and methods to leverage the test code in form of a fluent API. Users can simply
configure a test action with the different options using a fluent builder pattern style DSL.

Citrus Java DSL

@CitrusTest(name = "Hello IT")
public void helloTest() {
given(
variable("user", "Citrus")

)i

then(
echo().message("Hello ${user}!"

));

The sample above is a very simple Citrus test that creates a test variable and prints a message to the
console. The Java DSL you write is the same for all runtimes (JUnit, TestNG, Cucumber, etc.) and
should help you to also solve very complex test scenarios.

The following sections have a closer look at the different runtimes for Citrus.

4.1. TestNG

TestNG stands for next generation testing and has had a great influence in adding Java annotations
to the unit test community. Citrus is able to define tests as executable TestNG Java classes.

o The TestNG support is shipped in a separate Maven module. You need to include
the module as a dependency in your project.

10

https://junit.org
https://testng.org
https://cucumber.io
#run-xml-tests
https://testng.org

TestNG module dependency

<dependency>
<groupId>org.citrusframework</groupId>
<artifactId>citrus-testng</artifactId>
<version>${citrus.version}</version>
</dependency>

4.1.1. TestNG tests

See the following sample showing how to write a Citrus test on top of TestNG:

TestNG Citrus test
package org.citrusframework.samples;

import org.testng.annotations.Test;
import org.citrusframework.annotations.CitrusTest;
import org.citrusframework.testng.TestNGCitrusSupport;

@Test
public class Simple_IT extends TestNGCitrusSupport {

@CitrusTest(name = "Simple_IT")
public void simpleTest() {
description("First example showing the basic Java DSL!");

given(
variable("user", "Citrus")
if
then(
echo().message("Hello ${user}!"
)i

If you are familiar with TestNG you will see that the Java class is a normal TestNG test class using
the usual @Test annotation. For convenience reasons you can extend a basic Citrus TestNG base
class TestNGCitrusSupport which enables the Citrus test execution as well as the Java DSL features
for us.

You can also combine Citrus with the Spring framework and its dependency
injection and IoC capabilities. In order to enable Spring support in Citrus add the

o citrus-spring module to your project and extend TestNGCitrusSpringSupport as a
base class. With the Spring support in Citrus the test is able to use @Autowired
annotations for injecting Spring beans into the test class and you can define the
Spring application context with @Configuration annotations for instance.

11

In addition, the test methods use the @CitrusTest annotation which allows setting properties such
as test names and packages.

The Citrus test logic goes directly as the method body with using the Citrus Java domain specific
language features. As you can see the Java DSL is able to follow BDD (Behavior Drive Design)
principles with Given-When-Then syntax. As an alternative to that you can just use run() for all test
actions.

Pure test action DSL

@CitrusTest(name = "Simple_IT")
public void simpleTest() {
description("First example showing the basic Java DSL!");

run(variable("user", "Citrus"));

run(
echo().message("Hello ${user}!"

));

The great news is that you can still use the awesome TestNG features in with the Citrus test class
(e.g. parallel test execution, test groups, setup and tear down operations and so on). Just to give an
example we can simply add a test group to our test like this:

Set test groups

@Test(groups = {"long-running"})
public void longRunningTest() {

}

For more information on TestNG please visit the official TestNG website, where you find a complete
reference documentation. The following sections deal with a subset of these TestNG features in
particular.

4.1.2. Use TestNG data providers

TestNG as a framework comes with lots of great features such as data providers. Data providers
execute a test case several times with different test data. Each test execution works with a specific
parameter value. You can use data provider parameter values as test variables in Citrus. See the
next listing on how to use TestNG data providers in Citrus:

12

https://testng.org

TestNG Citrus data provider test

public class DataProviderIT extends TestNGCitrusSupport {

@CitrusTest

@CitrusParameters({"message", "delay"})

@Test(dataProvider = "messageDataProvider")

public void dataProvider(String message, Long sleep) {
run(echo(message));
run(sleep().milliseconds(sleep));

run(echo("${message}"));
run(echo("${delay}"));
}

@DataProvider
public Object[][] messageDataProvider() {
return new Object[][] {
{ "Hello World!", 300L },
{ "Citrus rocks!", 1000L },
{ "Hi from Citrus!", 500L },

Above test case method is annotated with TestNG data provider called messageDataProvider . In
the same class you can write the data provider that returns a list of parameter values. TestNG will
execute the test case several times according to the provided parameter list. Each execution is
shipped with the respective parameter value.

According to the @CitrusParameter annotation the test will have test variables called message and
delay.

With Sharding

TestNG data provider based tests can additionally be run in a distributed manner, facilitating test
sharding. The following snipped showcases you how to get started within a Spring test case
environment.

13

Sharded TestNG Citrus data provider test

import static org.citrusframework.common.TestLoader.SPRING;
import static org.citrusframework.sharding.Shard.createShard;

import org.citrusframework.annotations.CitrusTestSource;

import org.citrusframework.testng.CitrusParameters;

import org.citrusframework.testng.spring.TestNGCitrusSpringSupport;
import org.testng.annotations.DataProvider;

import org.testng.annotations.Test;

public class DataProviderIT extends TestNGCitrusSupport {

@CitrusParameters({"message", "delay"})
@Test(dataProvider = "messageDataProvider")
@CitrusTestSource(type = SPRING, name = "DataProviderIT")
public void dataProvider(String message, Long sleep) {
run(echo(message));
run(sleep().milliseconds(sleep));

}

@DataProvider("messageDataProvider")
public Object[][] messageDataProvider() {
return createShard(
new Object[][] {
{ "Hello World!", 300L },
{ "Citrus rocks!", 1000L },
{ "Hi from Citrus!", 500L },

All the available configuration options are documented withing the chapter Sharding Test Cases

4.1.3. Run tests in parallel

Integration tests tend to be more time-consuming compared to pure unit tests when it comes to
execute tests. This is because integration tests often need to initialize test infrastructure (e.g. test
servers, database connections). Running tests in parallel can reduce the overall test suite time a lot.

When running tests in parallel you need to make sure each test operates on its own set of resources.
Tests must not share components such as the Citrus Java DSL test action runner or the test context.

You should be using the resource injection to make sure each test operates on its own resources.

14

#runtime-sharded

Resource injection
public class Resourcelnjection_IT extends TestNGCitrusSupport {

@Test

@CitrusTest

public void injectResources(@Optional @CitrusResource TestCaseRunner runner,
@0ptional @CitrusResource TestContext context) {

runner.given(
createVariable("random", "citrus:randomNumber(10)")

)

runner.run(
echo("The random number is: ${random}")

);

First of all the method parameters must be annotated with @ptional because the values are not
injected by TestNG itself but by the Citrus base test class. Finally, the parameter requires the
@CitrusResource annotation in order to mark the parameter for Citrus resource injection.

Now each method uses its own resource instances which makes sure that parallel test execution
can take place without having the risk of side effects on other tests running at the same time. Of
course, you also need to make sure that the message exchange in your tests is ready to be
performed in parallel (e.g. use message selectors).

4.2. JUnit5

With JUnit version 5 the famous unit test framework offers a new major version. The JUnit platform
provides awesome extension points for other frameworks like Citrus to integrate with the unit
testing execution.

Citrus provides extensions in order to enable Citrus related dependency injection and parameter
resolving in your JUnit5 test.

o The JUnit5 support is shipped in a separate Maven module. You need to include the
module as a dependency in your project.

JUnit5 module dependency

<dependency>
<groupId>org.citrusframework</groupId>
<artifactId>citrus-junitb</artifactld>
<version>${citrus.version}</version>
</dependency>

15

4.2.1. Citrus extension
You can use the Citrus JUnit5 extension on your test as follows:

JUnit5 Citrus test
package org.citrusframework.samples;

import org.citrusframework.GherkinTestActionRunner;
import org.citrusframework.annotations.CitrusTest;
import org.citrusframework.junit.jupiter.CitrusSupport;
import org.junit.jupiter.api.Test;

@CitrusSupport
public class Simple_IT {

@Test

@CitrusTest(name = "Simple_IT")

public void simpleTest(@CitrusResource GherkinTestActionRunner runner) {
runner.description("First example showing the basic Java DSL!");

runner.given(
variable("user", "Citrus")

)i

runner . then(
echo().message("Hello ${user}!"

));

The class above is using the JUnit5 @Test annotation as a normal unit test would do. The
@CitrusSupport annotation marks the test to use the Citrus JUnit5 extension. This enables us to use
the @CitrusTest annotation on the test and adds support for the parameter injection for the
TestActionRunner.

You can use the @CitrusSupport annotation, or you can use the classic
(;) @ExtendWith(CitrusExtension.class) annotation to enable the Citrus support for
w

JUnit5.

The Citrus Java DSL runner is the entrance to the Java fluent API provided by Citrus. The sample
above uses the Gherkin test runner variation for leveraging the BDD (Behavior Driven
Development) style Given-When-Then syntax.

You can also inject the current TestContext in order to get access to the current test variables used
by Citrus.

16

You can also combine Citrus with the Spring framework and its dependency
injection and IoC capabilities. In order to enable Spring support in Citrus add the

o citrus-spring module to your project and use the
@ExtendWith(CitrusSpringExtension.class) annotation. With the Spring support in
Citrus the test is able to load components via the Spring application context.

4.2.2. Endpoint injection

In addition to injecting test resources you can also inject endpoints via @CitrusEndpoint annotated
field injection in your test class. This enables you to inject endpoint components that are defined in
the Citrus context configuration.

JUnit5 Citrus endpoint injection
package org.citrusframework.samples;

import org.citrusframework.annotations.*;

import org.citrusframework.GherkinTestActionRunner;
import org.citrusframework.junit.jupiter.CitrusSupport;
import org.citrusframework.http.client.HttpClient;
import org.junit.jupiter.api.Test;

import org.springframework.http.HttpStatus;

@CitrusSupport
public class Simple_IT {

@CitrusEndpoint
private HttpClient http(Client;

@Test
@CitrusTest
public void test(@CitrusResource GherkinTestActionRunner runner) {
runner.http().client(httpClient)
.send()
.get("/hello");

runner.http().client(httpClient)

.receive()
.response(HttpStatus.0K);

4.2.3. Citrus Spring extension

Spring is a famous dependency injection framework that also provides support for JUnit5. Citrus is
able to load its components as Spring beans in an application context. The Citrus JUnit5 extension
works great with the Spring extension.

The Spring extension loads the application context and Citrus adds all components to the Spring

17

bean configuration.

JUnit5 Citrus Spring test

@CitrusSpringSupport
@ContextConfiguration(classes = CitrusSpringConfig.class)
public class SpringBean_IT {

@Autowired
private DirectEndpoint direct;

@Test
@CitrusTest
void springBeanTest(@CitrusResource TestActionRunner actions) {
actions.$(send().endpoint(direct)
.message()
.body("Hello from Citrus!"));

actions.$(receive().endpoint(direct)
.message()
.body("Hello from Citrus!"));

The test now uses the @CitrusSpringSupport annotation which combines the
@ExtendWith(CitrusSpringExtension.class) and @ExtendWith(SpringExtension.class) annotation. This
way the test combines the Spring application context management with the Citrus Java DSL
functionality.

You can load Spring beans with @Autowired into your test. Also, you can use the @CitrusResource
annotations to inject the test action runner fluent Java APIL.

The Spring application context should use the basic CitrusSpringConfig
O configuration class to load all Citrus components as Spring beans. You can
w

customize the Spring application context by adding more configuration classes.

4.2.4. Test Sharding

You can run your JUnit5 test cases in order in a distributed manner, facilitating test sharding. The
following snipped showcases you how to get started within a Spring/XML test case environment.
Note that sharding is available with all kind of Stream-sources.

18

Sharded JUnit5 Spring/XML test

import static org.citrusframework.junit.jupiter.CitrusTestFactorySupport.springXml;
import static org.citrusframework.sharding.Shard.createShard;

import org.citrusframework.config.CitrusSpringConfig;

import org.citrusframework.junit.jupiter.spring.CitrusSpringSupport;

import org.citrusframework.junit.jupiter.spring.CitrusSpringXmlTestFactory;
import org.springframework.test.context.ContextConfiguration;

@CitrusSpringSupport
@ContextConfiguration(classes = {CitrusSpringConfig.class})
class SpringBeanXml_IT {

@CitrusSpringXmlTestFactory
Stream<DynamicTest> shardedSpringBeanXml_IT() {
return createShard(
springXml().packageScan("org.citrusframework.junit.jupiter.simple")

)

All the available configuration options are documented withing the chapter Sharding Test Cases

4.3. JUnit4

JUnit4 is still very popular and widely supported by many tools even though there is a new major
version with JUnit5 already available. In general Citrus supports both JUnit4 and JUnit5 as test
execution framework.

o The JUnit4 support is shipped in a separate Maven module. You need to include the
module as a dependency in your project.

JUnit4 module dependency
<dependency>
<groupld>org.citrusframework</groupld>
<artifactId>citrus-junit</artifactId>

<version>${citrus.version}</version>
</dependency>

4.3.1. JUnit4 tests

See the following sample test class that uses JUnit4.

19

#runtime-sharded

JUnit4 Citrus test
package org.citrusframework.samples;

import org.junit.Test;
import org.citrusframework.annotations.CitrusTest;
import org.citrusframework.junit.JUnit4CitrusSupport;

public class Simple_IT extends JUnit4CitrusSupport {

@Test
@CitrusTest(name = "Simple_IT")
public void simpleTest() {
description("First example showing the basic Java DSL!");

given(
variable("user", "Citrus")
)i
then(
echo().message("Hello ${user}!"
)i

The simple test class above uses the normal @Test annotation and extends the base class
JUnit4CitrusSupport. This is the most convenient way to access the Citrus Java DSL capabilities. As
an alternative you may switch to using the CitrusJUnit4Runner in your test class.

The fine thing here is that we are still able to use all JUnit features such as before/after hooks or
ignoring tests.

After the test run the result is reported exactly like a usual JUnit unit test would do. This also means
that you can execute this Citrus JUnit class like every other JUnit test, especially out of any Java IDE,
with Maven, with Gradle and so on.

You can also combine Citrus with the Spring framework and its dependency
injection and IoC capabilities. In order to enable Spring support in Citrus add the

o citrus-spring module to your project and extend JUnit4CitrusSpringSupport as a
base class. With the Spring support in Citrus the test is able to use @Autowired
annotations for injecting Spring beans into the test class and you can define the
Spring application context with @Configuration annotations for instance.

4.3.2. Run tests in parallel

Integration tests tend to be more time-consuming compared to pure unit tests when it comes to
execute tests. This is because integration tests often need to initialize test infrastructure (e.g. test
servers, database connections). Running tests in parallel can reduce the overall test suite time a lot.

20

When running tests in parallel you need to make sure each test operates on its own set of resources.
Tests must not share components such as the Citrus Java DSL test action runner or the test context.

You should be using the resource injection to make sure each test operates on its own resources.

Resource injection
public class Resourcelnjection_IT extends JUnit4CitrusSupport {

@Test

@CitrusTest

public void injectResources(@CitrusResource TestCaseRunner runner,
@CitrusResource TestContext context) {

runner.given(
createVariable("random", "citrus:randomNumber(10)")

)i

runner.run(
echo("The random number is: ${random}")

)i

The method parameters require the @CitrusResource annotations in order to mark the parameter
for Citrus resource injection.

Now each method uses its own resource instances which makes sure that parallel test execution
can take place without having the risk of side effects on other tests running at the same time. Of
course, you also need to make sure that the message exchange in your tests is ready to be
performed in parallel (e.g. use message selectors).

4.4. QuarkusTest

Quarkus has emerged into a popular enterprise Java framework. For unit and integration testing
the Quarkus framework provides integrations with JUnit Jupiter. Citrus adds a Quarkus test
resource implementation that allows developers to combine Citrus with Quarkus during testing.
You can use the Citrus test resource annotations on your Quarkus tests and include Citrus
capabilities into arbitrary Quarkus tests.

o The Citrus QuarkusTest extension is shipped in a separate Maven module. You
need to include the module as a dependency in your project accordingly.

21

Citrus Quarkus module dependency

<dependency>
<groupId>org.citrusframework</groupId>
<artifactId>citrus-quarkus</artifactId>
<version>${citrus.version}</version>
</dependency>

Usually a Quarkus test is annotated with the @QuarkusTest or QuarkusIntegrationTest annotation.
Users just add an annotation named @CitrusSupport to also enable Citrus capabilities on the test.

The Citrus support will automatically hook into the QuarkusTest lifecycle management to inject
Citrus resources with @CitrusResource annotation. Also, the Citrus extension makes sure to start a
proper Citrus instance and call before/after suite and before/after test handlers.

This way you are able to combine Citrus with @QuarkusTest annotated classes very easily.

Enable Citrus support on QuarkusTest

@QuarkusTest
@CitrusSupport
public class DemoApplicationTest {

@CitrusFramework
private Citrus citrus;

@CitrusResource
private TestCaseRunner t;

@CitrusResource
private TestContext context;

@Test
void shouldVerifyDemoApp() {
t.when(
send()
.endpoint("messageEndpoint")
.message()
.body("How about Citrus!?")
)i
t.when(
receive()
.endpoint("messageEndpoint")
.message()
.body("Citrus rocks!")
)i
}

22

The @CitrusSupport annotation enables the Citrus features on the test. First of all users may inject
Citrus related resources such as TestCaseRunner or the TestContext.

As usual the TestCaseRunner is the entrance to the Citrus domain specific language for running
arbitrary Citrus actions as part of the test.

4.4.1. Endpoint configuration

The test is able to configure Message endpoints to connect to different messaging transports as part
of the test.

Configure message endpoints

@QuarkusTest
@CitrusSupport
public class DemoApplicationTest {

@BindToRegistry

private final KafkaEndpoint bookings = new KafkaEndpointBuilder()
.topic("bookings")
.build();

@CitrusResource
private TestCaseRunner t;

@Test
void shouldVerifyDemoApp() {
t.when(
send()
.endpoint(bookings)
.message()
.body("How about Citrus!?")
b
t.when(
receive()
.endpoint(bookings)
.message()
.body("Citrus rocks!")
)i
}

Creating new message endpoints is very easy. Just use the proper endpoint builder and optionally
bind the new endpoint to the Citrus bean registry via @BindToRegistry annotation. You may then use
the message endpoint in all send and receive test actions in order to exchange messages.

You may move the endpoint configuration into a separate class and load the endpoints with the
configuration class as follows:

23

EndpointConfig.class
public class EndpointConfig {

@BindToRegistry
public KafkaEndpoint bookings() {
return new KafkaEndpointBuilder()
.topic("bookings")
.build();

The endpoint configuration class uses @BindToRegistry members or methods to add beans to the
Citrus registry. The configuration class may be referenced by many tests then using the
@CitrusConfiguration annotation.

Load endpoint config classes

@QuarkusTest

@CitrusSupport

@CitrusConfiqguration(classes = EndpointConfig.class)
public class DemoApplicationTest {

@CitrusResource
private KafkaEndpoint bookings;

@CitrusResource
private TestCaseRunner t;

@Test
void shouldVerifyDemoApp() {
t.when(
send()
.endpoint(bookings)
.message()
.body("How about Citrus!?")
)i
t.when(
receive()
.endpoint(bookings)
.message()
.body("Citrus rocks!")
P
}

Citrus loads the configuration class and injects the KafkaEndpoint instance to the test with
@CitrusResource annotation.

24

4.4.2. Load dynamic tests

Citrus supports many test languages besides writing tests in pure Java. Users can load tests written
in XML, YAML, Groovy and many more via dynamic tests.

Load YAML tests

@QuarkusTest

@CitrusSupport

@CitrusConfiguration(classes = EndpointConfig.class)
public class DemoApplicationTest {

@CitrusTestFactory
public Stream<DynamicTest> loadYamlTests() {
return
CitrusTestFactorySupport.factory(TestLoader.YAML).packageScan("some.package.name");

}
}

The example above loads YAML test case definitions and runs those as dynamic tests with JUnit
Jupiter. The package scan loads all files in the given folder and runs the tests via Citrus. All YAML
tests are able to reference the message endpoints configured in the configuration class
EndpointConfig.class.

A sample YAML test may look like this:

my-test.yaml

name: my-test

actions:
- send:
endpoint: bookings
message:
body:
data: How about Citrus!?
- receive:

endpoint: bookings
timeout: 5000
message:
body:
data: Citrus rocks!

4.4.3. Set application properties

The @QuarkusTest annotation will automatically start the application under test. Citrus provides the
ability to programmatically set application properties before the Quarkus application is started.
This is important when you need to overwrite configuration based on test message endpoints
configured in the test.

25

The next example shows a Citrus enabled Quarkus test that supplies a set of application properties
to configure the application under test.

Supply application properties

@QuarkusTest

@CitrusSupport(applicationPropertiesSupplier = DemoAppConfigurationSupplier.class)
@CitrusConfiguration(classes = EndpointConfig.class)

public class DemoApplicationTest {

I woo

The DemoAppConfiguration class implements the Supplier interface and set a config property. This
property will be set on the application under test.

DemoAppConfigurationSupplier.class

public class DemoAppConfigurationSupplier implements ApplicationPropertiesSupplier {

@0verride

public Map<String, String> get() {
Map<String, String> conf = new Hasmap<>();
conf.put("quarkus.log.level", "INFO");
conf.put("greeting.message", "Hello, Citrus rocks!");
return conf;

The application properties supplier is able to set Quarkus properties as well as application domain
properties. The example above sets greeting.message property which can be referenced in the
Quarkus application:

DemoApplication

@ApplicationScoped
public class DemoApplication {

private static final Logger logger = Logger.getlLogger(DemoApplication.class);

@ConfigProperty(name = "greeting.message")
String message;

void onStart(@0bserves StartupEvent ev) {

logger.info(message);

}

26

4.4.4. Testcontainers support

Citrus integrates with Testcontainers to easily start/stop Testcontainers instances as part of the test.
You can leverage the Citrus Testcontainers features within a Quarkus test very easily. Citrus
implements Quarkus test resources for each of the supported containers (AWS LocalStack, Kafka,
Redpanda, ...).

The following example starts an AWS LocalStack Testcontainers instance and uses the S3 service on
that container to upload a file to the S3 bucket. The Quarkus application under test should handle
this S3 file then.

AwsS3SourceTest

@QuarkusTest

@CitrusSupport

@LocalStackContainerSupport(services = LocalStackContainer.Service.S3,
containerLifecycleListener = AwsS3SourceTest.class)

public class AwsS3SourceTest implements
ContainerLifecyclelListener<LocalStackContainer> {

@CitrusResource
private TestCaseRunner tc;

@CitrusResource
private LocalStackContainer localStackContainer;

@Test
public void shouldHandleUploadedS3File() {
tc.given(this::uploadS3File);

// verify that the Quarkus application has handled the S3 file
}

private void uploadS3File(TestContext context) {
S3Client s3Client = createS3Client(localStackContainer);

CreateMultipartUploadResponse initResponse = s3Client.createMultipartUpload(b
-> b.bucket(s3BucketName).key(s3Key));
String etag = s3Client.uploadPart(b -> b.bucket(s3BucketName)
.key(s3Key)
.uploadId(initResponse.uploadIld())
.partNumber (1),
RequestBody.fromString(s3Data)).eTag();
s3Client.completeMultipartUpload(b -> b.bucket(s3BucketName)
.multipartUpload(CompletedMultipartUpload.builder()
.parts(Collections.singletonList(CompletedPart.builder()
.partNumber (1)
.eTag(etag).build())).build())
.key(s3Key)
.uploadId(initResponse.uploadId()));

27

A

Cco

@0verride
public Map<String, String> started(LocalStackContainer container) {
S3Client s3Client = createS3Client(container);

s3Client.createBucket(b -> b.bucket(s3BucketName));

Map<String, String> conf = new HashMap<>();
conf.put("my.app.aws-s3-source.accessKey", container.getAccessKey());
conf.put("my.app.aws-s3-source.secretKey", container.getSecretKey());
conf.put("my.app.aws-s3-source.region", container.getRegion());
conf.put("my.app.aws-s3-source.bucketNameOrArn", s3BucketName);
conf.put("my.app.aws-s3-source.uriEndpointOverride"”,
container.getServiceEndpoint().toString());
conf.put("my.app.aws-s3-source.overrideEndpoint", "true");
conf.put("my.app.aws-s3-source.forcePathStyle", "true");

return conf;

}

private static S3Client createS3Client(LocalStackContainer container) {
return S3Client.builder()

.endpointOverride(container.getServiceEndpoint())
.credentialsProvider(

StaticCredentialsProvider.create(

AwsBasicCredentials.create(container.getAccessKey(),
container.getSecretKey())

)
)
.forcePathStyle(true)
.region(Region.of(container.getRegion()))
.build();

few things happened in this example and let’s explain those features one after another. First
thing to notice is the @LocalStackContainerSupport annotation that makes Citrus run the AWS
LocalStack Testcontainers instance. Also, the annotation provides the enabled services on that
ntainer (services = LocalStackContainer.Service.S3). This starts the Testcontainers instance as

part of the Quarkus test.

The test also implements the ContainerLifecyclelListener interface. This enables the test to handle
the container instance after it has been started. This is a good place to create an S3 client and the

bucket for the test.

28

Create S3 client

@0verride
public Map<String, String> started(LocalStackContainer container) {
S3Client s3Client = createS3Client(container);

s3Client.createBucket(b -> b.bucket(s3BucketName));

Map<String, String> conf = new HashMap<>();
conf.put("my.app.aws-s3-source.accessKey", container.getAccessKey());
conf.put("my.app.aws-s3-source.secretKey", container.getSecretKey());
conf.put("my.app.aws-s3-source.region", container.getRegion());
conf.put("my.app.aws-s3-source.bucketNameOrArn", s3BucketName);
conf.put("my.app.aws-s3-source.urikndpointOverride"”,
container.getServiceEndpoint().toString());
conf.put("my.app.aws-s3-source.overrideEndpoint"”, "true");
conf.put("my.app.aws-s3-source.forcePathStyle", "true");

return conf;

Also, the started listener may return some application properties that get set for the Quarkus
application under test. This is the opportunity to set the Testcontainers connection settings for the
Quarkus application.

Obviously the Quarkus application uses some property based configuration with the my.app.*
properties. The test is able to reference the Testcontainers exposed settings as values for these
properties (e.g. my.app.aws-s3-source.accessKey=container.getAccessKey()).

With this configuration in place the test is able to upload and S3 file to the test bucket on the
Testcontainers instance with the uploadS3File() method. This should trigger the Quarkus
application under test to handle the new file accordingly. We can add some verification and
assertion steps to verify that the Quarkus application has handled the S3 file.

This is how Citrus is able to start Testcontainers instances as part of a Quarkus test. The application
properties supplier as well as the container lifecycle listener interfaces allow us to connect the
Quarkus application with the Testcontainers instance. The test is able to use the services on the
Testcontainers instance to trigger some test data that is consumed by the application under test.

Please also have a look into the other provided Testcontainers annotations in Citrus:

* @LocalStackContainerSupport
» @KakfaContainerSupport
* @RedpandaContainerSupport
* @TestcontainersSupport
All of these annotations allow you to start Testcontainers instances as part of your Quarkus test and

provides the opportunity to participate in the container lifecycle to access managed ports and
connectivity settings for instance.

29

4.5. Cucumber

Behavior driven development (BDD) is a very popular concept when it comes to find a common
understanding of test scopes test logic. The idea of defining and describing the software behavior as
basis for all tests in prior to translating those feature descriptions into executable tests is a very
interesting approach because it includes the technical experts as well as the domain experts.

With BDD the domain experts should be able to read and verify tests and the technical experts get a
detailed description of what should happen in the test.

The test scenario descriptions follow the Gherkin syntax with a "Given-When-Then" structure. The
Gherkin language is business readable and helps to explain business logic with help of concrete
examples.

There are several frameworks in the Java community supporting BDD concepts. Citrus has
dedicated support for the Cucumber framework because Cucumber is well suited for extensions
and plugins. So with the Citrus and Cucumber integration you can write Gherkin syntax scenarios
in order to run those as Citrus integration tests.

o The Cucumber components in Citrus are located in a separate Maven module. You
need to include the module as a Maven dependency to your project.

Cucumber module dependency

<dependency>
<groupId>org.citrusframework</groupld>
<artifactId>citrus-cucumber</artifactId>
<version>${citrus.version}</version>
</dependency>

Cucumber works with both JUnit and TestNG as unit testing framework. You can choose which
framework to use with Cucumber. So following from that we need a Maven dependency for the
unit testing framework support:

Cucumber JUnit support

<dependency>
<groupId>io.cucumber</groupId>
<artifactId>cucumber-junit</artifactId>
<version>${cucumber.version}</version>
</dependency>

In order to enable Citrus Cucumber support we need to specify a special object factory in the
environment. The most comfortable way to specify a custom object factory is to add this property to
the cucumber.properties in classpath.

30

cucumber.properties

cucumber.object-factory=org.citrusframework.cucumber.backend.CitrusObjectFactory

This special object factory takes care of creating all step definition instances. The object factory is
able to inject @CitrusResource annotated fields in step classes. We will see this later on in the
examples. The usage of this special object factory is mandatory in order to combine Citrus and
Cucumber capabilities.

The CitrusObjectFactory will automatically initialize the Citrus world for us. This includes the
default Citrus context configuration that is automatically loaded within the object factory. So you
can define and use Citrus components as usual within your test.

After these preparation steps you are able to combine Citrus and Cucumber in your project.

G In case you want to use Spring support in Citrus with a Spring application context
- you should use the following factory implementation.
cucumber.properties

cucumber.object-
factory=org.citrusframework.cucumber.backend.spring.CitrusSpringObjectFactory

4.5.1. Cucumber options

Cucumber is able to run tests with JUnit. The basic test case is an empty test which uses the
respective JUnit runner implementation from cucumber.

MyFeature.java

@RunWith(Cucumber.class)
@CucumberOptions(
plugin = { "pretty", "org.citrusframework.cucumber.CitrusReporter" })
public class MyFeaturelT {
b

The test case above uses the Cucumber JUnit test runner. In addition to that we give some options
to the Cucumber execution. In case you want to have the usual Citrus test results reported you can
add the special Citrus reporter implementation org.citrusframework.cucumber.CitrusReporter. This
class is responsible for printing the Citrus test summary. This reporter extends the default
Cucumber reporter so the default Cucumber report summary is also printed to the console.

That completes the JUnit class configuration. Now we are able to add feature stories and step
definitions to the package of our test MyFeaturelT . Cucumber and Citrus will automatically pick
up step definitions and glue code in that test package. So let’s write a feature story echo.feature
right next to the MyFeaturelT test class.

31

echo.feature
Feature: Echo service

Scenario: Say hello
Given My name is Citrus
When I say hello to the service
Then the service should return: "Hello, my name is Citrus!"

Scenario: Say goodbye
Given My name is Citrus
When I say goodbye to the service
Then the service should return: "Goodbye from Citrus!"”

As you can see this story defines two scenarios with the Gherkin Given-When-Then syntax. Now
we need to add step definitions that glue the story description to Citrus test actions. Let’s do this in a
new class EchoSteps .

32

EchoSteps.java
public class EchoSteps {

@CitrusResource
private TestCaseRunner runner;

@Given("AMy name is (.*)$")
public void my_name_is(String name) {
runner.variable("username", name);

}

@When("A say hello.*$")
public void say_hello() {
runner .when(
send("echoEndpoint™)
.message()
.type(MessageType.PLAINTEXT)
.body("Hello, my name is ${username}!"));

}

@When("AI say goodbye.*$")
public void say_goodbye() {
runner.when(
send("echoEndpoint")

.message()
.type(MessageType.PLAINTEXT)
.body("Goodbye from ${username}!"));

¥

@Then("Athe service should return: \"([AM\"]*)\"$")
public void verify_return(final String body) {
runner.then(
receive("echoEndpoint")
.message()
.type(MessageType.PLAINTEXT)
.body(body));

The step definition class is a normal POJO that uses some annotations such as @CitrusResource
annotated TestCaseRunner. The Citrus backend injects the test runner instance at runtime.

The step definition contains normal @Given, @When or @Then annotated methods that match the
scenario descriptions in our feature file. Cucumber will automatically find matching methods and
execute them. The methods add test actions to the test runner as we used to do in normal Java DSL
tests.

That is a first combination of Citrus and Cucumber BDD. The feature file gets translated into step
implementations that use Citrus test action runner Java API to run integration tests with behavior

33

driven development.

4.5.2. Cucumber XML steps

The previous section handled glue code in Java in form of step definitions accessing the Java test
runner fluent API This chapter deals with the same concept with just XML configuration.

Citrus provides a separate configuration namespace and schema definition for Cucumber related
step definitions. Include this namespace into your Spring configuration in order to use the Citrus
Cucumber configuration elements.

Spring bean configuration schema

<spring:beans xmlns:spring="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.citrusframework.org/schema/cucumber/testcase"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schema/cucumber/testcase
http://www.citrusframework.org/schema/cucumber/testcase/citrus-cucumber-

testcase.xsd">

</spring:beans>
The JUnit Cucumber feature class itself does not change. We still use the Cucumber JUnit runner
implementation with some options specific to Citrus:

MyFeaturelTjava

@RunWith(Cucumber.class)
@CucumberOptions(

plugin = { "pretty", "org.citrusframework.cucumber.CitrusReporter" })
public class MyFeaturelT {

}

The feature file with its Gherkin scenarios does also not change:

34

echo.feature
Feature: Echo service

Scenario: Say hello
Given My name is Citrus
W