Citrus

Christoph Deppisch, Martin Maher

Version 2.7.4, 2018-03-13

citrus

L Preface . o 2.....
2. WhatOs new in CitrUs 2.72) o e 8....
2.1.SINCE CItIUS 2.7.4 . . o o o 8....
2.0 0. IDBEC SBIVEI . . ittt 8....
2.1.2. ASYNC CONAINET . . . ottt e e e e e e e e e e e e 8....
2.1.3. System/Env property fUNCLIONS 8...
2.1.4. URL encode/decode fuNCLiONS i e 8...
2.2, SINCE CItIUS 2.7.3 . . o o o d. ...
2.2.1.Ignore sections in plain text 4. ..
2.2.2.Json schema validation e d ...
2.2.3. JUNIES SUPPOIt . a....
2.3.SINCE CItIUS 2.7.2 . . o o o e d. ...
2.3.1. Database transaction handling
2.3.2. ENVIrONMENt SELHNGS . . .o oo d ...
2.3.3. HIP COOKIE SUPPOIT . . e e S....
2.3.4. File resource encodingottt 5 ...
2.4.SINCE CItIUS 2.7 o o o & ...
2.4.0.JaVa 8. . . O
2.4.2. Kubernetes SUPPOI o D ...
2.4.3. SeleniUM SUPPOIt . . . S....
2.4.4. Environment based before/after suite o ..
2.4.5. WsAddressing header customization 6 ..
2.4.6. JsonPath data dictionary 6 ...
2.4.7. Java DSL test behavior o. ...
2.4.8. AULO SElEeCt MESSAgE tYPE . . o ittt a...
2.4.9. Default CucUmMbEr StePSo 6 ...
2.4.00. RefaCtoringo
2., BUGIIXES o &.....
3. INtrOdUCHION . 8.....
3. L OV IV W .o o 8.....
3.2, USAQE SCENANIOS vttt e ettt e e e 8.
. S BIUP .« o o dl
A.1.USING MAVEN . .o dl
4.1.1. Maven arChetypeo dl
4.1.2. EXisting Maven ProjeCtSt 2
4.2.Using Gradle da. ...
4.2.1. Configuration d4

4.3, USING ANL L . e ds. ...

4.3.1. Preconditionsttt A6. ..
4.3.2. DOWNI0A . . .o de. ...
4.3.3.Installation dea ...
D TS LA . . . i d9. ...
5.1, Writing test cases iN XML 20. ..
5.2, Writing teSt Cas@S IN JAVA 23. ..
5.3.Java DSL teSt deSigNero 23. ..
5.4, Java DS teSt TUNNET . . o 27. ..
5.5. Designer/RUNNEr INJECHION e e e 28. ..
5.6. Test CONtEXt INJECHION e e 29. ..
5.7. Java DSL test Dehaviors 80. ..
5.8, DESCIIP I ON o 81 ...
5.0, TESE ACHIONS . . oo 81 ...
5.10. Finally teSt SECHON 82. ..
5.11. Test meta information 83...
6. Test variables 85....
6.1. Global variables 85 ...
6.2. Create variables With CDAT A ... 86 ..
6.3. Create variables With GrooVY e e e a7 ..
6.4. Escaping variables eXpression e 88 ..
7. RUNNING I8SES . . e e e e e e e 40. ...
7L RUNWItD TESING 40 ...
7.2.Using TesStNG DataProviders e e 42 ..
7.3. RUNWIth JUNIES . .o e 43 ...
7.4, RUNWIth JUNITA L e a7 ...
7.5. RUNNING XML tEStS . . . oot e e e e e e e 49. ..
8. CON I QUIALION . . . e b2. ...
8.1. Application environment Settings 52. .
8.2. Application property file H3. ..
8.3. Spring XML application CONtext 54 ..
8.4. Spring Java CoNfig e 65, ..
0. ENAPOINtS . e b57....
9.1. Send messages with endpoints e H8 ..
9.2. Receive messages With endpoints 60. .
0.3. LOCAl MESSAQE SIOIE . . . vttt et 62. ..
10. Message validation e a4 ...
10.1. XML message validation e 64. . .
10.1.1. XML payload validation e a4 ..
10.1.2. XML header validation 65 ..

10.2. Ignore XML elementst ©66. . .

10.2.1. Customize XML parser and serializer i a7 .

10.2.2. Groovy XML validation 68 ..
10.3. JSON message validation e 0. ..
10.4. Schema validation e 5. ..

10.4.1. Managing SCREMASo e e e e e &5. ..

10.4.2. Schema definition overruling 7. .

10.4.3. XML schema validation é8 ..

10.4.4. JSON schema validation e 84 ..

10.4.5. JSON sChema repoSItOriesS o e e e 85..

10.4.6. JSON schema filtering and validation strategy 85.
10.5. XHTML message validation e e e e e 86 ..
10.6. Plain text message validation 87..

10.6.1. Whitespace charaCters e e e 88 ..

10.6.2. IgNOrNg teXt PartS . . o 89. ..

10.6.3. Creating variables e Q0. ..
10.7. Binary message validation ol ..
10.8. Gzip message validation e Q2. ..
10.9. Java DSL validation callbacks 3.
10.10. Customize message validators i o5..

1L USINg XPath . .o o7. ...
11.1. Manipulate with XPath e o7. ..
11.2. Validate with XPath o8. ..
11.3. Extract variables with XPath d01.
11.4. XML namespaces in XPath e 402 .
11.5. Default namespaces in XPath 404 .

12. Using JSONPath e e do06. ..
12.1. Manipulate with JSONPath e 406 .
12.2. Validate with JISONPath e 08. .
12.3. Extract variables with JSONPath e d10.
12.4. Ignore with JSONPath e dll..

13, TSt ACHONS . . .ttt di2. ..
13.1. SeNAiNG MESSAGES - . ittt et et e e e d12..
13,2, RECEIVE MBS SAgES. « . o o vttt sttt e e d19..

13.2.1. Validate message payloads e d22.

13.2.2. Validate message headers d24.

13.2.3. MESSAQE SEIECIONS . . . o oo d25. .

13.2.4. Groovy MarkupBuilder e A27. .
13.3. Database aCtions d28..

13.3.1. SQL update, insert, delete d29.

13,3, 2. SO QUEIY ottt A30..

13.3.3. Transaction Mmanagementttt d34.

13.3.4. Groovy SQL result set validation é.35.

13.3.5. Save result set values €36 .
R =TT o d37...
13D, JAVa . d37. ..
13.6. RECEIVE TIMEBOUL . . . oo e e e e €39
13 7. BCNO. . . e d41
13,8, SIOP LM . . oo d4l. ..
13.9. Create variables d43. .
13.10. Trace variables 45 . .
130, TranS OrM o da6. . .
13.12. Groovy SCHPt EXECULION e e d49. .
13.18. Failing the test d52..
13 0, INPUL . o d54. ..
13,05, L0ad .. e e d56. ..
13 06, WAt . . .o e d57. ..
13.17. Purging JMS destinations e €59 .
13.18. Purging message Channels e 463 .
13.19. PUrging endpOintsSo d68. .
13.20. Assert failure ... A72 ..
13.21. CatCh eXCePtONS . . . e d73..
13.22. Apache Ant build d74..
13,28, Start/ StOP SEIVEI . . e d78. .
1324, SIOP TIMEL . oottt e d80. ..
13.25. CUSIOM teSt aCHIONS o oot e d81..

L4, TemMPlates . .. e d84. ..
15, TeSt DENAVIOrS . . . é88. ..
15. 1. Behavior typeS ..o 489 ..
16. CONAINEIS . . oottt e e e d90. ..
16.1. Sequential e d90. ..
16.2. Conditional dol ..
16.3. Parallel do2. ..
16.4. HErate d94. ..
16.5. Repeat Until true e d96. .
16.6. Repeat on error Until true o e €198 .
16, 7. TIMIET oo 200. ..
18,8, ASYNC . . ottt 203. ..
16.9. CUSIOM CONTAINEISttt et et e e e e e e et e e 205. .
17, IMS SUPPOI . o o e et e e e e e 208. ..
17.1. IMS eNAPOINtS . . .o e 208 ..
17.2. IMS synchronous endpointSttt 210 .

17,3, IM S tOPICS .« v vt 213. ..

17.4. IMS message headerso e e 214. .

17.5. Dynamic destination Namesttt 214 .
17.6. SOAP OVEr JM S . . o 215 ..
18. HTTP REST SUPPOIt . o o o e e e e e e 216 . .
18. 1. HTTP REST Cliento e e e e e e e e e e 216. .
18.2. HTTP Client iINterCeplorsot e e e e e 222. .
18.3. HTTP REST SeIVEI . . e e e e e e e e 222. .
18.4. HTTP headerso e e e e 226 ..
18.5. HTTP Server iINterCeptOrSttt e e e e e 230, .
18.6. HTTP form urlencoded data e 231 .
18.7. HTTP error handlingt e e e e e e 232. .
18.8. HTTP client basic authentication e 234.
18.9. HTTP server basic authentication e 236.
18.10. HTTP COOKIES . . ot e e e e e 237 ..
18.11. HTTP GZIp COMPIESSION . . v vttt ettt e e et e e e e e e e e e 242. .
18.12. HTTP servlet filters e 244. .
18.13. HTTP servlet context CUStOMIZAtION e e 245.
19. Wb SOCKET SUPPOM . . . e e e 247 . .
19.1. WebSocket Client 247 . .
19.2. WebSocket server endpoints 249 .
19.3. WebSocket headers 250. .
20. SOAP WEDSEIVICES . . oottt 253 ..
20.1. SOAP ClieNt . . oo 253 ..
20.2. SOAP Client INtErCEPIOrS . .o e 255, .
20.3. SOAP SNV . . oottt 256. . .
20.4. SOAP sSend and rECEIVE oot e e e 258. .
20.5. SOAP headerso 260 . .
20.6. SOAP HTTP mime headers e 263 .
20.7. SOAP Envelope handling e e e 264. .
20.8. SOAP SerVer INTEICEPIOIS . .\ e e e e 265, .
20.9. SOAP L. 2. . i 266. . .
20.10. SOAP faUItS . . . ot 267. ..
20.11. Send SOAP faUltSo 267 . .
20.12. Receive SOAP faulls 269. .
20.13. Multiple SOAP fault details e 275 .
20.14. Send HTTP error codes With SOAP s 278.
20.15. SOAP attachment SUPPOIt . .. e e e e e 279 .
20.16. Send SOAP attaChmentso 279 .
20.17. Receive SOAP attaChments e 280 .
20.18. SOAP MTOM SUPPOI oottt et e e e e e e e e e e e e e e e e 281. .

20.19.

SOAP client basic authentication 284.

20.20. SOAP server basic authentication it 286.

20.21. WS-AdAressing SUPPOI . .. e e e 287. .
20.22. SOAP client fork mode 2809. .
20.23. SOAP servlet context CUStOMIZAtIONt 290.
20 FTP SUPPOI . . vttt 294. ..
211 FTP Client . .o 294. . .
20 2, FTP SBIVI . 295. ..
22. Message channel SUPPOIt e 298. .
22.1. Channel endpoint e 298. .
22.2. Synchronous channel endpoints e &00.
22.3. Message selectors on channels e 302.
22.4. Root QName Message SeleCtor i e 8302.
22.5. XPath Evaluating Message Selector i e S03.
23, Flle SUPPO T .« . e e 805. ..
23 L Write fileS . 805. ..
23.2. Read files . . . oo 806. . .
24. Apache Camel SUPPOIto e 308. .
24.1. Camel endpoint e 308. .
24.2. Synchronous Camel endpoint 811.
24.3. Camel exchange headers e e e 812 .
24.4. Camel exception handling e 812 .
24.5. Camel context handling e 814. .
24.6. Camel route aCtiONS oot 815. .
24.7. Camel controlbus actionso 818 .
25. Vert.X eVent DUS SUPPOM o e 321. .
25,0, Vert.X €NAPOiNt . .. e 321 ..
25.2. Synchronous Vert.Xx endpoint 823 .
25.3. Vert.x instance factory 324. .
26. Malil SUPPOIt . .o 326. . .
26.1. Mail Client .. 827. ..
26.2. Mall SEIVEI .o 830 ..
27, ArquUIllian SUPPOIT .. e 334 ..
27.1. Citrus Arquillian eXtension e 234 .
27.2. Client Side teStiNG vt 335. .
27.3. Container Side teStiNg oottt e 837. .
27 4, TS TUNNEIS . . .t e e e e e e 839 ..
28. DOCKEI SUPPOI . . oo 843. ..
28.1. DocKer ClIENt . . . oo 843 ..
28.2. DoCKker COMmMAaNdS 844. .
29. KUBErNetes SUPPOIt . ..o e 849 ..

29.1. Kubernetes Client 349. .

29.2. Kubernetes commands in XML 851.

29.3. Kubernetes commands iN JaVAottt e 852.
29.4.Info COMMANT . . .o 354 ..
205, LISLIESOUICES . . .t ettt e e et e e e e e e e e e 855 ..
29.6. List N0des and NamMESPACESttt e e e 2356 .
20,7, GRLIESOUICES . . o ittt ittt e e e e e 2356 ..
20.8. Create rESOUICES . . . o o it ittt e e et e e e e 858 ..
20.9. DElBE rESOUICES . . . o it ittt e e e e e e e e e e e 861. .
29.10. WaLCh rESOUICES . . . o ottt e e e e e e e e 861. .
29.11. Kubernetes MeSSagiNngo vttt ittt e e 862. .
0. SSH SUPPOIt . ottt 8364. . .
30.1. SSH ClENt . .ot 8365. . .
0.2, SSH SNV EI . . 867. . .
3L RMI SUP PO T o S70. ..
BL.L. RMICHENt . o 871. ..
3L 2. RMI SOVl . . 873 ..
B2, IMX SUP PO ottt e 876. ..
B2. L IMX ClIBNE . . oo 877. ..
2.2, IMX SBIVEI . . 880. . .
33. CucUMbBEr BDD SUPPOI .« . e 385. .
33.1. Cucumber Integration e 386. .
33.2. CucumMbBEr XML StEPS . v vttt e 389. .
33.3. Cucumber SPriNg SUPPOIt . ..ot 892 .
33.4. Citrus step definitions e 894. .
33. 5. Variable StePS e 296 ..
33.6. MESSAQING StEPS . . . ottt ittt 897. .
33, 7. NaMEA MESSAGES .« v v v v vttt et ettt e e et e 398. .
33.8. MESSage CreatOr SIEPS . . . i ittt et 8399. .
33,9, ECNO StEPS . o 401. . .
33.10. SIEEP SIS .« v v vttt e 401 ..
B3 . HE D St .« . ottt et 402. . .
33,12, DOCKET SEEPS . .o ittt 403 ..
33.13. SElENIUM S P S . . oottt e 404 ..
4. ZOOKEEPEI SUPPOI oot 408 . .
34.1. ZOOKeEPEr CliEeNt 408 ..
34.2. ZOOKEEPEr COMMANAS . . . e e e e e e e e 409. .
35. Spring ReStdOCS SUPPOIt . .. oot 414. .
35.1. Spring Restdocs Using HUtp ot e 414 .
35.2. Spring Restdocs USiNg SOAP AlT .
35.3. Spring Restdocs iNn Java DSL e 418 .

36. SeleNiUM SUPPOM . .t 421 ..

36.1. Selenium BrOWSEr . . oo 421. .

36.2. Selenium aCtionNS 422 ..
36.3. Start/stop DroOWSEr e 426. .
6.4, FINA . ..o e 427 . ..
36.5. CliCK . . .o 428. ..
36.6. HOVET o 429. ..
36.7. FOrmM INPUL @CHIONS e é429. .
36.8. Page aCtioNS.o e 430. ..
36.9. Page validation e 431 ..
36,10, Wt . . oot 433. ..
36. 1L NaAVIgALE . . .ottt 433. ..
36.12. WINAOW 8CHIONSottt e e e 434 ..
36.03. Al . 434. ..
36.14. Make SCreenShOto 435. .
36.15. Clear browser cache 436. .
B7. DB SUPPOI . o ot 437. ..
37.1. The Citrus-IDBC-DIIVEL o o e e e e e e 437. .
37.2. The CitruS-JDBC-SIVET o o ittt e e e e e e e e e e 438. .
37.2.1. TranSaCliONSottt et 440. .
37.2.2. Prepared statements 44l .
37.2.3. Callable statements / stored procedures 442
37.2.4, CoNfigUIAtiON 442. .
37.3. JUDCMESSAGE - . . vttt 443 . .
37.3. 1. DataSet ParSiNg oottt 445, .
38. Dynamic endpoint COMPONENTSo e e e e e e 448 .
39. ENdpoint adapter 454 . .
39.1. Empty response endpoint adapter 454,
39.2. Static response endpoint adapter e é454.
39.3. Request dispatching endpoint adapter 456.
39.4. Channel endpoint adapter e 457, .
39.5. IMS endpoint adapter e 457. .
A0. FUNCHIONS . . oot e e e e e e e 459. ..
40,0, CONCAL() « et e é459. ..
40.2. SUDSIIING() - . o v oot 460. . .
40.3. stringLength()ottt e 461 ..
40.4. translate() 461. . .
40.5. substringBefore() 462 . .
40.6. SUDSIIINGAREI() . ..o e 462 ..
A0.7. TOUNA() © e e e 462. ..
40.8. flO0r() .« oot e e 463. ..

40.9. CeIING() « o e e e 463. ..

40.10. randomNUMbBEr() .. 463. .

40.171. randomStiNg() . . v oot e 464 . .
40.12. randomENUMValue() .. .ottt 464. .

40.13. CUIMTENIDALE() . . v oo oo e 465 . .
40,04, UPPEICASE() « « v v v e et e 466 . .
40,15, IOWEICASE() .« o v v v oot 466 . .
40.16. AVEIAGE() -« v vttt e 4686. . .
40,27, MINIMUM() .o e e e 467, . .
40.18. MaXiMUM() .o oot e e 467, . .
40,09, SUM)« o vttt e e 467. ..
40.20. @DSOIULE() . . .o oo e 467. . .
40.21. MapValue() . ..o 467, . .
40.22. randomUUID() ...ttt e 468 ..
40.23. €NCOUEBASEBA() . . oo 468. .

40.24. deCOdeBasSEB (). . . . v vttt 468 ..
40.25. €SCapeXmMl() . . o oo e 469 . .
40.26. CAAtaSECHON() . . v o oo e 469 . .
40.27. digestAuthHeader()o e e 469. .

40.28. 10CalHOSIAAAIESS() . .o v vt e e e é470. .

40.29. changeDate() vttt e 470 . .
40.30. readFile() . ..o oo a7l ..
40,31, MESSAGE() .+« v v v vttt e a7l ..
40.32. XPAtN() . oo e 472. ..
40.33.JS0NPath()o 473, ..
40.34. urlEncode()/urlDecode()ot A74 .

40.35. SYStEMPIOPEIY () .« o v ottt 474. .

A0.36. BNV) .+ vttt e a474. ..

41. Validation matCher A76

g Ot O T T = a477. ..
41.2. matchesXml()ot e e 478 ..
41.3. equalSIgNOrECase() . . 479. .

A4, CONAINS() .« v oo e 479. ..
415, startsSWith() e 479, ..
41.6. endsWIth()o e 479. . .
A0.7. MALCNES() « v o e 479. ..
41.8. matchesDatePattern()t 480. .

40,9, ISNUMDBEI() . . e e 480. . .
41,00, I0WEIThAaN() ..ot e 480 . .
41,00, greaterThan() . ..o 480 . .
41,02, ISWEEKAAY () . . vttt e e 480 . .

41,03, vaniable() ... 481. . .

41,04, dateRaANGE() . . o o v oo 481 ..

41.15. @ssertThat() oo 482 . .
42. Data diCtiONAIESttt 483 ..
42.1. XML data diCtionariest 483. .
42.2. JSON data diCtionaries e 485. .
42.3. DICHIONAIY SCOPES . . . ot e e e e e e e e e e e 486. .
42.4. Path mapping Strategiesttt 487. .
A3, TESE ACHOIS . . o ottt et e 489. ..
43.1. DefiN@ teSt @CIOIS ot 489. .
43.2. LINK tESt @CIOIS . . . o oo 489 . .
43.3. Disable teSt ACtOrS 490. .
A4, TeSt SUItE ACHIONSttt e e 491 ..
A4 1. Before SUIte 491 ..
A4 2. ARTEr SUITE . o oo 494. ..
A4 3. BefOore teSt . . oo 497. ..
N (=] (= S 600. . .
A5, Finally SECHONo 603, ..
46. Customize meta information e 606. .
47. Tracing iNncOmMING/OUtgOING MESSATES . o o v oot e e e et et e et e e et 608.
48. Reporting and test resSUItS e 510. .
48.1. CONSOIE l0gQING . . o o oo e 510..
48,2, JUNIE TEPOMS . o oot e all ..
48,3, HT ML POt S . . ittt e e Aall ..
4O, SaAMPIES . . e 613. ..
49.1. The FlightBooking sample e &13 .
49.1.1. TRE USE CASE.ttt ittt e e e e e 614 . .
49.1.2. Configure the simulated SyStemMSt 615,
49.1.3. Configure the Http adapter e 617,
49.1.4. TRE tESE CASE . . . ottt 618. .
B0, APPENAIX . . e H24. ..
Changes in CitrUS 2.6 e e e e H24 ..
GZIP COMPIESSION . . vttt ettt et e H24 . .
Custom servlet filters 624. .
Escape test variable syntax e 624, .
Configurable XML serializer H24 .
LOCAl MESSAGE SIOME . . .\ ittt it ettt e e e e e e 624 ..
Wait message CONditioN 625. .
Xpath and JsonPath FUNCtion h25.
Static response adapter variables SUPPOIt H25
Cucumber BDD SUPPOI . . vt 625. .

ZO0KEEPEr SUPPOIt . oottt e 625..

SPring ReStdOCS SUPPOI . ..ottt e 625. .

Hamcrest matcher conditions 526 .
SOAP Java DSL. . . . 526. . .
REfaCIONNG . . .o 526. . .
Changes in CitrUS 2.5 e e 526 ..
Hamcrest matCher SUPPOIot e 627. .
Binary base64 message validator 627 .
R SUPPOIt oo H27. . .
IMX SUPPOIT . e H27. . .
RESOUICE INJECHON 627 ..
Http x-www-form-urlencoded message validator 527
Date range validation matcher 528 .
Read file resource funCtion 628 .
TIMEr CONTAINET . o ot e e e Hh28 ..
Upgrade t0 Vert.X 3.2.0 e 528. .
Changes in CItrUS 2.4 e e e e 528 ..
DOCKEr SUPPOIt . oo e H28 ..
HIp REST @CliONS . .o e e e e e e e e 528 ..
Walt teSt aCtiON H28 ..
Camel aCHIONS 629. ..
Purge endpoints aCtion e 629. .
Release to Maven Central 629. .
Changes in CitrUS 2.3 e e e H29. .
Testrunner and test designer £29.
WeEDSOCKEL SUPPOIt . . 630. .
JSONPaAth SUPPOI . . . 530. .
Customize message validators A30.
Library Upgrades e 530. .
Upgrade from CitrUs 2.2 ... e 630. .
BUGIIXES . . 631, ..
Changes in CitrUS 2.2 e e e e e H31..
Arquillian SUPPOMt .. H31..
JUNIE SUPPOI . . e 631 ..
Start/Stop SErVer aCliON H32. .
Citrus ANt tasKSo H32 ..
BUGIIXES . . H32. ..
Changes in CitrUS 2.0 e e H32..
SOAP MTOM SUPPOIt oot e e e e e H32. .
SOAP envelope handling e H32. .
SOAP 1.2 message factory H32. .

TestNG data provider handling e H33.

Mail MesSSage NAMESPACEo vttt it e H33. .

SSh MESSAgE NAMESPACE ottt ittt e e e H33. .
Changes in CitrUS 2.0 o e e e e H33..
REfaCIONNG . . .o H33. ..
SPriNg frameWOorK 4.X ... e 534. .
FT P SUPPOI oo H35. ..
Functions with teSt CONtEXt BCCESSttt 635.
Validation matcher with test CONteXt aCCESSot 635
Message listener with test context aCCeSSttt e e e 635,
SOAP OVEr IMS. . 635, ..
Multiple SOAP attaChments e 635, .
Multiple SOAP XML header fragments i e e e H35.
Create variable validation matcher 635.
New configuration COMPONENTS e e e e e 536 .
Before/after suite COMPONENTS 536 .

Citrus IMS mModule o 536. .

Copyright © 2018 ConSol Software GmbH
Version: 2.7.4

CITRUSE

Chapter 1. Preface

Integration testing can be very hard, especially when there is no sufficient tool support. Unit testing

is flavored with fantastic tools and APIs like JUnit, TestNG, EasyMock, Mockito and so on. These
tools support you in writing automated tests. A tester who is in charge of integration testing may
lack of tool support for automated testing especially when it comes to simulate messaging
interfaces.

In a typical enterprise application scenario the test team has to deal with different messaging
interfaces and various transport protocols. Without sufficient tool support the automated
integration testing of message-based interactions between interface partners is exhausting and
sometimes barely possible.

The tester is forced to simulate several interface partners in an end-to-end integration test. The first
thing that comes to our mind is manual testing. No doubt manual testing is fast. In long term
perspective manual testing is time consuming and causes severe problems regarding
maintainability as they are error prone and not repeatable.

The Citrus framework gives a complete test automation tool for integration testing of enterprise
applications. You can test your message interfaces to other applications as client and server. Every
time a code change applies all automated Citrus tests ensure the stability of interfaces and message
communication.

Regression testing and continuous integration is very easy as Citrus fits into your build lifecycle as
usual Java unit test. You can use Citrus with JUnit or TestNG in order to integrate with your
application build.

With powerful validation capabilities for various message formats like XML, CSV or JSON Citrus is
designed to provide fully automated integration tests for end-to-end use cases. Citrus effectively
composes complex messaging use cases with response generation, error simulation, database
interaction and more.

This documentation provides a reference guide to all features of the Citrus test framework. It gives
a detailed picture of effective integration testing with automated integration test environments.
Since this document is considered to be under construction, please do not hesitate to give any
comments or requests to us using our user or support mailing lists.

Chapter 2. WhatOs new in Citrus 2.77?!

Citrus 2.7 is using Java 8! The Citrus sources are compiled with Java 8 which means that from now
on you need at least Java 8 runtime to work with Citrus. With this Java 8 base Citrus is proud to
welcome two new crew members for supporting Selenium and Kubernetes in tests. Not enough we
have the following features included in the box.

2.1. Since Citrus 2.7.4

2.1.1. JDBC server

Preparing databases for testing can be hard times. Creating all tables and preparing the test data
with all constraints and data integrity is often a full time job and very exhausting. Instead of
preparing a real database wouldOnt it be nice to just mock the database queries with proper result
set generation just in time within the test? But at the same time we need to really use JDBC to
connect and retrieve the data from a JDBC mock server.

This is now possible with the new JDBC server integration in Citrus. You can receive incoming SQL
statements (INSERT, UPDATE, SELECT, DELETE, E) and respond with a proper data set and/or rows
updated result. This enables us to test the data access in a database persistence layer without
having to actually create the tables and data needed for the test scenario.

Read about it in chapter JDBC server.

2.1.2. Async container

Sometimes it is good to execute test actions in parallel so you can do things simultaneously in a test
case. In some cases it is just to execute a single test action in parallel to the rest of the test. When
using send operations you already could have used fork="true" option on that test action. The async
test action container provides such functionality for all other test actions, too. Just add a test action

to the async container and the action is executed in a separate thread. The test case is not blocked
with that action execution and immediately executes the next action in place.

Read about it in chapter Async.

2.1.3. System/Env property functions

There are new functions available to access System properties and environment settings. This
enables you to resolve property values in test cases at runtime. See how to use this functions in
chapter functions .

2.1.4. URL encode/decode functions

Two new functions enable you to URL encode/decode a String with proper URL escaping. See how
to use this functions in chapter functions .

#jdbc
#containers-async
#functions
#functions

2.2. Since Citrus 2.7.3

2.2.1. Ignore sections in plain text

Plain text message validation is usually based on a complete String equals comparison. With latest
release we added the possibility to ignore some sections with well known @ignore@keyword
placeholder. The message validator will automatically ignore words or character sections based on

that. Read more about this in chapter plain text message validation

Also possible is the extraction of sections as new test variables when using the @variable()@
matcher in the plain text message content.

2.2.2. Json schema validation

When dealing with Json message content the latest release allows adding of schema validation. The
Json structure is validated with proper schema as of Open API (Swagger) schema rules. As usual the
available schema files are defined in a schema repository in the project configuration. Read more
about this in chapter json schema validation

2.2.3. JUnit5 support

With this release you are able to integrate Citrus with JUnit5 the new generation of the famous unit
testing framework. We provide a Citrus JUnit5 extension that can do the trick. Read more about this
in chapter run with JUnit5

2.3. Since Citrus 2.7.2

2.3.1. Database transaction handling

When Citrus accesses data storage in form of SQL statements executed on some datasource the
transaction handling has not been set in the past. Each SQL statement has been committed
immediately. Especially when executing multiple SQL statement via script this could lead to
inconsistencies. With the new release you can make use of SpringOs transaction handling when
executing SQL statements with Citrus. You can set a transaction handler with isolation levels and
default transaction timeout settings. This enables you to use transaction blocks for multiple
statements with one single commit or rollback. Read more about this in chapter actions accessing
the database .

2.3.2. Environment settings

We added a mechanism to overwrite general settings in Citrus via system properties and
environment variables. This makes Citrus ready for runtime environments such as Docker and
Kubernetes where you can use environment variables to change Citrus behavior. The available
settings and variable names can be seen in chapter configuration

#plain-text-message-validation
#json-schema-validation
#run-with-junit5
#sql-transaction-management
#sql-transaction-management
#configuration

2.3.3. Http cookie support

Setting Http cookie related Http headers has been possible in previous versions. We improved that
cookie handling in Http request and response messages with a dedicated DSL for adding and
verifying cookie information in Http headers. The Citrus http-server is able to advice the client to

set a new cookie with respective Set-Cookie headers in response messages. The http-client is able to
verify the cookie attributes such as name, value, max-age and so on. In addition to that the client is

able to send the cookie name value pair in further requests as a reference via " Cookie " message
headers. The complete new cookie handling is described in section Http cookie handling

2.3.4. File resource encoding

The Citrus test case is able to load file resources in various situations e.g. when defining expected
message contents. The file resource encoding and charset used a system-wide default setting which
has been settable via system property (citrus.file.encoding). In addition to that we have added the
opportunity to overwrite this system-wide setting in each resource read operation. This means that
everywhere where it is possible to load a file resource you can explicitly set a file encoding and
charset for this read operation. This enables you to use more than one system-wide file encoding
setting when reading data from external file resources in Citrus.

2.4. Since Citrus 2.7

2.4.1. Java 8

Citrus is now using Java 8. This is mainly because we need to move on in using latest versions of
Spring Framework, Apache Camel and so on. If you are still stuck on Java 7 you can not update to
2.7 as the Citrus sources are compiled with Java 8. Please contact us in case you really can not
update to Java 8 in your project. We can think of a minor bugfix version with Citrus 2.6 base that
still supports Java 7 runtime. On the bright side we can now use the full power of Lambda
expressions and other Java 8 features in Citrus code base.

2.4.2. Kubernetes support

Citrus is now able to interact with Kubernetes remote API in order to manage pods, services and
other resources on the Kubernetes platform. The Kubernetes client is based on the Fabric8 Java
client that interacts with the Kubernetes API via REST services. So you can access Kubernetes
resources within Citrus in order to change or validate the resource state for containerized testing.

This is very useful when dealing with container application environments as part of the integration

tests. Please stay tuned for blog posts and tutorial samples on how Citrus can help you test
Microservices with Docker and Kubernetes. The basic usage is described in section kubernetes .

2.4.3. Selenium support

User interface and browser testing has not been a focus within Citrus integration testing until now

that we can integrate with the famous Selenium Ul testing library. Thanks to the great contributions
made by the community - especially by vdsrd@github - we can use Selenium based actions and
features directly in a Citrus test case. The Citrus Java and XML DSL both provide comfortable access

to the Selenium API in order to simulate user interaction within a browser. The mix of user based

#http-cookies
http://kubernetes.io/
https://github.com/fabric8io/kubernetes-client
https://github.com/fabric8io/kubernetes-client
#kubernetes
http://www.seleniumhq.org/
https://github.com/vdsrd

actions and Citrus messaging transport simulation gives complete new ways of handling complex
integration scenarios. Read more about this in chapter Selenium .

2.4.4. Environment based before/after suite

You can enable/disable before and after suite actions based on optional environment or system
properties. Users can give property names or property values that are checked before execution.
Only in case the environment property checks do pass the actions are executed before/after the test
suite run.

2.4.5. WsAddressing header customization

We have improved the header customization options when using SOAP WSAddressing feature. You
can now overwrite the default WSAddressing headers per test action in addition to defining the
headers on client endpoint component level.

2.4.6. JsonPath data dictionary

Json data dictionary was based on a simple dot notated syntax. Now you can also use more complex
JsonPath expressions in order to overwrite elements in Json messages based on the data dictionary
settings in Citrus. Read more about that in chapter data-dictionary

2.4.7. Java DSL test behavior

Test behaviors in Java DSL represent templates in XML DSL. The behavior encapsulates a set of test
actions to a group that can be applied to multiple Java DSL tests. This enables you to combine
common test actions in Java DSL with more comfortable reuse of test action definitions. See chapter
test-behavior how to use that.

2.4.8. Auto select message type

Default message type for validation tasks in Citrus has been XML. Based on this message type the
respective message validator implementation applies for XML, JSON plain text and so on. You can
now change this default message type by setting a system property (citrus.default. message.type).
Also Citrus improved the auto select algorithm when the default message type is obviously not
applicable. When a message arrives in Citrus the receiving action tries to find out which message
validator fits best according to the message payload. XML message content is automatically
identified by <> characters. JSON message payloads are identified by {} or [| characters for objects
and array representations. This way Citrus tries to find the best matching message validator for the
incoming message. Before that Citrus has always been using the default message type XML.

Read about different message validators in message-validation .

2.4.9. Default Cucumber steps

The Citrus Cucumber extension now defines default step definitions for Http, Docker and Selenium.
These default steps are ready for usage in any Cucumber Citrus feature specification. You can load
the default steps as additional glue packages in your Cucumber options. After that you are ready to
go for using the default steps directly in feature specification files. With the extensions you can

#selenium
#data-dictionaries
#test-behavior
#message-validation

perform Docker and Selenium commands very easy. Also you can describe the Http REST client-
server communication in BDD style. Read more about this in cucumber .

2.4.10. Refactoring

Deprecated APIs and classes that coexisted a long time are now removed. If your project is using on
of these deprecated classes you may run into compile time errors. Please have a look at the Citrus
APl JavaDocs and documentation in order to find out how to use the new APIs and classes that
replaced the old deprecated stuff.

2.5. Bugfixes

Bugs are part of our software developers world and fixing them is part of your daily business, too.
Finding and solving issues makes Citrus better every day. For a detailed listing of all bugfixes please
refer to the complete changes log of each release.

#cucumber
http://www.citrusframework.org/changes-report.html

Chapter 3. Introduction

Nowadays enterprise applications usually communicate with different partners over loosely
coupled messaging interfaces. The interaction and the interface contract needs to be tested in
integration testing.

In a typical integration test scenario we need to simulate the communication partners over various
transports. How can we test use case scenarios that include several interface partners interacting
with each other? How can somebody ensure that the software components work correctly
regarding the interface contract? How can somebody run integration test cases in an automated
reproducible way? Citrus tries to answer these questions!

3.1. Overview

Citrus aims to strongly support you in simulating interface partners across different messaging
transports. You can easily produce and consume messages with a wide range of protocols like HTTP,
JMS, TCP/IP, FTP, SMTP and more. The framework is able to both act as a client and server. In each
communication step Citrus is able to validate message contents towards syntax and semantics.

In addition to that the Citrus offers a wide range of test actions to take control of the process flow
during a test (e.g. iterations, system availability checks, database connectivity, parallelism, delaying,
error simulation, scripting and many more).

The basic goal in Citrus test cases is to describe a whole use case scenario including several
interface partners that exchange many messages with each other. The composition of complex
message flows in a single test case with several test steps is one of the major features in Citrus.

The test case description is either done in XML or Java and can be executed multiple times as
automated integration test. With JUnit and TestNG integration Citrus can easily be integrated into
your build lifecycle process. During a test Citrus simulates all surrounding interface partners (client

or server) without any coding effort. With easy definition of expected message content (header and
payload) for XML, CSV, SOAP, JSON or plaintext messages Citrus is able to validate the incoming data
towards syntax and semantics.

3.2. Usage scenarios

If you are in charge of an enterprise application in a message based solution with message
interfaces to other software components you should use Citrus. In case your project interacts with
other software over different messaging transports and in case you need to simulate these interface
partners on client or server side you should use Citrus. In case you need to continuously check the
software stability not only on a unit testing basis but also in an end-to-end integration scenario you
should use Citrus. Bug fixing, release or regression testing is very easy with Citrus. In case you are
struggling with code stability and feel uncomfortable regarding your next software release you
should definitely use Citrus.

Client Application

SOAP

\

s ™~
SOAP
S — Backend |
~
SOAP SUT JMS
> System {T———> Backend 2
Under Test
4 Http
<> Backend 3
_ Y,
~ e ~
SOAP
{——> Backend |
SUT Ms
System <> Backend 2
Under Test
Http
> Backend 3
Y _ Y.

This test set up is typical for a Citrus use case. In such a test scenario we have a system under test
(SUT) with several message interfaces to other applications like you would have with an enterprise
service bus for instance. A client application invokes services on the SUT application. The SUT is
linked to several backend applications over various messaging transports (here SOAP, JMS, and
Http). Interim message notifications and final responses are sent back to the client application. This

generates a bunch of messages that are exchanged throughout the applications involved.

In the automated integration test Citrus needs to send and receive those messages over different
transports. Citrus takes care of all interface partners (ClientApplication, Backendl, Backend2,
Backend3) and simulates their behavior by sending proper response messages in order to keep the
message flow alive.

Each communication step comes with message validation and comparison against an expected
message template (e.g. XML or JSON data). Besides messaging actions Citrus is also able to perform
arbitrary other test actions. Citrus is able to perform a database query between requests as an

example.

The Citrus test case runs fully automated as a Java application. In fact a Citrus test case is nothing
but a JUnit or TestNG test case. Step by step the whole use case scenario is performed like in a real
production environment. The Citrus test is repeatable and is included into the software build
process (e.g. using Maven or ANT) like a normal unit test case would do. This gives you fully
automated integration tests to ensure interface stability.

The following reference guide walks through all Citrus capabilities and shows how to set up a great
integration test with Citrus.

10

Chapter 4. Setup

This chapter discusses how to get started with Citrus. It deals with the installation and set up of the
framework, so you are ready to start writing test cases after reading this chapter.

Usually you would use Citrus as a dependency library in your project. In Maven you would just add

Citrus as a test-scoped dependency in your POM. When using ANT you can also run Citrus as

normal Java application from your build.xml. As Citrus tests are nothing but normal unit tests you
could also use JUnit or TestNG ant tasks to execute the Citrus test cases.

This chapter describes the Citrus project setup possibilities, choose one of them that fits best to
include Citrus into your project.

4.1. Using Maven

Citrus uses Maven internally as a project build tool and provides extended support for Maven
projects. Maven will ease up your life as it manages project dependencies and provides extended
build life cycles and conventions for compiling, testing, packaging and installing your Java project.
Therefore it is recommended to use the Citrus Maven project setup. In case you already use Maven
it is most suitable for you to include Citrus as a test-scoped dependency.

As Maven handles all project dependencies automatically you do not need to download any Citrus
project artifacts in advance. If you are new to Maven please refer to the official Maven
documentation to find out how to set up a Maven project.

4.1.1. Maven archetype

If you start from scratch or in case you would like to have Citrus operating in a separate Maven
module you can use the Citrus Maven archetype to create a new Maven project. The archetype will
setup a basic Citrus project structure with basic settings and files.

mvn archetype:generate -Dfilter=com.consol.citrus.mvn:citrus

1: remote -> com.consol.citrus.mvn:citrus-quickstart (Citrus quickstart project)

2: remote -> com.consol.citrus.mvn:citrus-quickstart-jms (Citrus quickstart project
with IMS consumer and producer)

3: remote -> com.consol.citrus.mvn:citrus-quickstart-soap (Citrus quickstart project
with SOAP client and producer)

Choose a number: 1

Define value for groupld: com.consol.citrus.samples
Define value for artifactld: citrus-sample

Define value for version: 1.0-SNAPSHOT

Define value for package: com.consol.citrus.samples

In the sample above we used the Citrus archetype available in Maven central repository. As the list
of default archetypes available in Maven central is very long, it has been filtered for official Citrus

11

http://maven.apache.org/

archetypes.

After choosing the Citrus quickstart archetype you have to define several values for your project:
the groupld, the artifactld, the package and the project version. After that we are done! Maven
created a Citrus project structure for us which is ready for testing. You should see the following
basic project folder structure.

citrus-sample
E| +src

E| | + main

| | +java

| | +resources
| + citrus

| | +java

| | +resources
| | +tests
om.xml

The Citrus project is absolutely ready for testing. With Maven we can build, package, install and test
our project right away without any adjustments. Try to execute the following commands:

mvn integration-test
mvn integration-test -Dtest=MyFirstCitrusTest

| If you need additional assistance in setting up a Citrus Maven project please visit
. our Maven setup tutorial on http://www.citrusframework.org/tutorials.html

4.1.2. Existing Maven projects

In case you already have a proper Maven project you can also integrate Citrus with it. Just add the
Citrus project dependencies in your Maven pom.xml as a dependency like follows.

¥ We add Citrus as test-scoped project dependency to the project POM (pom.xml)

<dependency>

E <groupld>com.consol.citrus</groupld>
E <artifactld>citrus-core</artifactld>

E <version>2.7.4</version>

E <scope>test</scope>

</dependency>

¥ In case you would like to use the Citrus Java DSL also add this dependency to the project

12

http://www.citfrusframework.org

<dependency>

E <groupld>com.consol.citrus</groupld>
E <artifactld>citrus-java-dsl</artifactld>
E <version>2.7.4</version>

E <scope>test</scope>

</dependency>

¥ Add the citrus Maven plugin to your project

<plugin>

E <groupld>com.consol.citrus.mvn</groupld>

E <artifactld>citrus-maven-plugin</artifactld>

E <version>2.7.4</version>

E <configuration>

E <author>Donald Duck</author>

E <targetPackage>com.consol.citrus</targetPackage>
E </configuration>

</plugin>

Now that we have added Citrus to our Maven project we can start writing new test cases with the
Citrus Maven plugin:

mvn citrus:create-test

Once you have written the Citrus test cases you can execute them automatically in your Maven
software build lifecycle. The tests will be included into your projects integration-test phase using
the Maven failsafe plugin. Here is a sample failsafe configuration for Citrus.

<plugin>

E <groupld>org.apache.maven.plugins </groupld>
E <artifactld> maven-failsafe-plugin </artifactld>
E <version>2.20</version>

E <executions>

E <execution>

E <id>integration-tests </id>

E <goals>

E <goal>integration-test </goal>

E <goal>verify </goal>

E </goals>

E </execution>

E </executions>

E</plugin>
The Citrus test sources go to the default Maven test sources directory src/test/java and
src/test/resources

13

Now everything is set up and you can call the usual Maven install goal (mvn clean install) in order
to build your project. The Citrus integration tests are executed automatically during the build

process. Besides that you can call the Maven integration-test phase explicitly to execute all Citrus
tests or a specific test by its name:

mvn integration-test
mvn integration-test -Dtest=MyFirstCitrusIT

The Maven failsafe plugin by default executed tests with specific name pattern.

n This is because integration tests should not execute in Maven unit test phase, too.
Therefore integration tests should follow the failsafe name pattern with each test
name beginning or ending with ~ 'IT" .

If you need additional assistance in setting up a Citrus Maven project please visit
our Maven setup tutorial on http://www.citrusframework.org/tutorials.html

4.2. Using Gradle

As Citrus tests are nothing but normal JUnit or TestNG tests the integration to Gradle as build tool is
as easy as adding the source files to a folder in your project. With the Gradle task execution for
integration tests you are able to execute the Citrus tests like you would do with normal unit tests.

4.2.1. Configuration

The Gradle build configuration is done in the build.gradle and settings.gradle files. Here we
define the project name and the project version.

rootProject . name= 'citrus-sample-gradle’
group '‘com.consol.citrus.samples'
version '2.7.4'

Now as Citrus libraries are available on Maven central repository we add these repositories so
Gradle knows how to download the required Citrus artifacts.

repositories {
E mavenCentral)
maven{
url 'http://labs.consol.de/maven/snapshots-repository/'

~ [M m m

Citrus stable release versions are available on Maven central. If you want to use the very latest next
version as snapshot preview you need to add the ConSol Labs snapshot repository which is
optional. Now lets move on with adding the Citrus libraries to the project.

14

http://www.citfrusframework.org

dependencies {

testCompile group: 'com.consol.citrus' , name: ‘citrus-core’ , version: '2.7.4'
testCompile group: ‘com.consol.citrus' , name: ‘citrus-java-dsl’ , version: '2.7.4'
testCompile group: 'org.testng’ , name:'testng' , version: '6.11'

[.]

~ [T M M m

This enables the Citrus support for the project so we can use the Citrus classes and APIs. We decided
to use TestNG unit test library.

test {
E useTestN®
}

Of course JUnit is also supported. This is all for build configuration settings. We can move on to
writing some Citrus integration tests. You can find those tests in src/test/java directory.

4.2.2. Run with Gradle

You can use the Gradle wrapper for compile, package and test the sample with Gradle build
command line.

Egradlew clean build

This executes all Citrus test cases during the build and you will see Citrus performing some
integration test logging output. After the tests are finished build is successful and you are ready to
go for writing some tests on your own.

If you just want to execute all tests you can call
gradlew clean check

Of course you can also start the Citrus tests from your favorite IDE. Just start the Citrus test using
the Gradle integration in IntelliJ, Eclipse or Netbeans.

4.3. Using Ant

Ant is a very popular way to compile, test, package and execute Java projects. The Apache project
has effectively become a standard in building Java projects. You can run Citrus test cases with Ant
as Citrus is nothing but a Java application. This section describes the steps to setup a proper Citrus
Ant project.

15

4.3.1. Preconditions

Before we start with the Citrus setup be sure to meet the following preconditions. The following
software should be installed on your computer, in order to use the Citrus framework:

¥ Java 8 or higher

Installed JDK plus JAVA_HOME environment variable set up and pointing to your Java installation
directory

¥ Java IDE (optional)

A Java IDE will help you to manage your Citrus project (e.g. creating and executing test cases). You
can use the any Java IDE (e.g. Eclipse or IntelliJ IDEA) but also any convenient XML Editor to write
new test cases.

¥ Ant 1.8 or higher

Ant (http://ant.apache.org/) will run tests and compile your Citrus code extensions if necessary.

4.3.2. Download

First of all we need to download the latest Citrus release archive from the official website
http://www.citrusframework.org

Citrus comes to you as a zipped archive in one of the following packages:

¥ citrus-x.x-release

¥ citrus-x.x-src

The release package includes the Citrus binaries as well as the reference documentation and some
sample applications.

In case you want to get in touch with developing and debugging Citrus you can also go with the
source archive which gives you the complete Citrus Java code sources. The whole Citrus project is
also accessible for you on http://github.com/christophd/citrus . This open git repository on GitHub
enables you to build Citrus from scratch with Maven and contribute code changes.

4.3.3. Installation

After downloading the Citrus archives we extract those into an appropriate location on the local
storage. We are seeking for the Citrus project artifacts coming as normal Java archives (e.g. citrus-
core.jar, citrus-ws.jar, etc.)

You have to include those Citrus Java archives as well as all dependency libraries to your Apache
Ant Java classpath. Usually you would copy all libraries into your projectOs lib directory and declare
those libraries in the Ant build file. As this approach can be very time consuming | recommend to
use a dependency management API such as Apache Ivy which gives you automatic dependency
resolution like that from Maven. In particular this comes in handy with all the 3rd party
dependencies that would be resolved automatically.

16

http://ant.apache.org/
http://www.citrusframework.org
http://github.com/christophd/citrus

No matter what approach you are using to set up the Apache Ant classpath see the following sample
Ant build script which uses the Citrus project artifacts in combination with the TestNG Ant tasks to
run the tests.

<project nametcitrus-sample” basedir="." default= "citrus.run.tests"
xmins:artifact= "antlib:org.apache.maven.artifact.ant" >

E <property file= "src/it/resources/citrus.properties” />

E <path id="maven-ant-tasks.classpath" path="lib/maven-ant-tasks-2.1.3.jar" />
E <typedef resource="org/apache/maven/artifact/ant/antlib.xml"

E uri= "antlib:org.apache.maven.artifact.ant"

E classpathref= "maven-ant-tasks.classpath" />

E <artifact.pom id="citrus-pom" file= "pom.xml" />

E <artifact:dependencies filesetld= "citrus-dependencies” pomRefldcitrus-pom" />
E <path id="citrus-classpath" >

E <pathelement path="src/itjava" />

E <pathelement path="src/it/resources" />

E <pathelement path="src/it/tests" />

E <fileset refid= "citrus-dependencies" />

E </path>

E <taskdef resource="testngtasks" classpath="lib/testng-6.8.8.jar" />

E <target namettompile.tests" >

E <javac srcdir= "src/it/java" classpathref= "citrus-classpath" />

E <javac srcdir= "src/it/tests" classpathref= "citrus-classpath" />

E </target>

E <target nameicreate.test’ description= "Creates a new empty test case" >

E <input message*Enter test name:" addproperty="test.name" />

E <input message“Enter test description:" addproperty="test.description" />
E <input message*Enter author's name:" addproperty="test.author"
defaultvalue= "${default.test.author}" />

E <input message*Enter package:" addproperty="test.package"
defaultvalue= "${default.test.package}’ />

E <input message*Enter framework:" addproperty="test.framework"
defaultvalue= "testng" />

E <java classnameZcom.consol.citrus.util. TestCaseCreator" >

E <classpath refid= "citrus-classpath" />

E <arg line= "-name ${test.name} -author ${test.author} -description
${test.description} -package ${test.package} -framework ${test.framework}" />
E <ljava>

E </target>

E <target namecitrus.run.tests" dependsZcompile.tests" description= "Runs all Citrus
tests" >

E <testng classpathref= "citrus-classpath” >

E <classfileset dir= "src/it/java" includes="**/*.class" />

E <ltestng>

E </target>

E <target nametcitrus.run.single.test" dependszcompile.tests" description= "Runs a

single test by name" >

E <touch file= "test.history" />
E <loadproperties srcfile= “test.history" />
E <echo message% ast test executed: ${last.test.executed}" />

E <input message*Enter test name or leave empty for last test executed:"
addproperty="testclass" defaultvalue= "${last.test.executed}" />

E <propertyfile file= "test.history" >

E <entry key='last.test.executed" type="string" value="${testclass}" />
E </propertyfile>

E <testng classpathref= "citrus-classpath" >

E <classfileset dir= "src/it/java" includes= "**/${testclass}.class" />
E <ltestng>

E </target>

</project>

If you need detailed assistance for building Citrus with Ant do also visit our
! tutorials section on http://www.citrusframework.org . There you can find a
tutorial which describes the Citrus Java project set up with Ant from scratch.

http://www.citrusframework.org

Chapter 5. Test cases

Now let us start writing test cases! A test case in Citrus describes all steps for a certain use case in
one single file. The Citrus test holds a sequence of test actions. Each action represents a very special
purpose such as sending or receiving a message. Typically with message-based enterprise
applications the sending and receiving of messages represent the main actions inside a test.

However you will learn that Citrus is more than just a simple SOAP client for instance. Each test
case can hold complex actions such as connecting to the database, transforming data, adding loops
and conditional steps. With the default Citrus action set you can accomplish very complex use case
integration tests. Later in this guide we will briefly discuss all available test actions and learn how
to use various message transports within the test. For now we will concentrate on the basic test case
structure.

23UaNbas UoI3DYIsa]

references

-------------------- > Endpointl

references

-------------------- » Endpointl

_____ references __, Endpoint2

_____ references __, Endpoint2

19

N references [Endpoint|]

_____ references __, [Endpoint|]

> . r?f?r.t’-:f!?ﬁs.---,.[Endpoint2]

_____ references __, [Endpoint2]

The figure above describes a typical test action sequence in Citrus. A list of sending and receiving
test actions composing a typical test case here. Each action references a predefined Citrus endpoint
component that we are going to talk about later on.

So how do we define those test cases? In general Citrus specifies test cases as Java classes. With
TestNG or JUnit you can execute the Citrus tests within your Java runtime as you would do within

unit testing. You can code the Citrus test in a single Java class doing assertions and using SpringOs
dependency injection mechanisms.

If you are not familiar to writing Java code you can also write Citrus tests as XML files. Whatever
test language you choose for Citrus the whole test case description takes place in one single file
(Java or XML). This chapter will introduce the custom XML schema language as well as the Java
domain specific language so you will be able to write Citrus test cases no matter what knowledge
base you belong to.

5.1. Writing test cases in XML

Put simply, a Citrus test case is nothing but a simple Spring XML configuration file. The Spring
framework has become a state of the art development framework for enterprise Java applications.
As you work with Citrus you will also learn how to use the Spring loc (Inversion of control)
container and the concepts of dependency injection. So let us have a look at the pure Spring XML
configuration syntax first. You are free to write fully compatible test cases for the Citrus framework
just using this syntax.

20

Spring bean definition syntax

<beans

E xmiIns=http://www.springframework.org/schema/beans"

E xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"

E xsi:schemalocation="http://www.springframework.org/schema/beans
E http://www.springframework.org/schema/beans/spring-beans.xsd" >

<bean name=MyFirstTest"
class="com.consol.citrus.TestCase" >
<property namevariableDefinitions" >
<!-- variables of this test go here -->
</property>
<property name=actions" >
<!-- actions of this test go here -->
</property>
</bean>
</beans>

[T [T > [T [T T T [T T

Citrus can execute these Spring bean definitions as normal test cases - no problem, but the pure
Spring XML syntax is very verbose and probably not the best way to describe a test case in Citrus.
In particular you have to know a lot of Citrus internals such as Java class names and property
names. In addition to that as test scenarios get more complex the test cases grow in size. So we need
a more effective and comfortable way of writing tests. Therefore Citrus provides a custom XML
schema definition for writing test cases which is much more adequate for our testing purpose.

The custom XML schema aims to reach the convenience of domain specific languages (DSL). Let us
have a look at the Citrus test describing XML language by introducing a first very simple test case
definition:

21

XML DSL

<spring:beans

xmlns="http://www.citrusframework.org/schema/testcase"

xmlins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:spring= "http://www.springframework.org/schema/beans"
xsi:schemalocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.citrusframework.org/schemal/testcase
http://www.citrusframework.org/schemal/testcase/citrus-testcase.xsd" >

T M T mp me me Ty [mp

<testcase name:MyFirstTest" >
<description>
First example showing the basic test case definition elements!
</description>
<variables>
<variable name#ext" value="Hello Test Framework" />
</variables>
<actions>
<echo>
<message${text} </message>
</echo>
</actions>
</testcase>
</spring:beans>

™ > T [e T T e T T me T e

We do need the ‘<spring:beans>" root element as the XML file is read by the Spring IoC container.
Inside this root element the Citrus specific namespace definitions take place.

The test case itself gets a mandatory name that must be unique throughout all test cases in a
project. You will receive errors when using duplicate test names. The test name has to follow the
common Java naming conventions and rules for Java classes. This means names must not contain

any whitespace characters but characters like -, '.", ' " are supported. For example, _TestFeature 1 is
valid but Test Feature 1 is not as it contains whitespace characters like spaces.

Now that we have an XML definition that describes the steps of our test we need a Java executable
for the test. The Java executable is needed for the framework in order to run the test. See the
following sample Java class that represents a simple Citrus Java test:

22

import org.testng.annotations.Test ;
import com.consol.citrus.annotations.CitrusTest ;
import com.consol.citrus.testng.AbstractTestNGCitrusTest ;

@Test
public class MyFirstTest extends AbstractTestNGCitrusTest {

@CitrusXmlITes{name= "MyFirstTest")
public void myFirstTest () {

}

=~ [T [T m

The sample above is a Java class that represents a valid Citrus Java executable. The Java class has
no programming logic as we use a XML test case here. The Java class can also be generated using
the Citrus Maven plugin. The Java class extends from basic superclass AbstractTestNGCitrusTest
and therefore uses TestNG as unit test framework. Citrus also supports JUnit as unit test framework.
Read more about this in run-with-testng and run-with-junit

Up to now it is important to understand that Citrus always needs a Java executable test class. In
case we use the XML test representation the Java part is generic, can be generated and contains no
programming logic. The XML test defines all steps and is our primary test case definition.

5.2. Writing test cases in Java

Before we go into more details on the attributes and actions that take place within a test case we
just have a look at how to write test cases with pure Java code. Citrus works with Java and uses the
well known JUnit and TestNG framework benefits that you may be used to as a tester. Many users
may prefer to write Java code instead of the verbose XML syntax. Therefore you have another
possibility for writing Citrus tests in pure Java.

When using the Citrus Java DSL we need to include a special Maven dependency module to our
project that provides the needed API.

<dependency>

E <groupld>com.consol.citrus </groupld>
E <artifactld> citrus-java-dsl </artifactld>
E <version>2.7.4 </version>

E <scopexest </scope>

</dependency>

Citrus in general differences between two ways of test cases in Java. These are test-designers and
test-runners that we deal with each in the next two sections.

5.3. Java DSL test designer

The first way of defining a Citrus test in Java is the test-designer . The Java DSL for a test designer

23

#run-with-testng
#run-with-junit

works similar to the XML approach. The whole test case is built with all test actions first. Then the
whole test case is executed as a whole Citrus test. This is how to define a Citrus test with designer
Java DSL methods:

Java DSL designer

import org.testng.annotations.Test
import com.consol.citrus.annotations.CitrusTest ;
import com.consol.citrus.dsl.testng. TestNGCitrusTestDesigner ;

@Test
public class MyFirstTestDesigner extends TestNGCitrusTestDesigner {

E @CitrusTest(name= "MyFirstTest")
E public void myFirstTest() {
E description ("First example showing the basic test case definition elements!");
E variable ("text" , "Hello Test Framework");
E echa "${text}");
E }
}
Citrus provides a base Java class com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner that

provides all capabilities for you in form of builder pattern methods. Just use the @CitrusTest
annotation on top of the test method. Citrus will use the method name as the test name by default.
As you can see in the example above you can also customize the test name within the @CitrusTest
annotation. The test method builds all test actions using the test builder pattern. The defined test
actions will then be called later on during test runtime.

The design time runtime difference in test-designer is really important to be understood. You can
mix the Citrus Java DSL execution with other Java code with certain limitations. We will explain
this later on when introducing the test-runner

This is the basic test Java class pattern used in Citrus. You as a tester with development background
can easily extend this pattern for customized logic. Again if you are coming without coding
experience do not worry this Java code is optional. You can do exactly the same with the XML
syntax only as shown before. The test designer Java DSL is much more powerful though as you can
use the full Java programming language with class inheritance and method delegation.

We have mentioned that the test-designer will build the complete test case in design time with all
actions first before execution of the whole test case takes place at runtime of the test. This approach
has the advantage that Citrus knows all test actions in a test before execution. On the other hand
you are limited in mixing Java DSL method calls and normal Java code. The following example
should clarify things a little bit.

24

Java DSL designer

import org.testng.annotations.Test
import com.consol.citrus.annotations.CitrusTest :
import com.consol.citrus.dsl.testng. TestNGCitrusTestDesigner ;

@Test
public class LoggingTestDesigner extends TestNGCitrusTestDesigner {

E private LoggingService loggingService = new LoggingService ();
E @CitrusTest(name= "LoggingTest")

E public void loggingTest () {

E echq("Before loggingService call");

E loggingService . log ("Now called custom logging service");
E echq("After loggingService call");

E }

}

In this example test case above we use an instance of a custom LoggingService and call some
operation log() in the middle of our Java DSL test. Now developers might expect the logging service

call to be done in the middle of the Java Citrus test case but if we have a look at the logging output

of the test we get a total different result:

Expected output

INFO Citrus| STARTING TEST LoggingTest

INFO EchoAction| Before loggingService call

INFO LoggingService| Now called custom logging service
INFO EchoAction| After loggingService call

INFO Citrus| TEST SUCCESS LoggingTest

Actual output

INFO LoggingService| Now called custom logging service
INFO Citrus| STARTING TEST LoggingTest

INFO EchoAction| Before loggingService call

INFO EchoAction| After loggingService call

INFO Citrus| TEST SUCCESS LoggingTest

So if we analyse the actual logging output we see that the logging service was called even before the
Citrus test case did start its action. This is the result of ~ test-designer building up the whole test case
first. The designer collects all test actions first in internal memory cache and the executes the whole

test case. So the custom service call on the LoggingService is not part of the Citrus Java DSL test
and therefore is executed immediately at design time.

We can fix this with the following test-designer code:

25

Java DSL designer

import org.testng.annotations.Test
import com.consol.citrus.annotations.CitrusTest :
import com.consol.citrus.dsl.testng. TestNGCitrusTestDesigner ;

@Test
public class LoggingTestDesigner extends TestNGCitrusTestDesigner {

E private LoggingService loggingService = new LoggingService ();
E @CitrusTest(name= "LoggingTest")

E public void loggingTest () {

E echq("Before loggingService call");

E action (new AbstractTestAction () {

E doExecutg TestContext context) {

E loggingService . log ("Now called custom logging service");
E }

E D;

E echq("After loggingService call");

E }

}

Now we placed the loggingService call inside a custom TestAction implementation and therefore
this piece of code is part of the Citrus Java DSL and following from that part of the Citrus test
execution. Now with that fix we get the expected logging output:

INFO Citrus| STARTING TEST LoggingTest

INFO EchoAction| Before loggingService call

INFO LoggingService| Now called custom logging service
INFO EchoAction| After loggingService call

INFO Citrus| TEST SUCCESS LoggingTest

Now this is not easy to understand and people did struggle with this separation of designtime and
runtime of a Citrus Java DSL test. This is why we have implemented a new Java DSL base class
called test-runner that we deal with in the next section. Before we continue we have to mention
that the test-designer approach does also work for JUnit. Although we have only seen TestNG
sample code in this section everything is working exactly the same way with JUnit framework. Just

use the base class com.consol.citrus.dsl.junit.JUnit4CitrusTestDesigner instead.
Neither TestNGCitrusTestDesigner nor JUnit4CitrusTestDesigner
implementation is thread safe for parallel test execution. This is simply because
" the base class is holding state to the current test designer instance in order to

delegate method calls to this instance. Therefore parallel test method execution is
not available. Fortunately we have added a threadsafe base class implementation
that uses resource injection. Read more about this in test-resource-injection

26

#test-resource-injection

