

0

1

2

3

4

5

6

7

8

9

10

10.1

10.2

10.3

10.4

10.5

10.6

11

12

13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Table	of	Contents
Introduction

Preface

Changes-new

Introduction

Setup

Test-case

Test-variables

Run

Configuration

Endpoints

Validation

Xml

Schema

Json

Xhtml

Plaintext

Binary

Xpath

Json-path

Actions

Send

Receive

Database

Sleep

Java

Timeout

Echo

Citrus	Reference	Guide

2

13.8

13.9

13.10

13.11

13.12

13.13

13.14

13.15

13.16

13.17

13.18

13.19

13.20

13.21

13.22

13.23

13.24

13.25

14

15

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

16

17

Stop-time

Create-variables

Trace

Transform

Groovy

Fail

Input

Load

Wait

Purge-jms

Purge-channels

Purge-endpoints

Assert

Catch

Antrun

Manage-server

Generic-action

Stop-timer

Templates

Containers

Sequential

Conditional

Parallel

Iterate

Repeat

Repeat-onerror

Timer

Custom

Finally-section

Jms

Citrus	Reference	Guide

3

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

45.1

46

Http

Http-websocket

Soap

Ftp

Message-channel

File

Camel

Vertx

Mail

Arquillian

Docker

Ssh

Rmi

Jmx

Cucumber

Zookeeper

Restdocs

Endpoint-component

Endpoint-adapter

Functions

Validation	Matchers

Data-dictionary

Test-actors

Test-suite

Meta-info

Message-tracing

Reporting

Samples

Flight	Booking	Sample

Appendix

Citrus	Reference	Guide

4

46.1

46.2

46.3

46.4

46.5

46.6

46.7

46.8

46.9

Changes	2.5

Changes	2.4

Changes	2.3

Changes	2.2

Changes	2.1

Changes	2.0

Changes	1.4

Changes	1.3

Changes	1.2

Citrus	Reference	Guide

5

Citrus	Framework	-	Reference
Documentation

Authors
Christoph	Deppisch,	Martin	Maher

Version
2.6.1

Copyright	©	2016	ConSol	Software	GmbH

www.citrusframework.org

Citrus	Reference	Guide

6Introduction

http://www.citrusframework.org

Preface

Integration	testing	can	be	very	hard,	especially	when	there	is	no	sufficient	tool	support.
Unit	testing	is	flavored	with	fantastic	tools	and	APIs	like	JUnit,	TestNG,	EasyMock,
Mockito	and	so	on.	These	tools	support	you	in	writing	automated	tests.	A	tester	who	is	in
charge	of	integration	testing	may	lack	of	tool	support	for	automated	testing	especially
when	it	comes	to	simulate	messaging	interfaces.

In	a	typical	enterprise	application	scenario	the	test	team	has	to	deal	with	different
messaging	interfaces	and	various	transport	protocols.	Without	sufficient	tool	support	the
automated	integration	testing	of	message-based	interactions	between	interface	partners
is	exhausting	and	sometimes	barely	possible.

The	tester	is	forced	to	simulate	several	interface	partners	in	an	end-to-end	integration
test.	The	first	thing	that	comes	to	our	mind	is	manual	testing.	No	doubt	manual	testing	is
fast.	In	long	term	perspective	manual	testing	is	time	consuming	and	causes	severe
problems	regarding	maintainability	as	they	are	error	prone	and	not	repeatable.

The	Citrus	framework	gives	a	complete	test	automation	tool	for	integration	testing	of
enterprise	applications.	You	can	test	your	message	interfaces	to	other	applications	as
client	and	server.	Every	time	a	code	change	applies	all	automated	Citrus	tests	ensure
the	stability	of	interfaces	and	message	communication.

Regression	testing	and	continuous	integration	is	very	easy	as	Citrus	fits	into	your	build
lifecylce	as	usual	Java	unit	test.	You	can	use	Citrus	with	JUnit	or	TestNG	in	order	to
integrate	with	your	application	build.

With	powerful	validation	capabilities	for	various	message	formats	like	XML,	CSV	or
JSON	Citrus	is	designed	to	provide	fully	automated	integration	tests	for	end-to-end	use
cases.	Citrus	effectively	composes	complex	messaging	use	cases	with	response
generation,	error	simulation,	database	interaction	and	more.

This	documentation	provides	a	reference	guide	to	all	features	of	the	Citrus	test
framework.	It	gives	a	detailed	picture	of	effective	integration	testing	with	automated
integration	test	environments.	Since	this	document	is	considered	to	be	under
construction,	please	do	not	hesitate	to	give	any	comments	or	requests	to	us	using	our
user	or	support	mailing	lists.

Citrus	Reference	Guide

7Preface

What's	new	in	Citrus	2.6?!
Citrus	2.6	comes	with	a	set	of	new	modules	that	enable	completely	new	aspects	of
integration	testing.	Namely	these	are	the	new	modules	for	Cucumber	behavior	driven
development	and	Zookeeper	support.	Just	have	a	look	at	the	following	features	that	are
shipped	within	the	2.6	box.

Cucumber	BDD	support

Behavior	driven	development	is	more	and	more	coming	up	also	in	the	integration	testing
environment.	Cucumber	is	a	fantastic	behavior	driven	development	library	that	provides
support	for	BDD	concepts	with	Gherkin.	The	new	Citrus	integration	with	Cucumber
enables	the	mix	of	Gherkin	syntax	feature	scenarios	with	Citrus	test	case	execution.	You
write	feature	stories	as	usual	and	create	Citrus	test	cases	with	lots	of	actions	for	the
integration	test.	See	details	for	this	feature	in	cucumber.

Zookeeper	support

Zookeeper	from	Apache	lets	you	manage	configuration	with	distributed	coordination.	As
a	user	you	create	and	edit	values	on	a	Zookeeper	server.	Other	clients	then	can	retrieve
this	information.	With	Citrus	you	are	able	to	access	this	information	from	within	a	test
case.	The	Zookeeper	Citrus	client	lets	you	manage	information	on	the	Zookeeper	server.
See	details	for	this	feature	in	zookeeper.

Spring	Restdocs	support

Restdocs	is	a	fantastic	way	of	generating	documentation	for	RESTful	APIs.	While
exchanging	request/response	data	with	the	server	Restdocs	creates	documentation
information	on	the	data.	The	documentation	includes	field	descriptions,	headers	and
snippets	for	body	content.	With	new	Citrus	version	Http	clients	in	Citrus	can	add	Restdoc
interceptors	that	generate	the	documentation	while	executing	the	test	cases.	This	way
you	are	able	to	document	what	messages	were	exchanged	in	tests.	The	Restdocs
support	is	also	available	for	the	SOAP	Http	client	in	Citrus.	See	details	in	restdocs.

Hamcrest	matcher	conditions

Citrus	Reference	Guide

8Changes-new

Iterating	test	action	containers	in	Citrus	evaluate	boolean	expressions	for	determination
of	how	to	execute	the	nested	actions	in	a	loop.	Also	the	conditional	container	executes
nested	actions	based	on	boolean	expression	evaluation.	The	Citrus	boolean	expression
support	is	limited	to	very	basic	operations	such	as	lower	than	or	greater	than.
Furthermore	the	combination	of	boolean	expressions	with	variables	has	not	been
supported.	Following	from	that	we	have	improved	the	boolean	expression	evaluation
mechanism	with	extension	to	Hamcrest	matchers.	So	now	you	can	evaluate	matchers	in
iterating	conditions.	This	feature	is	described	incontainers-conditionalandcontainers-
iterate.

SOAP	Java	DSL

Citrus	provides	a	new	Java	fluent	API	for	sending	and	receiving	SOAP	related	message
content.	The	Java	DSL	enhancements	are	based	on	those	of	Http.	Now	you	can	define
SOAP	messages	with	special	SOAP	action	headers	more	easily.	On	top	of	that	you	can
handle	SOAP	faults	on	client	and	server	with	the	fluent	API.	Checkoutsoap-
webservicesfor	details.

Refactoring

Refactoring	in	terms	of	simplification	and	standardization	is	part	of	our	daily	life	as	a
developer.	We	have	been	working	on	improving	the	Java	DSL	fluent	API	for	SOAP.	We
also	introduced	a	more	common	way	of	handling	the	test	action	containers	like	iterate,
parallel	and	so	on.	This	leads	to	some	classes	and	methods	that	were	marked	as
deprecated.	So	please	have	a	look	at	your	Java	DSL	code	and	if	you	see	some	usage	of
deprecated	stuff	please	use	the	new	approaches	as	soon	as	possible.	The	deprecated
stuff	will	definitely	disappear	in	upcoming	releases.

Some	of	the	changes	that	we	have	made	might	hit	you	right	away.	These	changes	are:

ws:assert	element	in	SOAP	testcase	schema	has	been	renamed	to	ws:assert-
fault	.	This	was	done	for	better	interoperability	reasons	with	assert	action	in	core
schema	and	to	be	compliant	to	send-fault	action.

Java	DSL	module	has	had	Maven	dependencies	to	several	other	modules	in	Citrus
(e.g.	citrus-jms,	citrus-soap).	These	dependencies	were	declared	as	compile
dependencies,	which	is	not	very	nice	as	you	might	not	need	JMS	or	SOAP
functionalities	in	your	project.	We	have	added	optional	and	provided	markers	to	that
dependencies	which	means	that	you	have	to	decide	in	your	project	which	of	the
modules	to	include.

Citrus	Reference	Guide

9Changes-new

You	may	face	some	missing	dependencies	errors	when	running	the	Maven	project.	As	a
result	you	need	to	include	the	Citrus	modules	(e.g.	citrus-http,	citrus-docker,	and	so	on)
in	your	project	Maven	POM	explicitly.

Bugfixes

Bugs	are	part	of	our	software	developers	world	and	fixing	them	is	part	of	your	daily
business,	too.	Finding	and	solving	issues	makes	Citrus	better	every	day.	For	a	detailed
listing	of	all	bugfixes	please	refer	to	the	complete	changes	log	of	each	release	in	JIRA
(http://www.citrusframework.org/changes-report.html).

Citrus	Reference	Guide

10Changes-new

http://www.citrusframework.org/changes-report.html

Introduction
Nowadays	enterprise	applications	usually	communicate	with	different	partners	over
loosely	coupled	messaging	interfaces.	The	interaction	and	the	interface	contract	needs
to	be	tested	in	integration	testing.

In	a	typical	integration	test	scenario	we	need	to	simulate	the	communication	partners
over	various	transports.	How	can	we	test	use	case	scenarios	that	include	several
interface	partners	interacting	with	each	other?	How	can	somebody	ensure	that	the
software	components	work	correctly	regarding	the	interface	contract?	How	can
somebody	run	integration	test	cases	in	an	automated	reproducible	way?	Citrus	tries	to
answer	these	questions!

Overview

Citrus	aims	to	strongly	support	you	in	simulating	interface	partners	across	different
messaging	transports.	You	can	easily	produce	and	consume	messages	with	a	wide
range	of	protocols	like	HTTP,	JMS,	TCP/IP,	FTP,	SMTP	and	more.	The	framework	is
able	to	both	act	as	a	client	and	server.	In	each	communication	step	Citrus	is	able	to
validate	message	contents	towards	syntax	and	semantics.

In	addition	to	that	the	Citrus	offers	a	wide	range	of	test	actions	to	take	control	of	the
process	flow	during	a	test	(e.g.	iterations,	system	availability	checks,	database
connectivity,	parallelism,	delaying,	error	simulation,	scripting	and	many	more).

The	basic	goal	in	Citrus	test	cases	is	to	describe	a	whole	use	case	scenario	including
several	interface	partners	that	exchange	many	messages	with	each	other.	The
composition	of	complex	message	flows	in	a	single	test	case	with	several	test	steps	is
one	of	the	major	features	in	Citrus.

The	test	case	description	is	either	done	in	XML	or	Java	and	can	be	executed	multiple
times	as	automated	integration	test.	With	JUnit	and	TestNG	integration	Citrus	can	easily
be	integrated	into	your	build	lifecycle	process.	During	a	test	Citrus	simulates	all
surrounding	interface	partners	(client	or	server)	without	any	coding	effort.	With	easy
definition	of	expected	message	content	(header	and	payload)	for	XML,	CSV,	SOAP,
JSON	or	plaintext	messages	Citrus	is	able	to	validate	the	incoming	data	towards	syntax
and	semantics.

Citrus	Reference	Guide

11Introduction

Usage	scenarios

If	you	are	in	charge	of	an	enterprise	application	in	a	message	based	solution	with
message	interfaces	to	other	software	components	you	should	use	Citrus.	In	case	your
project	interacts	with	other	software	over	different	messaging	transports	and	in	case	you
need	to	simulate	these	interface	partners	on	client	or	server	side	you	should	use	Citrus.
In	case	you	need	to	continuously	check	the	software	stability	not	only	on	a	unit	testing
basis	but	also	in	an	end-to-end	integration	scenario	you	should	use	Citrus.	Bug	fixing,
release	or	regression	testing	is	very	easy	with	Citrus.	In	case	you	are	struggling	with
code	stability	and	feel	uncomfortable	regarding	your	next	software	release	you	should
definitely	use	Citrus.

This	test	set	up	is	typical	for	a	Citrus	use	case.	In	such	a	test	scenario	we	have	a	system
under	test	(SUT)	with	several	message	interfaces	to	other	applications	like	you	would
have	with	an	enterprise	service	bus	for	instance.	A	client	application	invokes	services	on
the	SUT	application.	The	SUT	is	linked	to	several	backend	applications	over	various
messaging	transports	(here	SOAP,	JMS,	and	Http).	Interim	message	notifications	and
final	responses	are	sent	back	to	the	client	application.	This	generates	a	bunch	of
messages	that	are	exchanged	throughout	the	applications	involved.

In	the	automated	integration	test	Citrus	needs	to	send	and	receive	those	messages	over
different	transports.	Citrus	takes	care	of	all	interface	partners	(ClientApplication,
Backend1,	Backend2,	Backend3)	and	simulates	their	behavior	by	sending	proper
response	messages	in	order	to	keep	the	message	flow	alive.

Each	communication	step	comes	with	message	validation	and	comparison	against	an
expected	message	template	(e.g.	XML	or	JSON	data).	Besides	messaging	actions
Citrus	is	also	able	to	perform	arbitrary	other	test	actions.	Citrus	is	able	to	perform	a
database	query	between	requests	as	an	example.

Citrus	Reference	Guide

12Introduction

The	Citrus	test	case	runs	fully	automated	as	a	Java	application.	In	fact	a	Citrus	test	case
is	nothing	but	a	JUnit	or	TestNG	test	case.	Step	by	step	the	whole	use	case	scenario	is
performed	like	in	a	real	production	environment.	The	Citrus	test	is	repeatable	and	is
included	into	the	software	build	process	(e.g.	using	Maven	or	ANT)	like	a	normal	unit	test
case	would	do.	This	gives	you	fully	automated	integration	tests	to	ensure	interface
stability.

The	following	reference	guide	walks	through	all	Citrus	capabilities	and	shows	how	to	set
up	a	great	integration	test	with	Citrus.

Citrus	Reference	Guide

13Introduction

Setup
This	chapter	discusses	how	to	get	started	with	Citrus.	It	deals	with	the	installation	and
set	up	of	the	framework,	so	you	are	ready	to	start	writing	test	cases	after	reading	this
chapter.

Usually	you	would	use	Citrus	as	a	dependency	library	in	your	project.	In	Maven	you
would	just	add	Citrus	as	a	test-scoped	dependency	in	your	POM.	When	using	ANT	you
can	also	run	Citrus	as	normal	Java	application	from	your	build.xml.	As	Citrus	tests	are
nothing	but	normal	unit	tests	you	could	also	use	JUnit	or	TestNG	ant	tasks	to	execute
the	Citrus	test	cases.

This	chapter	describes	the	Citrus	project	setup	possibilities,	choose	one	of	them	that	fits
best	to	include	Citrus	into	your	project.

Using	Maven

Citrus	uses	http://maven.apache.org/	internally	as	a	project	build	tool	and	provides
extended	support	for	Maven	projects.	Maven	will	ease	up	your	life	as	it	manages	project
dependencies	and	provides	extended	build	life	cycles	and	conventions	for	compiling,
testing,	packaging	and	installing	your	Java	project.	Therefore	it	is	recommended	to	use
the	Citrus	Maven	project	setup.	In	case	you	already	use	Maven	it	is	most	suitable	for	you
to	include	Citrus	as	a	test-scoped	dependency.

As	Maven	handles	all	project	dependencies	automatically	you	do	not	need	to	download
any	Citrus	project	artifacts	in	advance.	If	you	are	new	to	Maven	please	refer	to	the
official	Maven	documentation	to	find	out	how	to	set	up	a	Maven	project.

Use	Citrus	Maven	archetype

If	you	start	from	scratch	or	in	case	you	would	like	to	have	Citrus	operating	in	a	separate
Maven	module	you	can	use	the	Citrus	Maven	archetype	to	create	a	new	Maven	project.
The	archetype	will	setup	a	basic	Citrus	project	structure	with	basic	settings	and	files.

Citrus	Reference	Guide

14Setup

mvn	archetype:generate	-DarchetypeCatalog=http://citrusframework.org

Choose	archetype:
1:	http://citrusframework.org	->	citrus-archetype	(Basic	archetype	for	Citrus	integration	test	project)
Choose	a	number:	1	

Define	value	for	groupId:	com.consol.citrus.samples
Define	value	for	artifactId:	citrus-sample
Define	value	for	version:	1.0-SNAPSHOT
Define	value	for	package:	com.consol.citrus.samples

In	the	sample	above	we	used	the	Citrus	archetype	catalog	located	on	the	Citrus
homepage.	Citrus	archetypes	are	also	available	in	Maven	central	repository.	So	can	also
just	use	"mvn	archetype:generate"	.	As	the	list	of	default	archetypes	available	in
Maven	central	is	very	long	you	might	want	to	filter	the	list	with	"citrus"	and	you	will	get
just	a	few	possibilities	to	choose	from.

We	load	the	archetype	information	from	"http://citrusframework.org"	and	choose	the
Citrus	basic	archetype.	Now	you	have	to	define	several	values	for	your	project:	the
groupId,	the	artifactId,	the	package	and	the	project	version.	After	that	we	are	done!
Maven	created	a	Citrus	project	structure	for	us	which	is	ready	for	testing.	You	should
see	the	following	basic	project	folder	structure.

citrus-sample
		|			+	src
		|			|			+	main
		|			|				|			+	java
		|			|				|			+	resources
		|			|			+	citrus
		|			|				|			+	java
		|			|				|			+	resources
		|			|				|			+	tests
		pom.xml

The	Citrus	project	is	absolutely	ready	for	testing.	With	Maven	we	can	build,	package,
install	and	test	our	project	right	away	without	any	adjustments.	Try	to	execute	the
following	commands:

mvn	integration-test	
mvn	integration-test	-Dtest=MyFirstCitrusTest

Citrus	Reference	Guide

15Setup

http://citrusframework.org

Note	If	you	need	additional	assistance	in	setting	up	a	Citrus	Maven	project	please	visit
our	Maven	setup	tutorial	onhttp://www.citrusframework.org/tutorials.html.

Add	Citrus	to	existing	Maven	project

In	case	you	already	have	a	proper	Maven	project	you	can	also	integrate	Citrus	with	it.
Just	add	the	Citrus	project	dependencies	in	your	Maven	pom.xml	as	a	dependency	like
follows.

We	add	Citrus	as	test-scoped	project	dependency	to	the	project	POM	(pom.xml)

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-core</artifactId>
		<version>2.6.1</version>
		<scope>test</scope>
</dependency>

In	case	you	would	like	to	use	the	Citrus	Java	DSL	also	add	this	dependency	to	the
project

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-java-dsl</artifactId>
		<version>2.6.1</version>
		<scope>test</scope>
</dependency>

Add	the	citrus	Maven	plugin	to	your	project

<plugin>
		<groupId>com.consol.citrus.mvn</groupId>
		<artifactId>citrus-maven-plugin</artifactId>
		<version>2.6.1</version>
		<configuration>
				<author>Donald	Duck</author>
				<targetPackage>com.consol.citrus</targetPackage>
		</configuration>
</plugin>

Now	that	we	have	added	Citrus	to	our	Maven	project	we	can	start	writing	new	test	cases
with	the	Citrus	Maven	plugin:

Citrus	Reference	Guide

16Setup

http://www.citfrusframework.org

mvn	citrus:create-test

Once	you	have	written	the	Citrus	test	cases	you	can	execute	them	automatically	in	your
Maven	software	build	lifecylce.	The	tests	will	be	included	into	your	projects	integration-
test	phase	using	the	Maven	surefire	plugin.	Here	is	a	sample	surefire	configuration	for
Citrus.

<plugin>
		<artifactId>maven-surefire-plugin</artifactId>
		<version>2.4.3</version>
		<configuration>
				<skip>true</skip>
		</configuration>
		<executions>
				<execution>
						<id>citrus-tests</id>
						<phase>integration-test</phase>
						<goals>
								<goal>test</goal>
						</goals>
						<configuration>
								<skip>false</skip>
						</configuration>
				</execution>
		</executions>
</plugin>

The	Citrus	source	directories	are	defined	as	test	sources	like	follows:

Citrus	Reference	Guide

17Setup

<testSourceDirectory>src/it/java</testSourceDirectory>
<testResources>
		<testResource>
				<directory>src/it/java</directory>
				<includes>
						<include>**</include>
				</includes>
				<excludes>
						<exclude>*.java</exclude>
				</excludes>
		</testResource>
		<testResource>
				<directory>src/it/tests</directory>
				<includes>
						<include>**/*</include>
				</includes>
				<excludes>
				</excludes>
		</testResource>
</testResources>

Now	everything	is	set	up	and	you	can	call	the	usual	Maven	install	goal	(mvn	clean
install)	in	order	to	build	your	project.	The	Citrus	integration	tests	are	executed
automatically	during	the	build	process.	Besides	that	you	can	call	the	Maven	integration-
test	phase	explicitly	to	execute	all	Citrus	tests	or	a	specific	test	by	its	name:

mvn	integration-test	
mvn	integration-test	-Dtest=MyFirstCitrusTest

Note	If	you	need	additional	assistance	in	setting	up	a	Citrus	Maven	project	please	visit
our	Maven	setup	tutorial	onhttp://www.citrusframework.org/tutorials.html.

Using	Ant

Ant	is	a	very	popular	way	to	compile,	test,	package	and	execute	Java	projects.	The
Apache	project	has	effectively	become	a	standard	in	building	Java	projects.	You	can	run
Citrus	test	cases	with	Ant	as	Citrus	is	nothing	but	a	Java	application.	This	section
describes	the	steps	to	setup	a	proper	Citrus	Ant	project.

Preconditions

Citrus	Reference	Guide

18Setup

http://www.citfrusframework.org

Before	we	start	with	the	Citrus	setup	be	sure	to	meet	the	following	preconditions.	The
following	software	should	be	installed	on	your	computer,	in	order	to	use	the	Citrus
framework:

Java	7	or	higher

Installed	JDK	plus	JAVA_HOME	environment	variable	set	up	and	pointing	to	your	Java
installation	directory

Java	IDE	(optional)

A	Java	IDE	will	help	you	to	manage	your	Citrus	project	(e.g.	creating	and	executing	test
cases).	You	can	use	the	any	Java	IDE	(e.g.	Eclipse	or	IntelliJ	IDEA)	but	also	any
convenient	XML	Editor	to	write	new	test	cases.

Ant	1.8	or	higher

Ant	(http://ant.apache.org/)	will	run	tests	and	compile	your	Citrus	code	extensions	if
necessary.

Download

First	of	all	we	need	to	download	the	latest	Citrus	release	archive	from	the	official
websitehttp://www.citrusframework.org

Citrus	comes	to	you	as	a	zipped	archive	in	one	of	the	following	packages:

citrus-x.x-release
citrus-x.x-src

The	release	package	includes	the	Citrus	binaries	as	well	as	the	reference
documentation	and	some	sample	applications.

In	case	you	want	to	get	in	touch	with	developing	and	debugging	Citrus	you	can	also	go
with	the	source	archive	which	gives	you	the	complete	Citrus	Java	code	sources.	The
whole	Citrus	project	is	also	accessible	for	you	onhttp://github.com/christophd/citrus.	This
open	git	repository	on	GitHub	enables	you	to	build	Citrus	from	scratch	with	Maven	and
contribute	code	changes.

Installation

Citrus	Reference	Guide

19Setup

http://ant.apache.org/
http://www.citrusframework.org
http://github.com/christophd/citrus

After	downloading	the	Citrus	archives	we	extract	those	into	an	appropriate	location	on
the	local	storage.	We	are	seeking	for	the	Citrus	project	artifacts	coming	as	normal	Java
archives	(e.g.	citrus-core.jar,	citrus-ws.jar,	etc.)

You	have	to	include	those	Citrus	Java	archives	as	well	as	all	dependency	libraries	to
your	Apache	Ant	Java	classpath.	Usually	you	would	copy	all	libraries	into	your	project's
lib	directory	and	declare	those	libraries	in	the	Ant	build	file.	As	this	approach	can	be	very
time	consuming	I	recommend	to	use	a	dependency	management	API	such	as	Apache
Ivy	which	gives	you	automatic	dependency	resolution	like	that	from	Maven.	In	particular
this	comes	in	handy	with	all	the	3rd	party	dependencies	that	would	be	resolved
automatically.

No	matter	what	approach	you	are	using	to	set	up	the	Apache	Ant	classpath	see	the
following	sample	Ant	build	script	which	uses	the	Citrus	project	artifacts	in	combination
with	the	TestNG	Ant	tasks	to	run	the	tests.

<project	name="citrus-sample"	basedir="."	default="citrus.run.tests"	xmlns:artifact="antlib:org.apache.maven.artifact.ant"

		<property	file="src/it/resources/citrus.properties"/>

		<path	id="maven-ant-tasks.classpath"	path="lib/maven-ant-tasks-2.1.3.jar"	/>
		<typedef	resource="org/apache/maven/artifact/ant/antlib.xml"
				uri="antlib:org.apache.maven.artifact.ant"
				classpathref="maven-ant-tasks.classpath"	/>

		<artifact:pom	id="citrus-pom"	file="pom.xml"	/>
		<artifact:dependencies	filesetId="citrus-dependencies"	pomRefId="citrus-pom"	/>

		<path	id="citrus-classpath">
				<pathelement	path="src/it/java"/>
				<pathelement	path="src/it/resources"/>
				<pathelement	path="src/it/tests"/>
				<fileset	refid="citrus-dependencies"/>
		</path>

		<taskdef	resource="testngtasks"	classpath="lib/testng-6.8.8.jar"/>

		<target	name="compile.tests">
				<javac	srcdir="src/it/java"	classpathref="citrus-classpath"/>
				<javac	srcdir="src/it/tests"	classpathref="citrus-classpath"/>
		</target>

		<target	name="create.test"	description="Creates	a	new	empty	test	case">
				<input	message="Enter	test	name:"	addproperty="test.name"/>
				<input	message="Enter	test	description:"	addproperty="test.description"/>
				<input	message="Enter	author's	name:"	addproperty="test.author"	defaultvalue="${default.test.author}"
				<input	message="Enter	package:"	addproperty="test.package"	defaultvalue="${default.test.package}"

Citrus	Reference	Guide

20Setup

				<input	message="Enter	framework:"	addproperty="test.framework"	defaultvalue="testng"/>

				<java	classname="com.consol.citrus.util.TestCaseCreator">
						<classpath	refid="citrus-classpath"/>
						<arg	line="-name	${test.name}	-author	${test.author}	-description	${test.description}	-package	${test.package}	-framework	${test.framework}"
				</java>
		</target>

		<target	name="citrus.run.tests"	depends="compile.tests"	description="Runs	all	Citrus	tests"
				<testng	classpathref="citrus-classpath">
						<classfileset	dir="src/it/java"	includes="**/*.class"	/>
				</testng>
		</target>

		<target	name="citrus.run.single.test"	depends="compile.tests"	description="Runs	a	single	test	by	name"
				<touch	file="test.history"/>
				<loadproperties	srcfile="test.history"/>

				<echo	message="Last	test	executed:	${last.test.executed}"/>
				<input	message="Enter	test	name	or	leave	empty	for	last	test	executed:"	addproperty="testclass"

				<propertyfile	file="test.history">
						<entry	key="last.test.executed"	type="string"	value="${testclass}"/>
				</propertyfile>

				<testng	classpathref="citrus-classpath">
						<classfileset	dir="src/it/java"	includes="**/${testclass}.class"	/>
				</testng>
		</target>

</project>

Note	If	you	need	detailed	assistance	for	building	Citrus	with	Ant	do	also	visit	our	tutorials
section	onhttp://www.citrusframework.org.	There	you	can	find	a	tutorial	which	describes
the	Citrus	Java	project	set	up	with	Ant	from	scratch.

Citrus	Reference	Guide

21Setup

http://www.citrusframework.org

Test	cases
Now	let	us	start	writing	test	cases!	A	test	case	in	Citrus	describes	all	steps	for	a	certain
use	case	in	one	single	file.	The	Citrus	test	holds	a	sequence	of	test	actions.	Each	action
represents	a	very	special	purpose	such	as	sending	or	receiving	a	message.	Typically
with	message-based	enterprise	applications	the	sending	and	receiving	of	messages
represent	the	main	actions	inside	a	test.

However	you	will	learn	that	Citrus	is	more	than	just	a	simple	SOAP	client	for	instance.
Each	test	case	can	hold	complex	actions	such	as	connecting	to	the	database,
transforming	data,	adding	loops	and	conditional	steps.	With	the	default	Citrus	action	set
you	can	accomplish	very	complex	use	case	integration	tests.	Later	in	this	guide	we	will
briefly	discuss	all	available	test	actions	and	learn	how	to	use	various	message	transports
within	the	test.	For	now	we	will	concentrate	on	the	basic	test	case	structure.

The	figure	above	describes	a	typical	test	action	sequence	in	Citrus.	A	list	of	sending	and
receiving	test	actions	composing	a	typical	test	case	here.	Each	action	references	a
predefined	Citrus	endpoint	component	that	we	are	going	to	talk	about	later	on.

So	how	do	we	define	those	test	cases?	In	general	Citrus	specifies	test	cases	as	Java
classes.	With	TestNG	or	JUnit	you	can	execute	the	Citrus	tests	within	your	Java	runtime
as	you	would	do	within	unit	testing.	You	can	code	the	Citrus	test	in	a	single	Java	class

Citrus	Reference	Guide

22Test-case

doing	assertions	and	using	Spring's	dependency	injection	mechanisms.

If	you	are	not	familiar	to	writing	Java	code	you	can	also	write	Citrus	tests	as	XML	files.
Whatever	test	language	you	choose	for	Citrus	the	whole	test	case	description	takes
place	in	one	single	file	(Java	or	XML).	This	chapter	will	introduce	the	custom	XML
schema	language	as	well	as	the	Java	domain	specific	language	so	you	will	be	able	to
write	Citrus	test	cases	no	matter	what	knowledge	base	you	belong	to.

Writing	test	cases	in	XML

Put	simply,	a	Citrus	test	case	is	nothing	but	a	simple	Spring	XML	configuration	file.	The
Spring	framework	has	become	a	state	of	the	art	development	framework	for	enterprise
Java	applications.	As	you	work	with	Citrus	you	will	also	learn	how	to	use	the	Spring	Ioc
(Inversion	of	control)	container	and	the	concepts	of	dependency	injection.	So	let	us	have
a	look	at	the	pure	Spring	XML	configuration	syntax	first.	You	are	free	to	write	fully
compatible	test	cases	for	the	Citrus	framework	just	using	this	syntax.

Spring	bean	definition	syntax

<beans
				xmlns="http://www.springframework.org/schema/beans"
				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
				xsi:schemaLocation="http://www.springframework.org/schema/beans
				http://www.springframework.org/schema/beans/spring-beans.xsd">

				<bean	name="MyFirstTest"	
													class="com.consol.citrus.TestCase">
								<property	name="variableDefinitions">
												<!--	variables	of	this	test	go	here	-->
								</property>					
								<property	name="actions">
												<!--	actions	of	this	test	go	here	-->
								</property>
				</bean>
</beans>

Citrus	can	execute	these	Spring	bean	definitions	as	normal	test	cases	-	no	problem,	but
the	pure	Spring	XML	syntax	is	very	verbose	and	probably	not	the	best	way	to	describe	a
test	case	in	Citrus.	In	particular	you	have	to	know	a	lot	of	Citrus	internals	such	as	Java
class	names	and	property	names.	In	addition	to	that	as	test	scenarios	get	more	complex
the	test	cases	grow	in	size.	So	we	need	a	more	effective	and	comfortable	way	of	writing
tests.	Therefore	Citrus	provides	a	custom	XML	schema	definition	for	writing	test	cases
which	is	much	more	adequate	for	our	testing	purpose.

Citrus	Reference	Guide

23Test-case

The	custom	XML	schema	aims	to	reach	the	convenience	of	domain	specific	languages
(DSL).	Let	us	have	a	look	at	the	Citrus	test	describing	XML	language	by	introducing	a
first	very	simple	test	case	definition:

XML	DSL

<spring:beans
				xmlns="http://www.citrusframework.org/schema/testcase"
				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
				xmlns:spring="http://www.springframework.org/schema/beans"
				xsi:schemaLocation="
				http://www.springframework.org/schema/beans	
				http://www.springframework.org/schema/beans/spring-beans.xsd
				http://www.citrusframework.org/schema/testcase	
				http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd">

				<testcase	name="MyFirstTest">
								<description>
												First	example	showing	the	basic	test	case	definition	elements!
								</description>
								<variables>
												<variable	name="text"	value="Hello	Test	Framework"/>
								</variables>
								<actions>
												<echo>
																<message>${text}</message>
												</echo>
								</actions>
				</testcase>
</spring:beans>

We	do	need	the	root	element	as	the	XML	file	is	read	by	the	Spring	IoC	container.	Inside
this	root	element	the	Citrus	specific	namespace	definitions	take	place.

The	test	case	itself	gets	a	mandatory	name	that	must	be	unique	throughout	all	test
cases	in	a	project.	You	will	receive	errors	when	using	duplicate	test	names.	The	test
name	has	to	follow	the	common	Java	naming	conventions	and	rules	for	Java	classes.
This	means	names	must	not	contain	any	whitespace	characters	but	characters	like	'-',	'.',
'_'	are	supported.	For	example,	TestFeature_1	is	valid	but	Test	Feature	1	is	not	as	it
contains	whitespace	characters	like	spaces.

Now	that	we	have	an	XML	definition	that	describes	the	steps	of	our	test	we	need	a	Java
executable	for	the	test.	The	Java	executable	is	needed	for	the	framework	in	order	to	run
the	test.	See	the	following	sample	Java	class	that	represents	a	simple	Citrus	Java	test:

Citrus	Reference	Guide

24Test-case

import	org.testng.annotations.Test;
import	com.consol.citrus.annotations.CitrusTest;
import	com.consol.citrus.testng.AbstractTestNGCitrusTest;

@Test
public	class	MyFirstTest	extends	AbstractTestNGCitrusTest	{

				@CitrusXmlTest(name	=	"MyFirstTest")
				public	void	myFirstTest()	{
				}
}

The	sample	above	is	a	Java	class	that	represents	a	valid	Citrus	Java	executable.	The
Java	class	has	no	programming	logic	as	we	use	a	XML	test	case	here.	The	Java	class
can	also	be	generated	using	the	Citrus	Maven	plugin.	The	Java	class	extends	from	basic
superclass	AbstractTestNGCitrusTest	and	therefore	uses	TestNG	as	unit	test
framework.	Citrus	also	supports	JUnit	as	unit	test	framework.	Read	more	about	this
inrun-testngandrun-junit.

Up	to	now	it	is	important	to	understand	that	Citrus	always	needs	a	Java	executable	test
class.	In	case	we	use	the	XML	test	representation	the	Java	part	is	generic,	can	be
generated	and	contains	no	programming	logic.	The	XML	test	defines	all	steps	and	is	our
primary	test	case	definition.

Writing	test	cases	in	Java

Before	we	go	into	more	details	on	the	attributes	and	actions	that	take	place	within	a	test
case	we	just	have	a	look	at	how	to	write	test	cases	with	pure	Java	code.	Citrus	works
with	Java	and	uses	the	well	known	JUnit	and	TestNG	framework	benefits	that	you	may
be	used	to	as	a	tester.	Many	users	may	prefer	to	write	Java	code	instead	of	the	verbose
XML	syntax.	Therefore	you	have	another	possibility	for	writing	Citrus	tests	in	pure	Java.

When	using	the	Citrus	Java	DSL	we	need	to	include	a	special	Maven	dependency
module	to	our	project	that	provides	the	needed	API.

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-java-dsl</artifactId>
		<version>2.6.1</version>
		<scope>test</scope>
</dependency>

Citrus	Reference	Guide

25Test-case

Citrus	in	general	differences	between	two	ways	of	test	cases	in	Java.	These	are	test-
designers	and	test-runners	that	we	deal	with	each	in	the	next	two	sections.

Java	DSL	test	designer

The	first	way	of	defining	a	Citrus	test	in	Java	is	the	test-designer	.	The	Java	DSL	for	a
test	designer	works	similar	to	the	XML	approach.	The	whole	test	case	is	built	with	all	test
actions	first.	Then	the	whole	test	case	is	executed	as	a	whole	Citrus	test.	This	is	how	to
define	a	Citrus	test	with	designer	Java	DSL	methods:

Java	DSL	designer

import	org.testng.annotations.Test;
import	com.consol.citrus.annotations.CitrusTest;
import	com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public	class	MyFirstTestDesigner	extends	TestNGCitrusTestDesigner	{
				@CitrusTest(name	=	"MyFirstTest")
				public	void	myFirstTest()	{
								description("First	example	showing	the	basic	test	case	definition	elements!");

								variable("text",	"Hello	Test	Framework");

								echo("${text}");
				}
}

Citrus	provides	a	base	Java	class
com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner	that	provides	all	capabilities
for	you	in	form	of	builder	pattern	methods.	Just	use	the	@CitrusTest	annotation	on	top	of
the	test	method.	Citrus	will	use	the	method	name	as	the	test	name	by	default.	As	you
can	see	in	the	example	above	you	can	also	customize	the	test	name	within	the
@CitrusTest	annotation.	The	test	method	builds	all	test	actions	using	the	test	builder
pattern.	The	defined	test	actions	will	then	be	called	later	on	during	test	runtime.

The	design	time	runtime	difference	in	test-designer	is	really	important	to	be	understood.
You	can	mix	the	Citrus	Java	DSL	execution	with	other	Java	code	with	certain	limitations.
We	will	explain	this	later	on	when	introducing	the	test-runner	.

This	is	the	basic	test	Java	class	pattern	used	in	Citrus.	You	as	a	tester	with	development
background	can	easily	extend	this	pattern	for	customized	logic.	Again	if	you	are	coming
without	coding	experience	do	not	worry	this	Java	code	is	optional.	You	can	do	exactly

Citrus	Reference	Guide

26Test-case

the	same	with	the	XML	syntax	only	as	shown	before.	The	test	designer	Java	DSL	is
much	more	powerful	though	as	you	can	use	the	full	Java	programming	language	with
class	inheritance	and	method	delegation.

We	have	mentioned	that	the	test-designer	will	build	the	complete	test	case	in	design
time	with	all	actions	first	before	execution	of	the	whole	test	case	takes	place	at	runtime
of	the	test.	This	approach	has	the	advantage	that	Citrus	knows	all	test	actions	in	a	test
before	execution.	On	the	other	hand	you	are	limited	in	mixing	Java	DSL	method	calls
and	normal	Java	code.	The	following	example	should	clarify	things	a	little	bit.

Java	DSL	designer

import	org.testng.annotations.Test;
import	com.consol.citrus.annotations.CitrusTest;
import	com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public	class	LoggingTestDesigner	extends	TestNGCitrusTestDesigner	{
				private	LoggingService	loggingService	=	new	LoggingService();

				@CitrusTest(name	=	"LoggingTest")
				public	void	loggingTest()	{
								echo("Before	loggingService	call");

								loggingService.log("Now	called	custom	logging	service");

								echo("After	loggingService	call");
				}
}

In	this	example	test	case	above	we	use	an	instance	of	a	custom	LoggingService	and
call	some	operation	log()	in	the	middle	of	our	Java	DSL	test.	Now	developers	might
expect	the	logging	service	call	to	be	done	in	the	middle	of	the	Java	Citrus	test	case	but	if
we	have	a	look	at	the	logging	output	of	the	test	we	get	a	total	different	result:

Expected	output

INFO												Citrus|	STARTING	TEST	LoggingTest
INFO								EchoAction|	Before	loggingService	call
INFO				LoggingService|	Now	called	custom	logging	service
INFO								EchoAction|	After	loggingService	call
INFO												Citrus|	TEST	SUCCESS	LoggingTest

Actual	output

Citrus	Reference	Guide

27Test-case

INFO				LoggingService|	Now	called	custom	logging	service
INFO												Citrus|	STARTING	TEST	LoggingTest
INFO								EchoAction|	Before	loggingService	call
INFO								EchoAction|	After	loggingService	call
INFO												Citrus|	TEST	SUCCESS	LoggingTest

So	if	we	analyse	the	actual	logging	output	we	see	that	the	logging	service	was	called
even	before	the	Citrus	test	case	did	start	its	action.	This	is	the	result	of	test-designer
building	up	the	whole	test	case	first.	The	designer	collects	all	test	actions	first	in	internal
memory	cache	and	the	executes	the	whole	test	case.	So	the	custom	service	call	on	the
LoggingService	is	not	part	of	the	Citrus	Java	DSL	test	and	therefore	is	executed
immediately	at	design	time.

We	can	fix	this	with	the	following	test-designer	code:

Java	DSL	designer

import	org.testng.annotations.Test;
import	com.consol.citrus.annotations.CitrusTest;
import	com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public	class	LoggingTestDesigner	extends	TestNGCitrusTestDesigner	{
				private	LoggingService	loggingService	=	new	LoggingService();

				@CitrusTest(name	=	"LoggingTest")
				public	void	loggingTest()	{
								echo("Before	loggingService	call");

								action(new	AbstractTestAction()	{
												doExecute(TestContext	context)	{
																loggingService.log("Now	called	custom	logging	service");
												}
								});

								echo("After	loggingService	call");
				}
}

Now	we	placed	the	loggingService	call	inside	a	custom	TestAction	implementation	and
therefore	this	piece	of	code	is	part	of	the	Citrus	Java	DSL	and	following	from	that	part	of
the	Citrus	test	execution.	Now	with	that	fix	we	get	the	expected	logging	output:

Citrus	Reference	Guide

28Test-case

INFO												Citrus|	STARTING	TEST	LoggingTest
INFO								EchoAction|	Before	loggingService	call
INFO				LoggingService|	Now	called	custom	logging	service
INFO								EchoAction|	After	loggingService	call
INFO												Citrus|	TEST	SUCCESS	LoggingTest

Now	this	is	not	easy	to	understand	and	people	did	struggle	with	this	separation	of
designtime	and	runtime	of	a	Citrus	Java	DSL	test.	This	is	why	we	have	implemented	a
new	Java	DSL	base	class	called	test-runner	that	we	deal	with	in	the	next	section.
Before	we	continue	we	have	to	mention	that	the	test-designer	approach	does	also	work
for	JUnit.	Although	we	have	only	seen	TestNG	sample	code	in	this	section	everything	is
working	exactly	the	same	way	with	JUnit	framework.	Just	use	the	base	class
com.consol.citrus.dsl.junit.JUnit4CitrusTestDesigner	instead.

Important	Neither	TestNGCitrusTestDesigner	nor	JUnit4CitrusTestDesigner
implementation	is	thread	safe	for	parallel	test	execution.	This	is	simply	because	the	base
class	is	holding	state	to	the	current	test	designer	instance	in	order	to	delegate	method
calls	to	this	instance.	Therefore	parallel	test	method	execution	is	not	available.
Fortunately	we	have	added	a	threadsafe	base	class	implementation	that	uses	resource
injection.	Read	more	about	this	intestcase-resource-injection.

Java	DSL	test	runner

The	new	test	runner	concept	solves	the	issues	that	may	come	along	when	working	with
the	test	designer.	We	have	already	seen	a	simple	example	where	the	test	designer
requires	strict	separation	of	designtime	and	runtime.	The	test	runner	implementation
executes	each	test	action	immediately.	This	changes	the	prerequisites	in	such	that	the
test	action	Java	DSL	method	calls	can	be	mixed	with	usual	Java	code	statements.	The
the	example	that	we	have	seen	before	in	a	test	runner	implementation:

Java	DSL	runner

Citrus	Reference	Guide

29Test-case

import	org.testng.annotations.Test;
import	com.consol.citrus.annotations.CitrusTest;
import	com.consol.citrus.dsl.testng.TestNGCitrusTestRunner;

@Test
public	class	LoggingTestRunner	extends	TestNGCitrusTestRunner	{
				private	LoggingService	loggingService	=	new	LoggingService();

				@CitrusTest(name	=	"LoggingTest")
				public	void	loggingTest()	{
								echo("Before	loggingService	call");

								loggingService.log("Now	called	custom	logging	service");

								echo("After	loggingService	call");
				}
}

With	the	new	test	runner	implementation	as	base	class	we	are	able	to	mix	Java	DSL
method	calls	and	normal	Java	code	statement	in	our	test	in	an	unlimited	way.	This
example	above	will	also	create	the	expected	logging	output	as	all	Java	DSL	method
calls	are	executed	immediately.

INFO												Citrus|	STARTING	TEST	LoggingTest
INFO								EchoAction|	Before	loggingService	call
INFO				LoggingService|	Now	called	custom	logging	service
INFO								EchoAction|	After	loggingService	call
INFO												Citrus|	TEST	SUCCESS	LoggingTest

In	contrary	to	the	test	designer	the	test	runner	implementation	will	not	build	the	complete
test	case	before	execution.	Each	test	action	is	executed	immediately	as	it	is	called	with
Java	DSL	builder	methods.	This	creates	a	more	natural	way	of	coding	test	cases	as	you
are	also	able	to	use	iterations,	try	catch	blocks,	finally	sections	and	so	on.

In	the	examples	here	TestNG	was	used	as	unit	framework.	Of	course	the	exact	same
approach	can	also	apply	to	JUnit	framework.	Just	use	the	base	class
com.consol.citrus.dsl.junit.JUnit4CitrusTestRunner	instead.	Feel	free	to	choose	the
base	class	for	test-designer	or	test-runner	as	you	like.	You	can	also	mix	those	two
approaches	in	your	project.	Citrus	is	able	to	handle	both	ways	of	Java	DSL	code	in	a
project.

Important	The	TestNGCitrusTestRunner	and	JUnit4CitrusTestRunner
implementation	is	not	thread	safe	for	parallel	test	execution.	This	is	simply	because	the
base	class	is	holding	state	to	the	current	test	runner	instance	in	order	to	delegate

Citrus	Reference	Guide

30Test-case

method	calls	to	this	instance.	Therefore	parallel	test	method	execution	is	not	available.
Fortunately	we	have	added	a	threadsafe	base	class	implementation	that	uses	resource
injection.	Read	more	about	this	intestcase-resource-injection.

Designer/Runner	injection

In	the	previous	sections	we	have	seen	the	different	approaches	for	test	designer	and
runner	implementations.	Up	to	now	the	decision	which	implementation	to	use	was	made
by	extending	one	of	the	base	classes:

com.consol.citrus.dsl.testng.TestNGCitrusTestRunner
com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner
com.consol.citrus.dsl.junit.JUnit4CitrusTestRunner
com.consol.citrus.dsl.junit.JUnit4CitrusTestDesigner

These	four	classes	represent	the	different	designer	and	runner	implementations	for
TestNG	or	JUnit.	Now	Citrus	also	provides	a	resource	injection	mechanism	for	both
designer	and	runner	implementations.	The	classes	using	this	feature	are:

com.consol.citrus.dsl.testng.TestNGCitrusTest
com.consol.citrus.dsl.junit.JUnit4CitrusTest

So	what	is	the	deal	with	that?	It	is	simple	when	looking	at	a	first	example	using	resource
injection:

@Test
public	class	InjectionTest	extends	JUnit4CitrusTest	{

				@CitrusTest(name	=	"JUnit4DesignerTest")
				public	void	designerTest(@CitrusResource	TestDesigner	designer)	{
								designer.echo("Now	working	on	designer	instance");
				}

				@CitrusTest(name	=	"JUnit4RunnerTest")
				public	void	runnerTest(@CitrusResource	TestRunner	runner)	{
								runner.echo("Now	working	on	runner	instance");
				}
}

The	designer	or	runner	instance	is	injected	as	Citrus	resource	to	the	test	method	as
parameter.	This	way	we	can	mix	designer	and	runner	in	a	single	test.	But	this	is	not	the
real	motivation	for	the	resource	injection.	The	clear	advantage	of	this	approach	with
injected	designer	and	runner	instances	is	support	for	multi	threading.	In	case	you	want	to

Citrus	Reference	Guide

31Test-case

execute	the	Citrus	tests	in	parallel	using	multiple	threads	you	need	to	use	this	approach.
This	is	because	the	usual	designer	and	runner	base	classes	are	not	thread	safe.	This
JUnit4CitrusTest	base	class	is	because	the	resources	injected	are	not	kept	as	state	in
the	base	class.

This	is	our	first	Citrus	resource	injection	use	case.	The	framework	is	able	to	inject	other
resources,	too.	Find	out	more	about	this	in	the	next	sections.

Test	context	injection

When	running	a	test	case	in	Citrus	we	make	use	of	basic	framework	components	and
capabilities.	One	of	these	capabilities	is	to	use	test	variables,	functions	and	validation
matchers.	Up	to	this	point	we	have	not	learned	about	these	things.	They	will	be
described	in	the	upcoming	chapters	and	sections	in	more	detail.	Right	now	I	want	to	talk
about	resource	injection	in	Citrus.

All	these	feature	mentioned	above	are	bound	to	some	important	Citrus	component:	the
Citrus	test	context.	The	test	context	holds	all	variables	and	is	able	to	resolve	functions
and	matchers.	In	general	you	as	a	tester	will	not	need	explicit	access	to	this	component
as	the	framework	is	working	with	it	behind	the	scenes.	In	case	you	need	some	access
for	advanced	operations	with	the	framework	Citrus	provides	a	resource	injection.	Lets
have	a	look	at	this	so	things	are	getting	more	clear.

public	class	ResourceInjectionIT	extends	JUnit4CitrusTestDesigner	{

				@Test
				@CitrusTest
				public	void	resourceInjectionIT(@CitrusResource	TestContext	context)	{
								context.setVariable("myVariable",	"some	value");
								echo("${myVariable}");
				}
}

As	you	can	see	we	have	added	a	method	parameter	of	type
com.consol.citrus.context.TestContext	to	the	test	method.	The	annotation
@CitrusResource	tells	Citrus	to	inject	this	parameter	with	the	according	instance	of	the
object	for	this	test.	Now	we	have	easy	access	to	the	context	and	all	its	capabilities	such
as	variable	management.

Of	course	the	same	approach	works	with	TestNG,	too.	As	TestNG	also	provides
resource	injection	mechanisms	we	have	to	make	sure	that	the	different	resource
injection	approaches	do	not	interfere	with	each	other.	So	we	tell	TestNG	to	not	inject	this

Citrus	Reference	Guide

32Test-case

parameter	by	declaring	it	as	@Optional	for	TestNG.	In	addition	to	that	we	need	to
introduce	the	parameter	to	TestNG	with	the	@Parameters	annotation.	Otherwise
TestNG	would	complain	about	not	knowing	this	parameter.	The	final	test	method	with
Citrus	resource	injection	looks	like	follows:

public	class	ResourceInjectionIT	extends	TestNGCitrusTestDesigner	{

				@Test	@Parameters("context")
				@CitrusTest
				public	void	resourceInjectionIT(@Optional	@CitrusResource	TestContext	context)	{
								context.setVariable("myVariable",	"some	value");
								echo("${myVariable}");
				}
}

Some	more	annotations	needed	but	the	result	is	the	same.	We	have	access	to	the	Citrus
test	context.	Of	course	you	can	combine	the	resource	injection	for	different	Citrus
components.	Just	add	more	some	@CitrusResource	annotated	method	parameters	to
the	test	method.

Java	DSL	test	behaviors

When	using	the	Java	DSL	the	concept	of	behaviors	is	a	good	way	to	reuse	test	action
blocks.	By	putting	test	actions	to	a	test	behavior	we	can	instantiate	and	apply	the
behavior	to	different	test	cases	multiple	times.	The	mechanism	is	explained	best	when
having	a	simple	sample:

public	class	FooBehavior	extends	AbstractTestBehavior	{
				public	void	apply()	{
								variable("foo",	"test");

								echo("fooBehavior");
				}
}

public	class	BarBehavior	extends	AbstractTestBehavior	{
				public	void	apply()	{
								variable("bar",	"test");

								echo("barBehavior");
				}
}

Citrus	Reference	Guide

33Test-case

The	listing	above	shows	two	test	behaviors	that	add	very	specific	test	actions	and	test
variables	to	the	test	case.	As	you	can	see	the	test	behavior	is	able	to	use	the	same	Java
DSL	action	methods	as	a	normal	test	case	would	do.	Inside	the	apply	method	block	we
define	the	behaviors	test	logic.	Now	once	this	is	done	we	can	use	the	behaviors	in	a	test
case	like	this:

@CitrusTest
public	void	behaviorTest()	{
				description("This	is	a	behavior	Test");
				author("Christoph");
				status(TestCaseMetaInfo.Status.FINAL);

				variable("var",	"test");

				applyBehavior(new	FooBehavior());

				echo("Successfully	applied	bar	behavior");

				applyBehavior(new	BarBehavior());

				echo("Successfully	applied	bar	behavior");
}

The	behavior	is	applied	to	the	test	case	by	calling	the	applyBehavior	method.	As	a
result	the	behavior	is	called	adding	its	logic	at	this	point	of	the	test	execution.	The	same
behavior	can	now	be	called	in	multiple	test	cases	so	we	have	a	reusable	set	of	test
actions.

Description

In	the	test	examples	that	we	have	seen	so	far	you	may	have	noticed	that	a	tester	can
give	a	detailed	test	description.	The	test	case	description	clarifies	the	testing	purpose
and	perspectives.	The	description	should	give	a	short	introduction	to	the	intended	use
case	scenario	that	will	be	tested.	The	user	should	get	a	first	impression	what	the	test
case	is	all	about	as	well	as	special	information	to	understand	the	test	scenario.	You	can
use	free	text	in	your	test	description	no	limit	to	the	number	of	characters.	But	be	aware
of	the	XML	validation	rules	of	well	formed	XML	when	using	the	XML	test	syntax	(e.g.
special	character	escaping,	use	of	CDATA	sections	may	be	required)

Test	Actions

Citrus	Reference	Guide

34Test-case

Now	we	get	close	to	the	main	part	of	writing	an	integration	test.	A	Citrus	test	case
defines	a	sequence	of	actions	that	will	take	place	during	the	test.	Actions	by	default	are
executed	sequentially	in	the	same	order	as	they	are	defined	in	the	test	case	definition.

XML	DSL

<actions>
				<action>[...]</action>
				<action>[...]</action>
</actions>

All	actions	have	individual	names	and	properties	that	define	the	respective	behavior.
Citrus	offers	a	wide	range	of	test	actions	from	scratch,	but	you	are	also	able	to	write	your
own	test	actions	in	Java	or	Groovy	and	execute	them	during	a	test.	actions	gives	you	a
brief	description	of	all	available	actions	that	can	be	part	of	a	test	case	execution.

The	actions	are	combined	in	free	sequence	to	each	other	so	that	the	tester	is	able	to
declare	a	special	action	chain	inside	the	test.	These	actions	can	be	sending	or	receiving
messages,	delaying	the	test,	validating	the	database	and	so	on.	Step-by-step	the	test
proceeds	through	the	action	chain.	In	case	one	single	action	fails	by	reason	the	whole
test	case	is	red	and	declared	not	successful.

Finally	test	section

Java	developers	might	be	familiar	with	the	concept	of	doing	something	in	the	finally	code
section.	The	finally	section	contains	a	list	of	test	actions	that	will	be	executed
guaranteed	at	the	very	end	of	the	test	case	even	if	errors	did	occur	during	the	execution
before.	This	is	the	right	place	to	tidy	up	things	that	were	previously	created	by	the	test
like	cleaning	up	the	database	for	instance.	The	finally	section	is	described	in	more	detail
in	finally.	However	here	is	the	basic	syntax	inside	a	test.

XML	DSL

<finally>
				<echo>
								<message>Do	finally	-	regardless	of	what	has	happened	before</message>
				</echo>
</finally>

Java	DSL	designer

Citrus	Reference	Guide

35Test-case

@CitrusTest
public	void	sampleTest()	{
				echo("Hello	Test	Framework");

				doFinally(
								echo("Do	finally	-	regardless	of	any	error	before")
);
}

Java	DSL	runner

@CitrusTest
public	void	sampleTest()	{
				echo("Hello	Test	Framework");

				doFinally()
								.actions(
												echo("Do	finally	-	regardless	of	any	error	before")
);
}

Test	meta	information

The	user	can	provide	some	additional	information	about	the	test	case.	The	meta-info
section	at	the	very	beginning	of	the	test	case	holds	information	like	author,	status	or
creation	date.	In	detail	the	meta	information	is	specified	like	this:

XML	DSL

<testcase	name="metaInfoTest">
				<meta-info>
								<author>Christoph	Deppisch</author>
								<creationdate>2008-01-11</creationdate>
								<status>FINAL</status>
								<last-updated-by>Christoph	Deppisch</last-updated-by>
								<last-updated-on>2008-01-11T10:00:00</last-updated-on>
				</meta-info>
				<description>
								...
				</description>
				<actions>
								...
				</actions>
</testcase>

Citrus	Reference	Guide

36Test-case

Java	DSL	designer	and	runner

@CitrusTest
public	void	sampleTest()	{
				description("This	is	a	Test");
				author("Christoph");
				status(Status.FINAL);

				echo("Hello	Citrus!");
}

The	status	allows	following	values:	DRAFT,	READY_FOR_REVIEW,	DISABLED,
FINAL.	The	meta-data	information	to	a	test	is	quite	important	to	give	the	reader	a	first
information	about	the	test.	It	is	also	possible	to	generate	test	documentation	using	this
meta-data	information.	The	built-in	Citrus	documentation	generates	HTML	or	Excel
documents	that	list	all	tests	with	their	metadata	information	and	description.

Note	Tests	with	the	status	DISABLED	will	not	be	executed	during	a	test	suite	run.	So
someone	can	just	start	adding	planned	test	cases	that	are	not	finished	yet	in	status
DRAFT.	In	case	a	test	is	not	runnable	yet	because	it	is	not	finished,	someone	may
disable	a	test	temporarily	to	avoid	causing	failures	during	a	test	run.	Using	these
different	statuses	one	can	easily	set	up	test	plans	and	review	the	progress	of	test
coverage	by	comparing	the	number	of	DRAFT	tests	to	those	in	the	FINAL	state.

Now	you	know	the	possibilities	how	to	write	Citrus	test	cases	in	XML	or	Java.	Please
choose	whatever	code	language	type	you	want	(Java,	XML,	Spring	bean	syntax)	in
order	to	write	Citrus	test	cases.	Developers	may	choose	Java,	testers	without	coding
experience	may	run	best	with	the	XML	syntax.	We	are	constantly	working	on	even	more
test	writing	language	support	such	as	Groovy,	Scala,	Xtext,	and	so	on.	In	general	you
can	mix	the	different	language	types	just	as	you	like	within	your	Citrus	project	which
gives	you	the	best	of	flexibility.

Citrus	Reference	Guide

37Test-case

Test	variables
The	usage	of	test	variables	is	a	core	concept	when	writing	good	maintainable	tests.	The
key	identifiers	of	a	test	case	should	be	exposed	as	test	variables	at	the	very	beginning	of
a	test.	This	way	hard	coded	identifiers	and	multiple	redundant	values	inside	the	test	can
be	avoided	from	scratch.	As	a	tester	you	define	all	test	variables	at	the	very	beginning	of
your	test.

XML	DSL

<variables>
				<variable	name="text"	value="Hello	Test	Framework"/>
				<variable	name="customerId"	value="123456789"/>
</variables>

Java	DSL	designer	and	runner

variable("text",	"Hello	Test	Framework");
variable("customerId",	"123456789");

The	concept	of	test	variables	is	essential	when	writing	complex	tests	with	lots	of
identifiers	and	semantic	data.	Test	variables	are	valid	for	the	whole	test	case.	You	can
reference	them	several	times	using	a	common	variable	expression	"${variable-name}"	.
It	is	good	practice	to	provide	all	important	entities	as	test	variables.	This	makes	the	test
easier	to	maintain	and	more	flexible.	All	essential	entities	and	identifiers	are	present	right
at	the	beginning	of	the	test,	which	may	also	give	the	opportunity	to	easily	create	test
variants	by	simply	changing	the	variable	values	for	other	test	scenarios.

The	name	of	the	variable	is	arbitrary.	Feel	free	to	specify	any	name	you	can	think	of.	Of
course	you	need	to	be	careful	with	special	characters	and	reserved	XML	entities	like	'&',
'<',	'>'.	If	you	are	familiar	with	Java	or	any	other	programming	language	simply	think	of
the	naming	rules	there	and	you	will	be	fine	with	working	on	Citrus	variables,	too.	The
value	of	a	variable	can	be	any	character	sequence.	But	again	be	aware	of	special	XML
characters	like	"<"	that	need	to	be	escaped	("<")	when	used	in	variable	values.

The	advantage	of	variables	is	obvious.	Once	declared	the	variables	can	be	referenced
many	times	in	the	test.	This	makes	it	very	easy	to	vary	different	test	cases	by	adjusting
the	variables	for	different	means	(e.g.	use	different	error	codes	in	test	cases).

Citrus	Reference	Guide

38Test-variables

Global	variables

The	last	section	told	us	to	use	variables	as	they	are	very	useful	and	extend	the
maintainability	of	test	cases.	Now	that	every	test	case	defines	local	variables	you	can
also	define	global	variables.	The	global	variables	are	valid	in	all	tests	by	default.	This	is	a
good	opportunity	to	declare	constant	values	for	all	tests.	As	these	variables	are	global
we	need	to	add	those	to	the	basic	Spring	application	context	file.	The	following	example
demonstrates	how	to	add	global	variables	in	Citrus:

<citrus:global-variables>
				<citrus:variable	name="projectName"	value="Citrus	Integration	Testing"/>
				<citrus:variable	name="userName"	value="TestUser"/>
</citrus:global-variables>

We	add	the	Spring	bean	component	to	the	application	context	file.	The	component
receives	a	list	of	name-value	variable	elements.	You	can	reference	the	global	variables
in	your	test	cases	as	usual.

Another	possibility	to	set	global	variables	is	to	load	those	from	external	property	files.
This	may	give	you	more	powerful	global	variables	with	user	specific	properties	for
instance.	See	how	to	load	property	files	as	global	variables	in	this	example:

<citrus:global-variables>
				<citrus:file	path="classpath:global-variable.properties"/>
</citrus:global-variables>

We	have	just	added	a	file	path	reference	to	the	global	variables	component.	Citrus	loads
the	property	file	content	as	global	test	variables.	You	can	mix	property	file	and	name-
value	pair	variable	definitions	in	the	global	variables	component.

Note	The	global	variables	can	have	variable	expressions	and	Citrus	functions.	It	is
possible	to	use	previously	defined	global	variables	as	values	of	new	variables,	like	in	this
example:

user=Citrus
greeting=Hello	${user}!
date=citrus:currentDate('yyyy-MM-dd')

Create	variables	with	CDATA

Citrus	Reference	Guide

39Test-variables

When	using	th	XML	test	case	DSL	we	can	not	have	XML	variable	values	out	of	the	box.
This	would	interfere	with	the	XML	DSL	elements	defined	in	the	Citrus	testcase	XSD
schema.	You	can	use	CDATA	sections	within	the	variable	value	element	in	order	to	do
this	though.

<variables>
				<variable	name="persons">
								<value>
												<data>
																<![CDATA[
																		<persons>
																				<person>
																						<name>Theodor</name>
																						<age>10</age>
																				</person>
																				<person>
																						<name>Alvin</name>
																						<age>9</age>
																				</person>
																		</persons>
]]>
												</data>
								</value>
				</variable>
</variables>

That	is	how	you	can	use	XML	variable	values	in	the	XML	DSL.	In	the	Java	DSL	we	do
not	have	these	problems.

Create	variables	with	Groovy

You	can	also	use	a	script	to	create	variable	values.	This	is	extremely	handy	when	you
have	very	complex	variable	values.	Just	code	a	small	Groovy	script	for	instance	in	order
to	define	the	variable	value.	A	small	sample	should	give	you	the	idea	how	that	works:

Citrus	Reference	Guide

40Test-variables

<variables>
				<variable	name="avg">
								<value>
												<script	type="groovy">
																

												</script>
								</value>
				</variable>
				<variable	name="sum">
								<value>
												<script	type="groovy">
																

												</script>
								</value>
				</variable>
</variables>

We	use	the	script	code	right	inside	the	variable	value	definition.	The	value	of	the	variable
is	the	result	of	the	last	operation	performed	within	the	script.	For	longer	script	code	the
use	of	<![CDATA[]]>	sections	is	recommended.

Citrus	uses	the	javax	ScriptEngine	mechanism	in	order	to	evaluate	the	script	code.	By
default	Groovy	is	supported	in	any	Citrus	project.	So	you	can	add	additional
ScriptEngine	implementations	to	your	project	and	support	other	script	types,	too.

Citrus	Reference	Guide

41Test-variables

Running	tests
Citrus	test	cases	are	nothing	but	Java	classes	that	get	executed	within	a	Java	runtime
environment.	Each	Citrus	test	therefore	relates	to	a	Java	class	representing	a	JUnit	or
TestNG	unit	test.	As	optional	add	on	a	Citrus	test	can	have	a	XML	test	declaration	file.
This	is	for	those	of	you	that	do	not	want	to	code	in	Java.	In	this	case	the	XML	part	holds
all	actions	to	tell	Citrus	what	should	happen	in	the	test	case.	The	Java	part	will	then	just
be	responsible	for	test	execution	and	is	not	likely	to	be	changed	at	all.	In	the	following
sections	we	concentrate	on	the	Java	part	and	the	test	execution	mechanism.

If	you	create	new	test	cases	in	Citrus	-	for	instance	via	Maven	plugin	or	ANT	build	script
-	Citrus	generates	both	parts	in	your	test	directory.	For	example:	if	you	create	a	new	test
named	MyFirstCitrusTest	you	will	find	these	two	files	as	a	result:

src/it/tests/com/consol/citrus/MyFirstCitrusTest.xml	
src/it/java/com/consol/citrus/MyFirstCitrusTest.java

Note	If	you	prefer	to	just	write	Java	code	you	can	throw	away	the	XML	part	immediately
and	continue	working	with	the	Java	part	only.	In	case	you	are	familiar	with	writing	Java
code	you	may	just	skip	the	test	template	generation	via	Maven	or	ANT	and	preferably
just	create	new	Citrus	Java	test	classes	on	your	own.

With	the	creation	of	this	test	we	have	already	made	a	very	important	decision.	During
creation,	Citrus	asks	you	which	execution	framework	should	be	used	for	this	test.	There
are	basically	three	options	available:	testng	and	junit	.

So	why	is	Citrus	related	to	Unit	tests	although	it	is	intended	to	be	a	framework	for
integration	testing?	The	answer	to	this	question	is	quite	simple:	This	is	because	Citrus
wants	to	benefit	from	both	JUnit	and	TestNG	for	Java	test	execution.	Both	the	JUnit	and
TestNG	Java	APIs	offer	various	ways	of	execution	and	both	frameworks	are	widely
supported	by	other	tools	(e.g.	continuous	build,	build	lifecycle,	development	IDE).

Users	might	already	know	one	of	these	frameworks	and	the	chances	are	good	that	they
are	familiar	with	at	least	one	of	them.	Everything	you	can	do	with	JUnit	and	TestNG	test
cases	you	can	do	with	Citrus	tests	also.	Include	them	into	your	Maven	build	lifecycle.
Execute	tests	from	your	IDE	(Eclipse,	IDEA	or	NetBeans).	Include	them	into	a

Citrus	Reference	Guide

42Run

continuous	build	tool	(e.g.	Jenkins).	Generate	test	execution	reports	and	test	coverage
reports	with	Sonar,	Cobertura	and	so	on.	The	possibilities	with	JUnit	and	TestNG	are
amazing.

So	let	us	have	a	closer	look	at	the	Citrus	TestNG	and	JUnit	integration.

Run	with	TestNG

TestNG	stands	for	next	generation	testing	and	has	had	a	great	influence	in	adding	Java
annotations	to	the	unit	test	community.	Citrus	is	able	to	generate	TestNG	Java	classes
that	are	executable	as	test	cases.	See	the	following	standard	template	that	Citrus	will
generate	when	having	new	test	cases:

package	com.consol.citrus.samples;

import	org.testng.annotations.Test;
import	com.consol.citrus.annotations.CitrusXmlTest;
import	com.consol.citrus.testng.AbstractTestNGCitrusTest;

/**
	*	TODO:	Description
	*
	*	@author	Unknown
	*/
@Test
public	class	SampleIT	extends	AbstractTestNGCitrusTest	{
				@CitrusXmlTest(name	=	"SampleIT")
				public	void	sampleTest()	{}
}

If	you	are	familiar	with	TestNG	you	will	see	that	the	generated	Java	class	is	nothing	but
a	normal	TestNG	test	class.	We	just	extend	a	basic	Citrus	TestNG	class	which	enables
the	Citrus	test	execution	features	for	us.	Besides	that	we	have	a	usual	TestNG	@Test
annotation	placed	on	our	class	so	all	methods	inside	the	class	will	be	executed	as
separate	test	case.

The	good	news	is	that	we	can	still	use	the	fantastic	TestNG	features	in	our	test	class.
You	can	think	of	parallel	test	execution,	test	groups,	setup	and	tear	down	operations	and
so	on.	Just	to	give	an	example	we	can	simply	add	a	test	group	to	our	test	like	this:

@Test(groups	=	{"long-running"})

For	more	information	on	TestNG	please	visit	the	official	homepage,	where	you	find	a
complete	reference	documentation.

Citrus	Reference	Guide

43Run

You	might	have	noticed	that	the	example	above	loads	test	cases	from	XML.	This	is	why
we	are	using	the	@CitrusXmlTest	annotation.	Again	this	approach	is	for	people	that
want	to	write	no	Java	code.	The	test	logic	is	then	provided	in	the	XML	test	definition.	We
discuss	XML	tests	in	Citrus	in	more	detail	inrun-xml-tests.	Next	lets	have	a	look	at	a
TestNG	Java	DSL	test.

When	writing	tests	in	pure	Java	we	have	pretty	much	the	exact	same	logic	that	applies
to	executing	Citrus	test	cases.	The	Citrus	test	extends	from	a	TestNG	base	class	and
uses	the	normal	@Test	annotations	on	method	or	class	level.	Here	is	a	short	sample
TestNG	Java	class	for	this:

import	org.testng.annotations.Test;
import	com.consol.citrus.annotations.CitrusTest;
import	com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public	class	MyFirstTestDesigner	extends	TestNGCitrusTestDesigner	{
				@CitrusTest(name	=	"MyFirstIT")
				public	void	myFirstTest()	{
								description("First	example	showing	the	basic	test	case	definition	elements!");

								variable("text",	"Hello	Test	Framework");

								echo("${test}");
				}
}

You	see	the	class	is	quite	similar	to	the	XML	test	variation.	Now	we	extend	a	Citrus	test
designer	class	which	enables	the	Java	DSL	features	in	addition	to	the	TestNG	test
execution	for	us.	The	basic	@Test	annotation	for	TestNG	has	not	changed.	We	still	have
a	usual	TestNG	class	with	the	possibility	of	several	methods	each	representing	a
separate	unit	test.

Now	what	has	changed	is	the	@CitrusTest	annotation.	Now	the	Citrus	test	logic	is
placed	directly	as	the	method	body	with	using	the	Java	domain	specific	language
features.	The	XML	Citrus	test	part	is	not	necessary	anymore.	If	you	are	wondering	about
the	designer	super	class	and	the	Java	DSL	methods	for	adding	the	test	logic	to	your	test
please	be	patient	we	will	learn	more	about	the	Java	DSL	features	in	this	reference	guide
later	on.

Up	to	now	we	just	concentrate	on	the	TestNG	integration	that	is	quite	easy	isn't	it.

Using	TestNG	DataProviders

Citrus	Reference	Guide

44Run

TestNG	as	a	framework	comes	with	lots	of	great	features	such	as	data	providers.	Data
providers	execute	a	test	case	several	times.	Each	test	execution	gets	a	specific
parameter	value.	With	Citrus	you	can	use	those	data	provider	parameters	inside	the	test
as	variables.	See	the	next	listing	on	how	to	use	TestNG	data	providers	in	Citrus:

public	class	DataProviderIT	extends	AbstractTestNGCitrusTest	{

		@CitrusXmlTest
		@CitrusParameters("message")
		@Test(dataProvider	=	"messageDataProvider")
		public	void	DataProviderIT(ITestContext	testContext)	{
		}

		@DataProvider
		public	Object[][]	messageDataProvider()	{
		return	new	Object[][]	{
						{	"Hello	World!"	},
						{	"Hallo	Welt!"	},
						{	"Hi	Citrus!"	},
				};
		}
}

Above	test	case	method	is	annotated	with	TestNG	data	provider	called
messageDataProvider	.	In	the	same	class	you	can	write	the	data	provider	that	returns	a
list	of	parameter	values.	TestNG	will	execute	the	test	case	several	times	according	to
the	provided	parameter	list.	Each	execution	is	shipped	with	the	respective	parameter
value.	According	to	the	@CitrusParameter	annotation	the	test	will	have	a	test	variable
called	message	that	is	accessible	as	usual.

Run	with	JUnit

JUnit	is	a	very	popular	unit	test	framework	for	Java	applications	widely	accepted	and
widely	supported	by	many	tools.	In	general	Citrus	supports	both	JUnit	and	TestNG	as
test	execution	frameworks.	Although	the	TestNG	customization	features	are	slightly
more	powerful	than	those	offered	by	JUnit	you	as	a	Citrus	user	should	be	able	to	use	the
framework	of	your	choice.	The	complete	support	for	executing	test	cases	with	package
scans	and	multiple	annotated	methods	is	given	for	both	frameworks.	If	you	choose	junit
as	execution	framework	Citrus	generates	a	Java	file	that	looks	like	this:

Citrus	Reference	Guide

45Run

package	com.consol.citrus.samples;

import	org.junit.Test;
import	com.consol.citrus.annotations.CitrusXmlTest;
import	com.consol.citrus.junit.AbstractJUnit4CitrusTest;

/**
	*	TODO:	Description
	*
	*	@author	Unknown
	*/
public	class	SampleIT	extends	AbstractJUnit4CitrusTest	{
				@Test
				@CitrusXmlTest(name	=	"SampleIT")
				public	void	sampleTest()	{}
}

JUnit	and	TestNG	as	frameworks	reveal	slight	differences,	but	the	idea	is	the	same.	We
extend	a	base	JUnit	Citrus	test	class	and	have	one	to	many	test	methods	that	load	the
XML	Citrus	test	cases	for	execution.	As	you	can	see	the	test	class	can	hold	several
annotated	test	methods	that	get	executed	as	JUnit	tests.	The	fine	thing	here	is	that	we
are	still	able	to	use	all	JUnit	features	such	as	before/after	test	actions	or	enable/disable
tests.

The	Java	JUnit	classes	are	simply	responsible	for	loading	and	executing	the	Citrus	test
cases.	Citrus	takes	care	on	loading	the	XML	test	as	a	file	system	resource	and	to	set	up
the	Spring	application	context.	The	test	is	executed	and	success/failure	state	is	reported
exactly	like	a	usual	JUnit	unit	test	would	do.	This	also	means	that	you	can	execute	this
Citrus	JUnit	class	like	every	other	JUnit	test,	especially	out	of	any	Java	IDE,	with	Maven,
with	ANT	and	so	on.	This	means	that	you	can	easily	include	the	Citrus	test	execution
into	you	software	building	lifecycle	and	continuous	build.

Tip	So	now	we	know	both	TestNG	and	JUnit	support	in	Citrus.	Which	framework	should
someone	choose?	To	be	honest,	there	is	no	easy	answer	to	this	question.	The	basic
features	are	equivalent,	but	TestNG	offers	better	possibilities	for	designing	more
complex	test	setup	with	test	groups	and	tasks	before	and	after	a	group	of	tests.	This	is
why	TestNG	is	the	default	option	in	Citrus.	But	in	the	end	you	have	to	decide	on	your
own	which	framework	fits	best	for	your	project.

The	first	example	seen	here	is	using	@CitrusXmlTest	annotation	in	order	to	load	a	XML
file	as	test.	The	Java	part	is	then	just	an	empty	envelope	for	executing	the	test	with
JUnit.	This	approach	is	for	those	of	you	that	are	not	familiar	with	Java	at	all.	You	can	find

Citrus	Reference	Guide

46Run

more	information	on	loading	XML	files	as	Citrus	tests	inrun-xml-tests.	Secondly	of
course	we	also	have	the	possibility	to	use	the	Citrus	Java	DSL	with	JUnit.	See	the
following	example	on	how	this	looks	like:

package	com.consol.citrus.samples;

import	com.consol.citrus.annotations.CitrusTest;
import	com.consol.citrus.dsl.JUnit4CitrusTestDesigner;
import	org.junit.Test;

/**
	*	TODO:	Description
	*
	*	@author	Unknown
	*/
public	class	SampleIT	extends	JUnit4CitrusTestDesigner	{

				@Test
				@CitrusTest
				public	void	EchoSampleIT()	{
								variable("time",	"citrus:currentDate()");
								echo("Hello	Citrus!");
								echo("CurrentTime	is:	${time}");
				}

				@Test
				@CitrusTest(name	=	"EchoIT")
				public	void	echoTest()	{
								echo("Hello	Citrus!");
				}
}

The	Java	DSL	test	case	looks	quite	familiar	as	we	also	use	the	JUnit4	@Test	annotation
in	order	to	mark	our	test	for	unit	test	execution.	In	addition	to	that	we	add	a	@CitrusTest
annotation	and	extend	from	a	basic	JUnit4	Citrus	test	designer	which	enables	the	Java
domain	specific	language	features.	The	Citrus	test	logic	goes	directly	to	the	method
block.	There	is	no	need	for	a	XML	test	file	anymore.

As	you	can	see	the	@CitrusTest	annotation	supports	multiple	test	methods	in	one
single	class.	Each	test	is	prepared	and	executed	separately	just	as	you	know	it	from
JUnit.	You	can	define	an	explicit	Citrus	test	name	that	is	used	in	Citrus	test	reports.	If	no
explicit	test	name	is	given	the	test	method	name	will	be	used	as	a	test	name.

If	you	need	to	know	more	details	about	the	test	designer	and	on	how	to	use	the	Citrus
Java	DSL	just	continue	with	this	reference	guide.	We	will	describe	the	capabilities	in
detail	later	on.

Citrus	Reference	Guide

47Run

Running	XML	tests

Now	we	also	use	the	@CitrusXmlTest	annotation	in	the	Java	class.	This	annotation
makes	Citrus	search	for	a	XML	file	that	represents	the	Citrus	test	within	your	classpath.
Later	on	we	will	also	discuss	another	Citrus	annotation	(@CitrusTest)	which	stands	for
defining	the	Citrus	test	just	with	Java	domain	specific	language	features.	For	now	we
continue	to	deal	with	the	XML	Citrus	test	execution.

The	default	naming	convention	requires	a	XML	file	with	the	tests	name	in	the	same
package	that	the	Java	class	is	placed	in.	In	the	basic	example	above	this	means	that
Citrus	searches	for	a	XML	test	file	in	com/consol/citrus/samples/SampleIT.xml	.	You
tell	Citrus	to	search	for	another	XML	file	by	using	the	@CitrusXmlTest	annotation
properties.	Following	annotation	properties	are	valid:

name:	List	of	test	case	names	to	execute.	Names	also	define	XML	file	names	to
look	for	(.xml	file	extension	is	not	needed	here).
packageName:	Custom	package	location	for	the	XML	files	to	load
packageScan:	List	of	packages	that	are	automatically	scanned	for	XML	test	files	to
execute.	For	each	XML	file	found	separate	test	is	executed.	Note	that	this	performs
a	Java	Classpath	package	scan	so	all	XML	files	in	package	are	assumed	to	be	valid
Citrus	XML	test	cases.	In	order	to	minimize	the	amount	of	accidentally	loaded	XML
files	the	scan	will	only	load	XML	files	with	*/Test.xml	and	*/IT.xml	file	name	pattern.

You	can	also	mix	the	various	CitrusXmlTest	annotation	patterns	in	a	single	Java	class.
So	we	are	able	to	have	several	test	cases	in	one	single	Java	class.	Each	annotated
method	represents	one	or	more	Citrus	XML	test	cases.	Se	the	following	example	to	see
what	this	is	about.

@Test
public	class	SampleIT	extends	AbstractTestNGCitrusTest	{
				@CitrusXmlTest(name	=	"SampleIT")
				public	void	sampleTest()	{}

				@CitrusXmlTest(name	=	{	"SampleIT",	"AnotherIT"	})
				public	void	multipleTests()	{}

				@CitrusXmlTest(name	=	"OtherIT",	packageName	=	"com.other.testpackage")
				public	void	otherPackageTest()	{}

				@CitrusXmlTest(packageScan	=		{	"com.some.testpackage",	"com.other.testpackage"	})
				public	void	packageScanTest()	{}
}

Citrus	Reference	Guide

48Run

You	are	free	to	combine	these	test	annotations	as	you	like	in	your	class.	As	the	whole
Java	class	is	annotated	with	the	TestNG	@Test	annotation	each	method	gets	executed
automatically.	Citrus	will	also	take	care	on	executing	each	XML	test	case	as	a	separate
unit	test.	So	the	test	reports	will	have	the	exact	number	of	executed	tests	and	the
JUnit/TestNG	test	reports	do	have	the	exact	test	outline	for	further	usage	(e.g.	in
continuous	build	reports).

Note	When	test	execution	takes	place	each	test	method	annotation	is	evaluated	in
sequence.	XML	test	cases	that	match	several	times,	for	instance	by	explicit	name
reference	and	a	package	scan	will	be	executed	several	times	respectively.

The	best	thing	about	using	the	@CitrusXmlTest	annotation	is	that	you	can	continue	to
use	the	fabulous	TestNG	capabilities	(e.g.	test	groups,	invocation	count,	thread	pools,
data	providers,	and	so	on).

So	now	we	have	seen	how	to	execute	a	Citrus	XML	test	with	TestNG.

Citrus	Reference	Guide

49Run

Configuration
You	have	several	options	in	customizing	the	Citrus	project	configuration.	Citrus	uses
default	settings	that	can	be	overwritten	to	some	extend.	As	a	framework	Citrus	internally
works	with	the	Spring	IoC	container.	So	Citrus	will	start	a	Spring	application	context	and
register	several	components	as	Spring	beans.	You	can	customize	the	behavior	of	these
beans	and	you	can	add	custom	settings	by	setting	system	properties.

Citrus	Spring	XML	application	context

Citrus	starts	a	Spring	application	context	and	adds	some	default	Spring	bean
components.	By	default	Citrus	will	load	some	internal	Spring	Java	config	classes
defining	those	bean	components.	At	some	point	you	might	add	some	custom	beans	to
that	basic	application	context.	This	is	why	Citrus	will	search	for	custom	Spring
application	context	files	in	your	project.	These	are	automatically	loaded.

By	default	Citrus	looks	for	custom	XML	Spring	application	context	files	in	this	location:
classpath*:citrus-context.xml	.	So	you	can	add	a	file	named	citrus-context.xml	to
your	project	classpath	and	Citrus	will	load	all	Spring	beans	automatically.

The	location	of	this	file	can	be	customized	by	setting	a	System	property
citrus.spring.application.context	.	So	you	can	customize	the	XML	Spring	application
context	file	location.	The	System	property	is	settable	with	Maven	surefire	and	failsafe
plugin	for	instance	or	via	Java	before	the	Citrus	framework	gets	loaded.

See	the	following	sample	XML	configuration	which	is	a	normal	Spring	bean	XML
configuration:

<?xml	version="1.0"	encoding="UTF-8"?>
<beans	xmlns="http://www.springframework.org/schema/beans"
							xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
							xmlns:citrus="http://www.citrusframework.org/schema/config"
							xmlns:context="http://www.springframework.org/schema/context"
							xsi:schemaLocation="http://www.springframework.org/schema/beans	http://www.springframework.org/schema/beans/spring-beans.xsd
				http://www.citrusframework.org/schema/config	http://www.citrusframework.org/schema/config/citrus-config.xsd
				http://www.springframework.org/schema/context	http://www.springframework.org/schema/context/spring-context.xsd"

		<citrus:schema-repository	id="schemaRepository"	/>

</beans>

Citrus	Reference	Guide

50Configuration

Now	you	can	add	some	Spring	beans	and	you	can	use	the	Citrus	XML	components	such
as	schema-repository	for	adding	custom	beans	and	components	to	your	Citrus	project.
Citrus	provides	several	namespaces	for	custom	Spring	XML	components.	These	are
described	in	more	detail	in	the	respective	chapters	and	sections	in	this	reference	guide.

Tip	You	can	also	use	import	statements	in	this	Spring	application	context	in	order	to	load
other	configuration	files.	So	you	are	free	to	modularize	your	configuration	in	several	files
that	get	loaded	by	Citrus.

Citrus	Spring	Java	config

Using	XML	Spring	application	context	configuration	is	the	default	behavior	of	Citrus.
However	some	people	might	prefer	pure	Java	code	configuration.	You	can	do	that	by
adding	a	System	property	citrus.spring.java.config	with	a	custom	Spring	Java	config
class	as	value.

System.setProperty("citrus.spring.java.config",	MyCustomConfig.class.getName())

Citrus	will	load	the	Spring	bean	configurations	in	MyCustomConfig.class	as	Java
config	then.	See	the	following	example	for	custom	Spring	Java	configuration:

Citrus	Reference	Guide

51Configuration

import	com.consol.citrus.TestCase;
import	com.consol.citrus.report.*;
import	org.slf4j.Logger;
import	org.slf4j.LoggerFactory;
import	org.springframework.context.annotation.Bean;
import	org.springframework.context.annotation.Configuration;

@Configuration
public	class	MyCustomConfig	{

				@Bean(name	=	"customTestListener")
				public	TestListener	customTestListener()	{
								return	new	PlusMinusTestReporter();
				}

				private	static	class	PlusMinusTestReporter	extends	AbstractTestListener	implements	TestReporter

								/**	Logger	*/
								private	Logger	log	=	LoggerFactory.getLogger(CustomBeanConfig.class);

								private	StringBuilder	testReport	=	new	StringBuilder();

								@Override
								public	void	onTestSuccess(TestCase	test)	{
												testReport.append("+");
								}

								@Override
								public	void	onTestFailure(TestCase	test,	Throwable	cause)	{
												testReport.append("-");
								}

								@Override
								public	void	generateTestResults()	{
												log.info(testReport.toString());
								}

								@Override
								public	void	clearTestResults()	{
												testReport	=	new	StringBuilder();
								}
				}
}

You	can	also	mix	XML	and	Java	configuration	so	Citrus	will	load	both	configuration	to
the	Spring	bean	application	context	on	startup.

Citrus	Reference	Guide

52Configuration

Citrus	application	properties

The	Citrus	framework	references	some	basic	System	properties	that	can	be	overwritten.
The	properties	are	loaded	from	Java	System	and	are	also	settable	via	property	file.	Just
add	a	property	file	named	citrus-application.properties	to	your	project	classpath.	This
property	file	contains	customized	settings	such	as:

citrus.spring.application.context=classpath*:citrus-custom-context.xml
citrus.spring.java.config=com.consol.citrus.config.MyCustomConfig
citrus.file.encoding=UTF-8
citrus.xml.file.name.pattern=/**/*Test.xml,/**/*IT.xml

Citrus	loads	these	application	properties	at	startup.	All	properties	are	also	settable	with
Java	System	properties.	The	location	of	the	citrus-application.properties	is
customizable	with	the	System	property	citrus.application.config	.

System.setProperty("citrus.application.config",	"custom/path/to/citrus-application.properties"

At	the	moment	you	can	use	these	properties	for	customization:

citrus.spring.application.context:	File	location	for	Spring	XML	configurations
citrus.spring.java.config:	Class	name	for	Spring	Java	config
citrus.file.encoding:	Default	file	encoding	used	in	Citrus	when	reading	and	writing	file
content
citrus.xml.file.name.pattern:	File	name	patterns	used	for	XML	test	file	package	scan

Citrus	Reference	Guide

53Configuration

Endpoints
In	one	of	the	previous	chapters	we	have	discussed	the	basic	test	case	structure	as	we
introduced	variables	and	test	actions	.	The	section	contains	a	list	of	test	actions	that
take	place	during	the	test	case.	Each	test	action	is	executed	in	sequential	order	by
default.	Citrus	offers	several	built-in	test	actions	that	the	user	can	choose	from	to
construct	a	complex	testing	workflow	without	having	to	code	everything	from	scratch.	In
particular	Citrus	aims	to	provide	all	the	test	actions	that	you	need	as	predefined
components	ready	for	you	to	use.	The	goal	is	to	minimize	the	coding	effort	for	you	so
you	can	concentrate	on	the	test	logic	itself.

Exactly	the	same	approach	is	used	in	Citrus	to	provide	ready-to-use	endpoint
component	for	connecting	to	different	message	transports.	There	are	several	ways	in	an
enterprise	application	to	exchange	messages	with	some	other	application.	We	have
synchronous	interfaces	like	Http	and	SOAP	WebServices.	We	have	asynchronous
messaging	with	JMS	or	file	transfer	FTP	interfaces.

Citrus	provides	endpoint	components	as	client	and	server	to	connect	with	these	typical
message	transports.	So	you	as	a	tester	must	not	care	about	how	to	send	a	message	to
a	JMS	queue.	The	Citrus	endpoints	are	configured	in	the	Spring	application	context	and
receive	endpoint	specific	properties	like	endpoint	uri	or	ports	or	message	timeouts	as
configuration.

The	next	figure	shows	a	typical	message	sending	endpoint	component	in	Citrus:

The	endpoint	producer	publishes	messages	to	a	destination.	This	destination	can	be	a
JMS	queue/topic,	a	SOAP	WebService	endpoint,	a	Http	URL,	a	FTP	folder	destination
and	so	on.	The	producer	just	takes	a	previously	defined	message	definition	(header	and
payload)	and	sends	it	to	the	message	destination.

Similar	to	that	Citrus	defines	the	several	endpoint	consumer	components	to	consume
messages	from	destinations.	This	can	be	a	simple	subscription	on	message	channels
and	JMS	queues/topics.	In	case	of	SOAP	WebServices	and	Http	GET/POST	things	are

Citrus	Reference	Guide

54Endpoints

more	complicated	as	we	have	to	provide	a	server	component	that	clients	can	connect	to.
We	will	handle	server	related	communication	in	more	detail	later	on.	For	now	the
endpoint	consumer	component	in	its	most	simple	way	is	defined	like	this:

This	is	all	you	need	to	know	about	Citrus	endpoints.	We	have	mentioned	that	the
endpoints	are	defined	in	the	Spring	application	context.	Let's	have	a	simple	example	that
shows	the	basic	idea:

<citrus-jms:endpoint	id="helloServiceEndpoint"
								destination-name="Citrus.HelloService.Request.Queue"
								connection-factory="myConnectionFacotry"/>

This	is	a	simple	JMS	endpoint	component	in	Citrus.	The	endpoint	XML	bean	definition
follows	a	custom	XML	namespace	and	defines	endpoint	specific	properties	like	the	JMS
destination	name	and	the	JMS	connection	factory.	The	endpoint	id	is	a	significant
property	as	the	test	cases	will	reference	this	endpoint	when	sending	and	receiving
messages	by	its	identifier.

In	the	next	sections	you	will	learn	how	a	test	case	uses	those	endpoint	components	for
producing	and	consuming	messages.

Send	messages	with	endpoints

The	action	in	a	test	case	publishes	messages	to	a	destination.	The	actual	message
transport	connection	is	defined	with	the	endpoint	component.	The	test	case	simply
defines	the	message	contents	and	references	a	predefined	message	endpoint
component	by	its	identifier.	Endpoint	specific	configurations	are	centralized	in	the	Spring
bean	application	context	while	multiple	test	cases	can	reference	the	endpoint	to	actually
publish	the	constructed	message	to	a	destination.	There	are	several	message	endpoint
implementations	in	Citrus	available	representing	different	transport	protocols	like	JMS,
SOAP,	HTTP,	TCP/IP	and	many	more.

Again	the	type	of	transport	to	use	is	not	specified	inside	the	test	case	but	in	the	message
endpoint	definition.	The	separation	of	concerns	(test	case/message	sender	transport)
gives	us	a	good	flexibility	of	our	test	cases.	The	test	case	does	not	know	anything	about
connection	factories,	queue	names	or	endpoint	uri,	connection	timeouts	and	so	on.	The

Citrus	Reference	Guide

55Endpoints

transport	internals	underneath	a	sending	test	action	can	change	easily	without	affecting
the	test	case	definition.	We	will	see	later	in	this	document	how	to	create	different
message	endpoints	for	various	transports	in	Citrus.	For	now	we	concentrate	on
constructing	the	message	content	to	be	sent.

We	assume	that	the	message's	payload	will	be	plain	XML	format.	Citrus	uses	XML	as
the	default	data	format	for	message	payload	data.	But	Citrus	is	not	limited	to	XML
message	format	though;	you	can	always	define	other	message	data	formats	such	as
JSON,	plain	text,	CSV.	As	XML	is	still	a	very	popular	message	format	in	enterprise
applications	and	message-based	solution	architectures	we	have	this	as	a	default	format.
Anyway	Citrus	works	best	on	XML	payloads	and	you	will	see	a	lot	of	example	code	in
this	document	using	XML.	Finally	let	us	have	a	look	at	a	first	example	how	a	sending
action	is	defined	in	the	test.

XML	DSL

<testcase	name="SendMessageTest">
				<description>Basic	send	message	example</description>

				<actions>
								<send	endpoint="helloServiceEndpoint">
												<message>
																<payload>
																				<TestMessage>
																								<Text>Hello!</Text>
																				</TestMessage>
																</payload>
												</message>
												<header>
																<element	name="Operation"	value="sayHello"/>
												</header>
								</send>
				</actions>
</testcase>

Now	lets	have	a	closer	look	at	the	sending	action.	The	'endpoint'	attribute	might	catch
your	attention	first.	This	attribute	references	the	message	endpoint	in	Citrus
configuration	by	its	identifier.	As	previously	mentioned	the	message	endpoint	definition
lives	in	a	separate	configuration	file	and	contains	the	actual	message	transport	settings.
In	this	example	the	"helloServiceEndpoint"	is	referenced	which	is	a	JMS	endpoint	for
sending	out	messages	to	a	JMS	queue	for	instance.

Citrus	Reference	Guide

56Endpoints

The	test	case	is	not	aware	of	any	transport	details,	because	it	does	not	have	to.	The
advantages	are	obvious:	On	the	one	hand	multiple	test	cases	can	reference	the
message	endpoint	definition	for	better	reuse.	Secondly	test	cases	are	independent	of
message	transport	details.	So	connection	factories,	user	credentials,	endpoint	uri	values
and	so	on	are	not	present	in	the	test	case.

In	other	words	the	"endpoint"	attribute	of	the	element	specifies	which	message
endpoint	definition	to	use	and	therefore	where	the	message	should	go	to.	Once	again	all
available	message	endpoints	are	configured	in	a	separate	Citrus	configuration	file.	Be
sure	to	always	pick	the	right	message	endpoint	type	in	order	to	publish	your	message	to
the	right	destination.

If	you	do	not	like	the	XML	language	you	can	also	use	pure	Java	code	to	define	the	same
test.	In	Java	you	would	also	make	use	of	the	message	endpoint	definition	and	reference
this	instance.	The	same	test	as	shown	above	in	Java	DSL	looks	like	this:

Java	DSL	designer

import	org.testng.ITestContext;
import	org.testng.annotations.Test;
import	com.consol.citrus.annotations.CitrusTest;
import	com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public	class	SendMessageTestDesigner	extends	TestNGCitrusTestDesigner	{

				@CitrusTest(name	=	"SendMessageTest")
				public	void	sendMessageTest()	{
								description("Basic	send	message	example");

								send("helloServiceEndpoint")
												.payload("<TestMessage>"	+
																								"<Text>Hello!</Text>"	+
																				"</TestMessage>")
												.header("Operation",	"sayHello");
				}
}

Instead	of	using	the	XML	tags	for	send	we	use	methods	from
TestNGCitrusTestDesigner	class.	The	same	message	endpoint	is	referenced	within
the	send	message	action.	The	payload	is	constructed	as	plain	Java	character	sequence
which	is	a	bit	verbose.	We	will	see	later	on	how	we	can	improve	this.	For	now	it	is
important	to	understand	the	combination	of	send	test	action	and	a	message	endpoint.

Citrus	Reference	Guide

57Endpoints

Tip	It	is	good	practice	to	follow	naming	conventions	when	defining	names	for	message
endpoints.	The	intended	purpose	of	the	message	endpoint	as	well	as	the
sending/receiving	actor	should	be	clear	when	choosing	the	name.	For	instance
messageEndpoint1,	messageEndpoint2	will	not	give	you	much	hints	to	the	purpose	of
the	message	endpoint.

This	is	basically	how	to	send	messages	in	Citrus.	The	test	case	is	responsible	for
constructing	the	message	content	while	the	predefined	message	endpoint	holds
transport	specific	settings.	Test	cases	reference	endpoint	components	to	publish
messages	to	the	outside	world.	This	is	just	the	start	of	action.	Citrus	supports	a	whole
package	of	other	ways	how	to	define	and	manipulate	the	message	contents.	Read	more
about	message	sending	actions	inactions-send.

Receive	messages	with	endpoints

Now	we	have	a	look	at	the	message	receiving	part	inside	the	test.	A	simple	example
shows	how	it	works.

XML	DSL

<receive	endpoint="helloServiceEndpoint">
				<message>
								<payload>
												<TestMessage>
																<Text>Hello!</Text>
												</TestMessage>
								</payload>
				</message>
				<header>
								<element	name="Operation"	value="sayHello"/>
				</header>
</receive>

If	we	recap	the	send	action	of	the	previous	chapter	we	can	identify	some	common
mechanisms	that	apply	for	both	sending	and	receiving	actions.	The	test	action	also	uses
the	endpoint	attribute	for	referencing	a	predefined	message	endpoint.	This	time	we
want	to	receive	a	message	from	the	endpoint.	Again	the	test	is	not	aware	of	the
transport	details	such	as	JMS	connections,	endpoint	uri,	and	so	on.	The	message
endpoint	component	encapsulates	this	information.

Citrus	Reference	Guide

58Endpoints

Before	we	go	into	detail	on	validating	the	received	message	we	have	a	quick	look	at	the
Java	DSL	variation	for	the	receive	action.	The	same	receive	action	as	above	looks	like
this	in	Java	DSL.

Java	DSL	designer

@CitrusTest
public	void	messagingTest()	{
				receive("helloServiceEndpoint")
								.payload("<TestMessage>"	+
																				"<Text>Hello!</Text>"	+
																"</TestMessage>")
								.header("Operation",	"sayHello");
}

The	receive	action	waits	for	a	message	to	arrive.	The	whole	test	execution	is	stopped
while	waiting	for	the	message.	This	is	important	to	ensure	the	step	by	step	test	workflow
processing.	Of	course	you	can	specify	message	timeouts	so	the	receiver	will	only	wait	a
given	amount	of	time	before	raising	a	timeout	error.	Following	from	that	timeout
exception	the	test	case	fails	as	the	message	did	not	arrive	in	time.	Citrus	defines	default
timeout	settings	for	all	message	receiving	tasks.

At	this	point	you	know	the	two	most	important	test	actions	in	Citrus.	Sending	and
receiving	actions	will	become	the	main	components	of	your	integration	tests	when
dealing	with	loosely	coupled	message	based	components	in	a	enterprise	application
environment.	It	is	very	easy	to	create	complex	message	flows,	meaning	a	sequence	of
sending	and	receiving	actions	in	your	test	case.	You	can	replicate	use	cases	and	test
your	message	exchange	with	extended	message	validation	capabilities.	Seeactions-
receivefor	a	more	detailed	description	on	how	to	validate	incoming	messages	and	how
to	expect	message	contents	in	a	test	case.

Now	we	have	seen	the	basic	endpoint	concept	in	Citrus.	The	endpoint	components
represent	the	connections	to	the	test	boundary	systems.	This	is	how	we	can	connect	to
the	system	under	test	for	message	exchange.	And	this	is	our	main	goal	with	this
integration	test	framework.	We	want	to	provide	easy	access	to	common	message
transports	on	client	and	server	side	so	that	we	can	test	the	communication	interfaces	on
a	real	message	transport	exchange.

Citrus	Reference	Guide

59Endpoints

Message	validation
When	Citrus	receives	a	message	from	external	applications	it	is	time	to	verify	the
message	content.	This	message	validation	includes	syntax	rules	as	well	as	semantic
values	that	need	to	be	compared	to	an	expected	behavior.	Citrus	provides	powerful
message	validation	capabilities.	Each	incoming	message	is	validated	with	syntax	and
semantics.	The	tester	is	able	to	define	expected	message	headers	and	payloads.	Citrus
message	validator	implementations	will	compare	the	messages	and	report	differences
as	test	failure.	With	the	upcoming	sections	we	have	a	closer	look	at	message	validation
of	XML	messages	with	XPath	and	XML	schema	validation	and	further	message	formats
like	JSON	and	plaintext.

Java	DSL	validation	callbacks

The	Java	DSL	offers	some	additional	validation	tricks	and	possibilities	when	dealing	with
messages	that	are	sent	and	received	over	Citrus.	One	of	them	is	the	validation	callback
functionality.	With	this	feature	you	can	marshal/unmarshal	message	payloads	and	code
validation	steps	on	Java	objects.

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive(bookResponseEndpoint)
								.validationCallback(new	MarshallingValidationCallback<AddBookResponseMessage>()	{
												@Override
												public	void	validate(AddBookResponseMessage	response,	MessageHeaders	headers)	{
																Assert.isTrue(response.isSuccess());
												}
								});
}

By	default	the	validation	callback	needs	some	XML	unmarshaller	implementation	for
transforming	the	XML	payload	to	a	Java	object.	Citrus	will	automatically	search	for	the
unmarshaller	bean	in	your	Spring	application	context	if	nothing	specific	is	set.	Of	course
you	can	also	set	the	unmarshaller	instance	explicitly.

Java	DSL	designer

Citrus	Reference	Guide

60Validation

@Autowired
private	Unmarshaller	unmarshaller;

@CitrusTest
public	void	receiveMessageTest()	{
				receive(bookResponseEndpoint)
								.validationCallback(new	MarshallingValidationCallback<AddBookResponseMessage>(unmarshaller)	{
												@Override
												public	void	validate(AddBookResponseMessage	response,	MessageHeaders	headers)	{
																Assert.isTrue(response.isSuccess());
												}
								});
}

Obviously	working	on	Java	objects	is	much	more	comfortable	than	using	the	XML	String
concatenation.	This	is	why	you	can	also	use	this	feature	when	sending	messages.

Java	DSL	designer

@Autowired
private	Marshaller	marshaller;

@CitrusTest
public	void	sendMessageTest()	{
				send(bookRequestEndpoint)
								.payload(createAddBookRequestMessage("978-citrus:randomNumber(10)"),	marshaller)
								.header(SoapMessageHeaders.SOAP_ACTION,	"addBook");
}

private	AddBookRequestMessage	createAddBookRequestMessage(String	isbn)	{
				AddBookRequestMessage	requestMessage	=	new	AddBookRequestMessage();
				Book	book	=	new	Book();
				book.setAuthor("Foo");
				book.setTitle("FooTitle");
				book.setIsbn(isbn);
				book.setYear(2008);
				book.setRegistrationDate(Calendar.getInstance());
				requestMessage.setBook(book);
				return	requestMessage;
}

The	example	above	creates	a	AddBookRequestMessage	object	and	puts	this	as
payload	to	a	send	action.	In	combination	with	a	marshaller	instance	Citrus	is	able	to
create	a	proper	XML	message	payload	then.

Citrus	Reference	Guide

61Validation

Customize	message	validators

In	the	previous	sections	we	have	already	seen	some	examples	on	how	to	overwrite
default	message	validator	implementations	in	Citrus.	By	default	all	message	validators
can	be	overwritten	by	placing	a	Spring	bean	of	the	same	id	to	the	Spring	application
context.	The	default	implementations	of	Citrus	are:

defaultXmlMessageValidator:
com.consol.citrus.validation.xml.DomXmlMessageValidator
defaultXpathMessageValidator:
com.consol.citrus.validation.xml.XpathMessageValidator
defaultJsonMessageValidator:
com.consol.citrus.validation.json.JsonTextMessageValidator
defaultJsonPathMessageValidator:
com.consol.citrus.validation.json.JsonPathMessageValidator
defaultPlaintextMessageValidator:
com.consol.citrus.validation.text.PlainTextMessageValidator
defaultBinaryBase64MessageValidator:
com.consol.citrus.validation.text.BinaryBase64MessageValidator
defaultXhtmlMessageValidator:
com.consol.citrus.validation.xhtml.XhtmlMessageValidator
defaultGroovyXmlMessageValidator:
com.consol.citrus.validation.script.GroovyXmlMessageValidator
defaultGroovyJsonMessageValidator:
com.consol.citrus.validation.script.GroovyJsonMessageValidator

Overwriting	a	single	message	validator	with	a	custom	implementation	is	then	very	easy.
Just	add	your	custom	Spring	bean	to	the	application	context	using	one	of	these	default
bean	identifiers.	In	case	you	want	to	change	the	message	validator	gang	by	adding	or
removing	a	message	validator	implementation	completely	you	can	place	a	message
validator	component	in	the	Spring	application	context.

Citrus	Reference	Guide

62Validation

<citrus:message-validators>
				<citrus:validator	ref="defaultXmlMessageValidator"/>
				<citrus:validator	ref="defaultXpathMessageValidator"/>
				<citrus:validator	ref="defaultGroovyXmlMessageValidator"/>
				<citrus:validator	ref="defaultPlaintextMessageValidator"/>
				<citrus:validator	ref="defaultBinaryBase64MessageValidator"/>
				<citrus:validator	class="com.consol.citrus.validation.custom.CustomMessageValidator"/>
				<citrus:validator	ref="defaultJsonMessageValidator"/>
				<citrus:validator	ref="defaultJsonPathMessageValidator"/>
				<citrus:validator	ref="defaultGroovyJsonMessageValidator"/>
				<citrus:validator	ref="defaultXhtmlMessageValidator"/>
</citrus:message-validators>

The	listing	above	adds	a	custom	message	validator	implementation	to	the	sequence	of
message	validators	in	Citrus.	We	reference	default	message	validators	and	add	a
implementation	of	type
com.consol.citrus.validation.custom.CustomMessageValidator	.	The	custom
implementation	class	has	to	implement	the	basic	interface
com.consol.citrus.validation.MessageValidator	.	Now	Citrus	will	try	to	match	the
custom	implementation	to	incoming	message	types	and	occasionally	execute	the
message	validator	logic.	This	is	how	you	can	add	and	change	the	basic	message
validator	registry	in	Citrus.	You	can	add	custom	implementations	for	new	message
formats	very	easy.

The	same	approach	applies	in	case	you	want	to	remove	a	message	validator
implementation	by	banning	it	completely.	Just	delete	the	entry	in	the	message	validator
registry	component:

<citrus:message-validators>
				<citrus:validator	ref="defaultJsonMessageValidator"/>
				<citrus:validator	ref="defaultJsonPathMessageValidator"/>
				<citrus:validator	ref="defaultGroovyJsonMessageValidator"/>
</citrus:message-validators>

The	Citrus	message	validator	component	deleted	all	default	implementations	except	of
those	dealing	with	JSON	message	format.	Now	Citrus	is	only	able	to	validate	JSON
messages.	Be	careful	as	the	complete	Citrus	project	will	be	affected	by	this	change.

Citrus	Reference	Guide

63Validation

Xml	message	validation

XML	is	a	very	common	message	format	especially	in	the	SOAP	WebServices	and	JMS
messaging	world.	Citrus	provides	XML	message	validator	implementations	that	are	able
to	compare	XML	message	structures.	The	validator	will	notice	differences	in	the	XML
message	structure	and	supports	XML	namespaces,	attributes	and	XML	schema
validation.	The	default	XML	message	validator	implementation	is	active	by	default	and
can	be	overwritten	with	a	custom	implementation	using	the	bean	id
defaultXmlMessageValidator	.

<bean	id="defaultXmlMessageValidator"	class="com.consol.citrus.validation.xml.DomXmlMessageValidator"

The	default	XML	message	validator	is	very	powerful	when	it	comes	to	compare	XML
structures.	The	validator	supports	namespaces	with	different	prefixes	and	attributes	als
well	as	namespace	qualified	attributes.	See	the	following	sections	for	a	detailed
description	of	all	capabilities.

XML	payload	validation

Once	Citrus	has	received	a	message	the	tester	can	validate	the	message	contents	in
various	ways.	First	of	all	the	tester	can	compare	the	whole	message	payload	to	a
predefined	control	message	template.

The	receiving	action	offers	following	elements	for	control	message	templates:

	:	Defines	the	message	payload	as	nested	XML	message	template.	The	whole
message	payload	is	defined	inside	the	test	case.

	:	Defines	an	inline	XML	message	template	as	nested	CDATA.	Slightly	different	to
the	payload	variation	as	we	define	the	whole	message	payload	inside	the	test	case
as	CDATA	section.

	:	Defines	an	expected	XML	message	template	via	external	file	resources.	This	time
the	payload	is	loaded	at	runtime	from	the	external	file.

Both	ways	inline	payload	definition	or	external	file	resource	give	us	a	control	message
template	that	the	test	case	expects	to	arrive.	Citrus	uses	this	control	template	for
extended	message	comparison.	All	elements,	namespaces,	attributes	and	node	values

Citrus	Reference	Guide

64Xml

are	validated	in	this	comparison.	When	using	XML	message	payloads	Citrus	will
navigate	through	the	whole	XML	structure	validating	each	element	and	its	content.	Same
with	JSON	payloads.

Only	in	case	received	message	and	control	message	are	equal	to	each	other	as
expected	the	message	validation	will	pass.	In	case	differences	occur	Citrus	gives
detailed	error	messages	and	the	test	case	fails.

The	control	message	template	is	not	necessarily	very	static.	Citrus	supports	various
ways	to	add	dynamic	message	content	on	the	one	side	and	on	the	other	side	Citrus	can
ignore	some	elements	that	are	not	part	of	message	comparison	(e.g.	when	generated
content	or	timestamps	are	part	of	the	message	content).	The	tester	can	enrich	the
expected	message	template	with	test	variables	or	ignore	expressions	so	we	get	a	more
robust	validation	mechanism.	We	will	talk	about	this	in	the	next	sections	to	come.

When	using	the	Citrus	Java	DSL	you	will	face	a	verbose	message	payload	definition.
This	is	because	Java	does	not	support	multiline	character	sequence	values	as	Strings.
We	have	to	use	verbose	String	concatenation	when	constructing	XML	message	payload
contents	for	instance.	In	addition	to	that	reserved	characters	like	quotes	must	be
escaped	and	line	breaks	must	be	explicitly	added.	All	these	impediments	let	me	suggest
to	use	external	file	resources	in	Java	DSL	when	dealing	with	large	complex	message
payload	data.	Here	is	an	example:

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("helloServiceServer")
								.payload(new	ClassPathResource("com/consol/citrus/message/data/TestRequest.xml"))
								.header("Operation",	"sayHello")
								.header("MessageId",	"${messageId}");
}

XML	header	validation

Now	that	we	have	validated	the	message	payload	in	various	ways	we	are	now	interested
in	validating	the	message	header.	This	is	simple	as	you	have	to	define	the	header	name
and	the	control	value	that	you	expect.	Just	add	the	following	header	validation	to	your
receiving	action.

XML	DSL

Citrus	Reference	Guide

65Xml

<header>
				<element	name="Operation"	value="GetCustomer"/>
				<element	name="RequestTag"	value="${requestTag}"/>
</header>

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("helloServiceServer")
								.header("Operation",	"sayHello")
								.header("MessageId",	"${messageId}");
}

Message	headers	are	represented	as	name-value	pairs.	Each	expected	header	element
identified	by	its	name	has	to	be	present	in	the	received	message.	In	addition	to	that	the
header	value	is	compared	to	the	given	control	value.	If	a	header	entry	is	not	found	by	its
name	or	the	value	does	not	fit	accordingly	Citrus	will	raise	validation	errors	and	the	test
case	will	fail.

Note	Sometimes	message	headers	may	not	apply	to	the	name-value	pair	pattern.	For
example	SOAP	headers	can	also	contain	XML	fragments.	Citrus	supports	these	kind	of
headers	too.	Please	see	the	SOAP	chapter	for	more	details.###	Ignore	XML	elements

Some	elements	in	the	message	payload	might	not	apply	for	validation	at	all.	Just	think	of
communication	timestamps	an	dynamic	values	inside	a	message:

The	timestamp	value	in	our	next	example	will	dynamically	change	from	test	run	to	test
run	and	is	hardly	predictable	for	the	tester,	so	lets	ignore	it	in	validation.

XML	DSL

	<message>
				<payload>
								<TestMessage>
												<MessageId>${messageId}</MessageId>
												<Timestamp>2001-12-17T09:30:47.0Z</Timestamp>
												<VersionId>@ignore@</VersionId>
								</TestMessage>
				</payload>
				<ignore	path="/TestMessage/Timestamp"/>
</message>

Citrus	Reference	Guide

66Xml

Although	we	have	given	a	static	timestamp	value	in	the	payload	data	the	element	is
ignored	during	validation	as	the	ignore	XPath	expression	matches	the	element.	In
addition	to	that	we	also	ignored	the	version	id	element	in	this	example.	This	time	with	an
inline	@ignore@	expression.	This	is	for	those	of	you	that	do	not	like	XPath.	As	a	result
the	ignored	message	elements	are	automatically	skipped	when	Citrus	compares	and
validates	message	contents	and	do	not	break	the	test	case.

When	using	the	Java	DSL	the	@ignore@	placeholder	as	well	as	XPath	expressions	can
be	used	seamlessly.	Here	is	an	example	of	that:

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("helloServiceServer")
								.payload(new	ClassPathResource("com/consol/citrus/message/data/TestRequest.xml"))
								.header("Operation",	"sayHello")
								.header("MessageId",	"${messageId}")
								.ignore("/TestMessage/Timestamp");
}

Of	course	you	can	use	the	inline	@ignore@	placeholder	in	an	external	file	resource,	too.

Groovy	XML	validation

With	the	Groovy	XmlSlurper	you	can	easily	validate	XML	message	payloads	without
having	to	deal	directly	with	XML.	People	who	do	not	want	to	deal	with	XPath	may	also
like	this	validation	alternative.	The	tester	directly	navigates	through	the	message
elements	and	uses	simple	code	assertions	in	order	to	control	the	message	content.	Here
is	an	example	how	to	validate	messages	with	Groovy	script:

XML	DSL

Citrus	Reference	Guide

67Xml

<receive	endpoint="helloServiceClient"	timeout="5000">
				<message>
								<validate>
												<script	type="groovy">
																assert	root.children().size()	==	4
																assert	root.MessageId.text()	==	'${messageId}'
																assert	root.CorrelationId.text()	==	'${correlationId}'
																assert	root.User.text()	==	'HelloService'
																assert	root.Text.text()	==	'Hello	'	+	context.getVariable("user")
												</script>
								</validate>
				</message>
				<header>
								<element	name="Operation"	value="sayHello"/>
								<element	name="CorrelationId"	value="${correlationId}"/>
				</header>
</receive>

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("helloServiceClient")
								.validateScript("assert	root.MessageId.text()	==	'${messageId}';"	+
																								"assert	root.CorrelationId.text()	==	'${correlationId}';")
								.header("Operation,	"sayHello")
								.header("CorrelationId",	"${correlationId}")
								.timeout(5000L);
}

The	Groovy	XmlSlurper	validation	script	goes	right	into	the	message-tag	instead	of	a
XML	control	template	or	XPath	validation.	The	Groovy	script	supports	Java	assert
statements	for	message	element	validation.	Citrus	automatically	injects	the	root	element
root	to	the	validation	script.	This	is	the	Groovy	XmlSlurper	object	and	the	start	of
element	navigation.	Based	on	this	root	element	you	can	access	child	elements	and
attributes	with	a	dot	notated	syntax.	Just	use	the	element	names	separated	by	a	simple
dot.	Very	easy!	If	you	need	the	list	of	child	elements	use	the	children()	function	on	any
element.	With	the	text()	function	you	get	access	to	the	element's	text-value.	The	size()	is
very	useful	for	validating	the	number	of	child	elements	which	completes	the	basic
validation	statements.

As	you	can	see	from	the	example,	we	may	use	test	variables	within	the	validation	script,
too.	Citrus	has	also	injected	the	actual	test	context	to	the	validation	script.	The	test
context	object	holds	all	test	variables.	So	you	can	also	access	variables	with

Citrus	Reference	Guide

68Xml

context.getVariable("user")	for	instance.	On	the	test	context	you	can	also	set	new
variable	values	with	context.setVariable("user",	"newUserName")	.

There	is	even	more	object	injection	for	the	validation	script.	With	the	automatically	added
object	receivedMessage	You	have	access	to	the	Citrus	message	object	for	this	receive
action.	This	enables	you	to	do	whatever	you	want	with	the	message	payload	or	header.

XML	DSL

<receive	endpoint="helloServiceClient"	timeout="5000">
				<message>
								<validate>
												<script	type="groovy">
																assert	receivedMessage.getPayload(String.class).contains("Hello	Citrus!")
																assert	receivedMessage.getHeader("Operation")	==	'sayHello'

																context.setVariable("request_payload",	receivedMessage.getPayload(String.class
												</script>
								</validate>
				</message>
</receive>

The	listing	above	shows	some	power	of	the	validation	script.	We	can	access	the
message	payload,	we	can	access	the	message	header.	With	test	context	access	we	can
also	save	the	whole	message	payload	as	a	new	test	variable	for	later	usage	in	the	test.

In	general	Groovy	code	inside	the	XML	test	case	definition	or	as	part	of	the	Java	DSL
code	is	not	very	comfortable	to	maintain.	You	do	not	have	code	syntax	assist	or	code
completion.	This	is	why	we	can	also	use	external	file	resources	for	the	validation	scripts.
The	syntax	looks	like	follows:

XML	DSL

<receive	endpoint="helloServiceClient"	timeout="5000">
				<message>
								<validate>
												<script	type="groovy"	file="classpath:validationScript.groovy"/>
								</validate>
				</message>
				<header>
								<element	name="Operation"	value="sayHello"/>
								<element	name="CorrelationId"	value="${correlationId}"/>
				</header>
</receive>

Citrus	Reference	Guide

69Xml

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("helloServiceClient")
								.validateScript(new	FileSystemResource("validationScript.groovy"))
								.header("Operation,	"sayHello")
								.header("CorrelationId",	"${correlationId}")
								.timeout(5000L);
}

We	referenced	some	external	file	resource	validationScript.groovy	.	This	file	content	is
loaded	at	runtime	and	is	used	as	script	body.	Now	that	we	have	a	normal	groovy	file	we
can	use	the	code	completion	and	syntax	highlighting	of	our	favorite	Groovy	editor.

Note	You	can	use	the	Groovy	validation	script	in	combination	with	other	validation	types
like	XML	tree	comparison	and	XPath	validation.Tip	For	further	information	on	the	Groovy
XmlSlurper	please	see	the	official	Groovy	website	and	documentation

Citrus	Reference	Guide

70Xml

XML	schema	validation

There	are	several	possibilities	to	describe	the	structure	of	XML	documents.	The	two
most	popular	ways	are	DTD	(Document	type	definition)	and	XSD	(XML	Schema
definition).	Once	a	XML	document	has	decided	to	be	classified	using	a	schema	definition
the	structure	of	the	document	has	to	fit	the	predefined	rules	inside	the	schema	definition.
XML	document	instances	are	valid	only	in	case	they	meet	all	these	structure	rules
defined	in	the	schema	definition.	Currently	Citrus	can	validate	XML	documents	using	the
schema	languages	DTD	and	XSD.

XSD	schema	repositories

Citrus	tries	to	validate	all	incoming	XML	messages	against	a	schema	definition	in	order
to	ensure	that	all	rules	are	fulfilled.	As	a	consequence	the	message	receiving	actions	in
Citrus	do	have	to	know	the	XML	schema	definition	(*.xsd)	file	resources	that	belong	to
our	project.	Therefore	Citrus	introduces	a	central	schema	repository	component	which
holds	all	available	XML	schema	files	for	a	project.

<citrus:schema-repository	id="schemaRepository">
				<citrus:schemas>
								<citrus:schema	id="travelAgencySchema"
												location="classpath:citrus/flightbooking/TravelAgencySchema.xsd"/>
								<citrus:schema	id="royalArilineSchema"
												location="classpath:citrus/flightbooking/RoyalAirlineSchema.xsd"/>
								<citrus:reference	schema="smartArilineSchema"/>
				</citrus:schemas>
</citrus:schema-repository>

<citrus:schema	id="smartArilineSchema"
						location="classpath:citrus/flightbooking/SmartAirlineSchema.xsd"/>

As	you	can	see	the	schema	repository	is	a	simple	XML	component	defined	inside	the
Spring	application	context.	The	repository	can	hold	nested	schema	definitions	defined	by
some	identifier	and	a	file	location	for	the	xsd	schema	file.	Schema	definitions	can	also	be
referenced	by	its	identifier	for	usage	in	several	schema	repository	instances.

By	convention	the	default	schema	repository	component	is	defined	in	the	Citrus	Spring
application	context	with	the	id	schemaRepository	.	Spring	application	context	is	then
able	to	inject	the	schema	repository	into	all	message	receiving	test	actions	at	runtime.
The	receiving	test	action	consolidates	the	repository	for	a	matching	schema	definition	file
in	order	to	validate	the	incoming	XML	document	structure.

Citrus	Reference	Guide

71Schema

The	connection	between	incoming	XML	messages	and	xsd	schema	files	in	the
repository	is	done	by	a	mapping	strategy	which	we	will	discuss	later	in	this	chapter.	By
default	Citrus	picks	the	right	schema	based	on	the	target	namespace	that	is	defined
inside	the	schema	definition.	The	target	namespace	of	the	schema	definition	has	to
match	the	namespace	of	the	root	element	in	the	received	XML	message.	With	this
mapping	strategy	you	will	not	have	to	wire	XML	messages	and	schema	files	manually	all
is	done	automatically	by	the	Citrus	schema	repository	at	runtime.	All	you	need	to	do	is	to
register	all	available	schema	definition	files	regardless	of	which	target	namespace	or
nature	inside	the	Citrus	schema	repository.

Important	XMl	schema	validation	is	mandatory	in	Citrus.	This	means	that	Citrus	always
tries	to	find	a	matching	schema	definition	inside	the	schema	repository	in	order	to
perform	syntax	validation	on	incoming	schema	qualified	XML	messages.	A	classified
XML	message	is	defined	by	its	namespace	definitions.	Consequently	you	will	get
validation	errors	in	case	no	matching	schema	definition	file	is	found	inside	the	schema
repository.	So	if	you	explicitly	do	not	want	to	validate	the	XML	schema	for	some	reason
you	have	to	disable	the	validation	explicitly	in	your	test	with	schema-validation="false"
.

<receive	endpoint="httpMessageEndpoint">
				<message	schema-validation="false">
						<validate>
								<xpath	expression="//ns1:TestMessage/ns1:MessageHeader/ns1:MessageId"
													value="${messageId}"/>
								<xpath	expression="//ns1:TestMessage/ns1:MessageHeader/ns1:CorrelationId"
													value="${correlationId}"/>
								<namespace	prefix="ns1"	value="http://citrus.com/namespace"/>
						</validate>
				</message>
				<header>
								<element	name="Operation"	value="sayHello"/>
								<element	name="MessageId"	value="${messageId}"/>
				</header>
</receive>

This	mandatory	schema	validation	might	sound	annoying	to	you	but	in	our	opinion	it	is
very	important	to	validate	the	structure	of	the	received	XML	messages,	so	disabling	the
schema	validation	should	not	be	the	standard	for	all	tests.	Disabling	automatic	schema
validation	should	only	apply	to	very	special	situations.	So	please	try	to	put	all	available
schema	definitions	to	the	schema	repository	and	you	will	be	fine.

WSDL	schemas

Citrus	Reference	Guide

72Schema

In	SOAP	WebServices	world	the	WSDL	(WebService	Schema	Definition	Language)
defines	the	structure	an	nature	of	the	XML	messages	exchanged	across	the	interface.
Often	the	WSDL	files	do	hold	the	XML	schema	definitions	as	nested	elements.	In	Citrus
you	can	directly	set	the	WSDL	file	as	location	of	a	schema	definition	like	this:

<citrus:schema	id="arilineWsdl"
				location="classpath:citrus/flightbooking/AirlineSchema.wsdl"/>

Citrus	is	able	to	find	the	nested	schema	definitions	inside	the	WSDL	file	in	order	to	build
a	valid	schema	file	for	the	schema	repository.	So	incoming	XML	messages	that	refer	to
the	WSDL	file	can	be	validated	for	syntax	rules.

Schema	location	patterns

Setting	all	schemas	one	by	one	in	a	schema	repository	can	be	verbose	and
uncomfortable,	especially	when	dealing	with	lots	of	xsd	and	wsdl	files.	The	schema
repository	also	supports	location	pattern	expressions.	See	this	example	to	see	how	it
works:

<citrus:schema-repository	id="schemaRepository">
		<citrus:locations>
				<citrus:location
								path="classpath:citrus/flightbooking/*.xsd"/>
		</citrus:locations>
</citrus:schema-repository>

The	schema	repository	searches	for	all	files	matching	the	resource	path	location	pattern
and	adds	them	as	schema	instances	to	the	repository.	Of	course	this	also	works	with
WSDL	files.

Schema	collections

Sometimes	multiple	a	schema	definition	is	separated	into	multiple	files.	This	is	a	problem
for	the	Citrus	schema	repository	as	the	schema	mapping	strategy	then	is	not	able	to	pick
the	right	file	for	validation,	in	particular	when	working	with	target	namespace	values	as
key	for	the	schema	mapping	strategy.	As	a	solution	for	this	problem	you	have	to	put	all
schemas	with	the	same	target	namespace	value	into	a	schema	collection.

Citrus	Reference	Guide

73Schema

<citrus:schema-collection	id="flightbookingSchemaCollection">
		<citrus:schemas>
				<citrus:schema	location="classpath:citrus/flightbooking/BaseTypes.xsd"/>
				<citrus:schema	location="classpath:citrus/flightbooking/AirlineSchema.xsd"/>
		</citrus:schemas>
</citrus:schema-collection>

Both	schema	definitions	BaseTypes.xsd	and	AirlineSchema.xsd	share	the	same
target	namespace	and	therefore	need	to	be	combined	in	schema	collection	component.
The	schema	collection	can	be	referenced	in	any	schema	repository	as	normal	schema
definition.

<citrus:schema-repository	id="schemaRepository">
		<citrus:schemas>
				<citrus:reference	schema="flightbookingSchemaCollection"/>
		</citrus:schemas>
</citrus:schema-repository>

Schema	mapping	strategy

The	schema	repository	in	Citrus	holds	one	to	many	schema	definition	files	and
dynamically	picks	up	the	right	one	according	to	the	validated	message	payload.	The
repository	needs	to	have	some	strategy	for	deciding	which	schema	definition	to	choose.
See	the	following	schema	mapping	strategies	and	decide	which	of	them	is	suitable	for
you.

Target	Namespace	Mapping	Strategy

This	is	the	default	schema	mapping	strategy.	Schema	definitions	usually	define	some
target	namespace	which	is	valid	for	all	elements	and	types	inside	the	schema	file.	The
target	namespace	is	also	used	as	root	namespace	in	XML	message	payloads.
According	to	this	information	Citrus	can	pick	up	the	right	schema	definition	file	in	the
schema	repository.	You	can	set	the	schema	mapping	strategy	as	property	in	the
configuration	files:

Citrus	Reference	Guide

74Schema

<citrus:schema-repository	id="schemaRepository"
				schema-mapping-strategy="schemaMappingStrategy">
		<citrus:schemas>
				<citrus:schema	id="helloSchema"
								location="classpath:citrus/samples/sayHello.xsd"/>
		</citrus:schemas>
</citrus:schema-repository>

<bean	id="schemaMappingStrategy"
				class="com.consol.citrus.xml.schema.TargetNamespaceSchemaMappingStrategy"/>

The	sayHello.xsd	schema	file	defines	a	target	namespace
(http://consol.de/schemas/sayHello.xsd):

<xs:schema	xmlns:xs="http://www.w3.org/2001/XMLSchema"
				xmlns="http://consol.de/schemas/sayHello.xsd"
				targetNamespace="http://consol.de/schemas/sayHello.xsd"
				elementFormDefault="qualified"
				attributeFormDefault="unqualified">

</xs:schema>

Incoming	request	messages	should	also	have	the	target	namespace	set	in	the	root
element	and	this	is	how	Citrus	matches	the	right	schema	file	in	the	repository.

<HelloRequest	xmlns="http://consol.de/schemas/sayHello.xsd">
			<MessageId>123456789</MessageId>
			<CorrelationId>1000</CorrelationId>
			<User>Christoph</User>
			<Text>Hello	Citrus</Text>
</HelloRequest>

Root	QName	Mapping	Strategy

The	next	possibility	for	mapping	incoming	request	messages	to	a	schema	definition	is
via	the	XML	root	element	QName.	Each	XML	message	payload	starts	with	a	root
element	that	usually	declares	the	type	of	a	XML	message.	According	to	this	root	element
you	can	set	up	mappings	in	the	schema	repository.

Citrus	Reference	Guide

75Schema

http://consol.de/schemas/sayHello.xsd

<citrus:schema-repository	id="schemaRepository"
				schema-mapping-strategy="schemaMappingStrategy">
		<citrus:schemas>
				<citrus:reference	schema="helloSchema"/>
				<citrus:reference	schema="goodbyeSchema"/>
		</citrus:schemas>
</citrus:schema-repository>

<bean	id="schemaMappingStrategy"
				class="com.consol.citrus.xml.schema.RootQNameSchemaMappingStrategy">
		<property	name="mappings">
				<map>
						<entry	key="HelloRequest"	value="helloSchema"/>
						<entry	key="GoodbyeRequest"	value="goodbyeSchema"/>
				</map>
		</property>
</bean>

<citrus:schema	id="helloSchema"
				location="classpath:citrus/samples/sayHello.xsd"/>

<citrus:schema	id="goodbyeSchema"
					location="classpath:citrus/samples/sayGoodbye.xsd"/>

The	listing	above	defines	two	root	qname	mappings	-	one	for	HelloRequest	and	one	for
GoodbyeRequest	message	types.	An	incoming	message	of	type	is	then	mapped	to	the
respective	schema	and	so	on.	With	this	dedicated	mappings	you	are	able	to	control
which	schema	is	used	on	a	XML	request,	regardless	of	target	namespace	definitions.

Schema	mapping	strategy	chain

Let's	discuss	the	possibility	to	combine	several	schema	mapping	strategies	in	a	logical
chain.	You	can	define	more	than	one	mapping	strategy	that	are	evaluated	in	sequence.
The	first	strategy	to	find	a	proper	schema	definition	file	in	the	repository	wins.

Citrus	Reference	Guide

76Schema

<citrus:schema-repository	id="schemaRepository"
				schema-mapping-strategy="schemaMappingStrategy">
		<citrus:schemas>
				<citrus:reference	schema="helloSchema"/>
				<citrus:reference	schema="goodbyeSchema"/>
		</citrus:schemas>
</citrus:schema-repository>

<bean	id="schemaMappingStrategy"
				class="com.consol.citrus.xml.schema.SchemaMappingStrategyChain">
		<property	name="strategies">
				<list>
						<bean	class="com.consol.citrus.xml.schema.RootQNameSchemaMappingStrategy">
								<property	name="mappings">
										<map>
												<entry	key="HelloRequest"	value="helloSchema"/>
										</map>
								</property>
						</bean>
						<bean	class="com.consol.citrus.xml.schema.TargetNamespaceSchemaMappingStrategy"/>
				</list>
		</property>
</bean>

So	the	schema	mapping	chain	uses	both	RootQNameSchemaMappingStrategy	and
TargetNamespaceSchemaMappingStrategy	in	combination.	In	case	the	first	root
qname	strategy	fails	to	find	a	proper	mapping	the	next	target	namespace	strategy	comes
in	and	tries	to	find	a	proper	schema.

Schema	definition	overruling

Now	it	is	time	to	talk	about	schema	definition	settings	on	test	action	level.	We	have
learned	before	that	Citrus	tries	to	automatically	find	a	matching	schema	definition	in
some	schema	repository.	There	comes	a	time	where	you	as	a	tester	just	have	to	pick	the
right	schema	definition	by	yourself.	You	can	overrule	all	schema	mapping	strategies	in
Citrus	by	directly	setting	the	desired	schema	in	your	receiving	message	action.

Citrus	Reference	Guide

77Schema

<receive	endpoint="httpMessageEndpoint">
				<message	schema="helloSchema">
						<validate>
								<xpath	expression="//ns1:TestMessage/ns1:MessageHeader/ns1:MessageId"
																		value="${messageId}"/>
								<xpath	expression="//ns1:TestMessage/ns1:MessageHeader/ns1:CorrelationId"
																		value="${correlationId}"/>
								<namespace	prefix="ns1"	value="http://citrus.com/namespace"/>
						</validate>
				</message>
</receive>

<citrus:schema	id="helloSchema"
				location="classpath:citrus/samples/sayHello.xsd"/>

In	the	example	above	the	tester	explicitly	sets	a	schema	definition	in	the	receive	action
(schema="helloSchema").	The	attribute	value	refers	to	named	schema	bean	somewhere
in	the	applciation	context.	This	overrules	all	schema	mapping	strategies	used	in	the
central	schema	repository	as	the	given	schema	is	directly	used	for	validation.	This
feature	is	helpful	when	dealing	with	different	schema	versions	at	the	same	time	where
the	schema	repository	can	not	help	you	anymore.

Another	possibility	would	be	to	set	a	custom	schema	repository	at	this	point.	This	means
you	can	have	more	than	one	schema	repository	in	your	Citrus	project	and	you	pick	the
right	one	by	yourself	in	the	receive	action.

<receive	endpoint="httpMessageEndpoint">
				<message	schema-repository="mySpecialSchemaRepository">
						<validate>
								<xpath	expression="//ns1:TestMessage/ns1:MessageHeader/ns1:MessageId"
																		value="${messageId}"/>
								<xpath	expression="//ns1:TestMessage/ns1:MessageHeader/ns1:CorrelationId"
																		value="${correlationId}"/>
								<namespace	prefix="ns1"	value="http://citrus.com/namespace"/>
						</validate>
				</message>
</receive>

The	schema-repository	attribute	refers	to	a	Citrus	schema	repository	component	which
is	defined	somewhere	in	the	Spring	application	context.

Important	In	case	you	have	several	schema	repositories	in	your	project	do	always
define	a	default	repository	(name="schemaRepository").	This	helps	Citrus	to	always	find
at	least	one	repository	to	interact	with.

Citrus	Reference	Guide

78Schema

DTD	validation

XML	DTD	(Document	type	definition)	is	another	way	to	validate	the	structure	of	a	XML
document.	Many	people	say	that	DTD	is	deprecated	and	XML	schema	is	the	much	more
efficient	way	to	describe	the	rules	of	a	XML	structure.	We	do	not	disagree	with	that,	but
we	also	know	that	legacy	systems	might	still	use	DTD.	So	in	order	to	avoid	validation
errors	we	have	to	deal	with	DTD	validation	as	well.

First	thing	you	can	do	about	DTD	validation	is	to	specify	an	inline	DTD	in	your	expected
message	template.

<receive	endpoint="httpMessageEndpoint">
				<message	schema-validation="false">
								<data>
								<![CDATA[
												<!DOCTYPE	root	[
																<!ELEMENT	root	(message)>
																<!ELEMENT	message	(text)>
																<!ELEMENT	text	(#PCDATA)>
]>
												<root>
																<message>
																				<text>Hello	TestFramework!</text>
																</message>
												</root>
]]>
								<data/>
				</message>
</receive>

The	system	under	test	may	also	send	the	message	with	a	inline	DTD	definition.	So
validation	will	succeed.

In	most	cases	the	DTD	is	referenced	as	external	.dtd	file	resource.	You	can	do	this	in
your	expected	message	template	as	well.

Citrus	Reference	Guide

79Schema

<receive	endpoint="httpMessageEndpoint">
				<message	schema-validation="false">
								<data>
								<![CDATA[
												<!DOCTYPE	root	SYSTEM	
																									"com/consol/citrus/validation/example.dtd">
												<root>
																<message>
																				<text>Hello	TestFramework!</text>
																</message>
												</root>
]]>
								<data/>
				</message>
</receive>

Citrus	Reference	Guide

80Schema

JSON	message	validation

Message	formats	such	as	JSON	have	become	very	popular,	in	particular	when	speaking
of	RESTful	WebServices	and	JavaScript	using	JSON	as	the	message	format	to	go	for.
Citrus	is	able	to	expect	and	validate	JSON	messages	as	we	will	see	in	the	next	sections.

Important	By	default	Citrus	will	use	XML	message	formats	when	sending	and	receiving
messages.	This	also	reflects	to	the	message	validation	logic	Citrus	uses	for	incoming
messages.	So	by	default	Citrus	will	try	to	parse	the	incoming	message	as	XML	DOM
element	tree.	In	case	we	would	like	to	enable	JSON	message	validation	we	have	to	tell
Citrus	that	we	expect	a	JSON	message	right	now.

And	this	is	quite	easy.	Citrus	has	a	JSON	message	validator	implementation	active	by
default	and	immediately	as	we	mark	an	incoming	message	as	JSON	data	this	message
validator	will	jump	in.

Citrus	provides	several	default	message	validator	implementations	for	JOSN	message
format:

com.consol.citrus.validation.json.JsonTextMessageValidator:	Basic	JSON	message
validator	implementation	compares	JSON	objects	(expected	and	received).	The
order	of	JSON	entries	can	differ	as	specified	in	JSON	protocol.	Tester	defines	an
expected	control	JSON	object	with	test	variables	and	ignored	entries.	JSONArray	as
well	as	nested	JSONObjects	are	supported,	too.	The	JSON	validator	offers	two
different	modes	to	operate.	By	default	strict	mode	is	set	and	the	validator	will	also
check	the	exact	amount	of	control	object	fields	to	match.	No	additional	fields	in
received	JSON	data	structure	will	be	accepted.	In	soft	mode	validator	allows
additional	fields	in	received	JSON	data	structure	so	the	control	JSON	object	can	be
a	partial	subset	in	which	case	only	the	control	fields	are	validated.	Additional	fields
in	the	received	JSON	data	structure	are	ignored	then.

com.consol.citrus.validation.script.GroovyJsonMessageValidator:	Extended	groovy
message	validator	provides	specific	JSON	slurper	support.	With	JSON	slurper	the
tester	can	validate	the	JSON	message	payload	with	closures	for	instance.

You	can	overwrite	this	default	message	validators	for	JSON	by	placing	a	bean	into	the
Spring	Application	context.	The	bean	uses	a	default	name	as	identifier.	Then	your
custom	bean	will	overwrite	the	default	validator:

Citrus	Reference	Guide

81Json

<bean	id="defaultJsonMessageValidator"	class="com.consol.citrus.validation.json.JsonTextMessageValidator"

<bean	id="defaultGroovyJsonMessageValidator"	class="com.consol.citrus.validation.script.GroovyJsonMessageValidator"

This	is	how	you	can	customize	the	message	validators	used	for	JSON	message	data.

We	have	mentioned	before	that	Citrus	is	working	with	XML	by	default.	This	is	why	we
have	to	tell	Citrus	that	the	message	that	we	are	receiving	uses	the	JSON	message
format.	We	have	to	tell	the	test	case	receiving	action	that	we	expect	a	different	format
other	than	XML.

<receive	endpoint="httpMessageEndpoint">
				<message	type="json">
								<data>
										{
												"type"	:	"read",
												"mbean"	:	"java.lang:type=Memory",
												"attribute"	:	"HeapMemoryUsage",
												"path"	:	"@equalsIgnoreCase('USED')@",
												"value"	:	"${heapUsage}",
												"timestamp"	:	"@ignore@"
										}
								</data>
				</message>
</receive>

The	message	receiving	action	in	our	test	case	specifies	a	message	format	type
type="json"	.	This	tells	Citrus	to	look	for	some	message	validator	implementation
capable	of	validating	JSON	messages.	As	we	have	added	the	proper	message	validator
to	the	Spring	application	context	Citrus	will	pick	the	right	validator	and	JSON	message
validation	is	performed	on	this	message.	As	you	can	see	you	we	can	use	the	usual	test
variables	and	the	ignore	element	syntax	here,	too.	Citrus	is	able	to	handle	different
JSON	element	orders	when	comparing	received	and	expected	JSON	object.	We	can
also	use	JSON	arrays	and	nested	objects.	The	default	JSON	message	validator
implementation	in	Citrus	is	very	powerful	in	comparing	JSON	objects.

Instead	of	defining	an	expected	message	payload	template	we	can	also	use	Groovy
validation	scripts.	Lets	have	a	look	at	the	Groovy	JSON	message	validator	example.	As
usual	the	default	Groovy	JSON	message	validator	is	active	by	default.	But	the	special

Citrus	Reference	Guide

82Json

Groovy	message	validator	implementation	will	only	jump	in	when	we	used	a	validation
script	in	our	receive	message	definition.	Let's	have	an	example	for	that.

<receive	endpoint="httpMessageEndpoint">
				<message	type="json">
								<validate>
												<script	type="groovy">
																

												</script>
								</validate>
				</message>
</receive>

Again	we	tell	Citrus	that	we	expect	a	message	of	type="json"	.	Now	we	used	a
validation	script	that	is	written	in	Groovy.	Citrus	will	automatically	activate	the	special
message	validator	that	executes	our	Groovy	script.	The	script	validation	is	more
powerful	as	we	can	use	the	full	power	of	the	Groovy	language.	The	validation	script
automatically	has	access	to	the	incoming	JSON	message	object	json	.	We	can	use	the
Groovy	JSON	dot	notated	syntax	in	order	to	navigate	through	the	JSON	structure.	The
Groovy	JSON	slurper	object	json	is	automatically	passed	to	the	validation	script.	This
way	you	can	access	the	JSON	object	elements	in	your	code	doing	some	assertions.

There	is	even	more	object	injection	for	the	validation	script.	With	the	automatically	added
object	receivedMessage	You	have	access	to	the	Citrus	message	object	for	this	receive
action.	This	enables	you	to	do	whatever	you	want	with	the	message	payload	or	header.

XML	DSL

Citrus	Reference	Guide

83Json

<receive	endpoint="httpMessageEndpoint">
				<message	type="json">
								<validate>
												<script	type="groovy">
																assert	receivedMessage.getPayload(String.class).contains("Hello	Citrus!")
																assert	receivedMessage.getHeader("Operation")	==	'sayHello'

																context.setVariable("request_payload",	receivedMessage.getPayload(String.class
												</script>
								</validate>
				</message>
</receive>

The	listing	above	shows	some	power	of	the	validation	script.	We	can	access	the
message	payload,	we	can	access	the	message	header.	With	test	context	access	we	can
also	save	the	whole	message	payload	as	a	new	test	variable	for	later	usage	in	the	test.

In	general	Groovy	code	inside	the	XML	test	case	definition	or	as	part	of	the	Java	DSL
code	is	not	very	comfortable	to	maintain.	You	do	not	have	code	syntax	assist	or	code
completion.	This	is	why	we	can	also	use	external	file	resources	for	the	validation	scripts.
The	syntax	looks	like	follows:

XML	DSL

<receive	endpoint="helloServiceClient"	timeout="5000">
				<message>
								<validate>
												<script	type="groovy"	file="classpath:validationScript.groovy"/>
								</validate>
				</message>
</receive>

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("helloServiceClient")
								.validateScript(new	FileSystemResource("validationScript.groovy"));
}

We	referenced	some	external	file	resource	validationScript.groovy	.	This	file	content	is
loaded	at	runtime	and	is	used	as	script	body.	Now	that	we	have	a	normal	groovy	file	we
can	use	the	code	completion	and	syntax	highlighting	of	our	favorite	Groovy	editor.

Citrus	Reference	Guide

84Json

Important	Using	several	message	validator	implementations	at	the	same	time	in	the
Spring	application	context	is	also	no	problem.	Citrus	automatically	searches	for	all
available	message	validators	applicable	for	the	given	message	format	and	executes
these	validators	in	sequence.	So	several	message	validators	can	coexist	in	a	Citrus
project.

When	we	have	multiple	message	validators	that	apply	to	the	message	format	Citrus	will
execute	all	of	them	in	sequence.	In	case	you	need	to	explicitly	choose	a	message
validator	implementation	you	can	do	so	in	the	receive	action:

<receive	endpoint="httpMessageEndpoint">
				<message	type="json"	validator="groovyJsonMessageValidator">
								<validate>
												<script	type="groovy">
																

												</script>
								</validate>
				</message>
</receive>

In	this	example	we	use	the	groovyJsonMessageValidator	explicitly	in	the	receive	test
action.	The	message	validator	implementation	was	added	as	Spring	bean	with	id
groovyJsonMessageValidator	to	the	Spring	application	context	before.	Now	Citrus	will
only	execute	the	explicit	message	validator.	Other	implementations	that	might	also	apply
are	skipped.

Tip	By	default	Citrus	will	consolidate	all	available	message	validators	for	a	message
format	in	sequence.	You	can	explicitly	pick	a	special	message	validator	in	the	receive
message	action	as	shown	in	the	example	above.	In	this	case	all	other	validators	will	not
take	part	in	this	special	message	validation.	But	be	careful:	When	picking	a	message
validator	explicitly	you	are	of	course	limited	to	this	message	validator	capabilities.
Validation	features	of	other	validators	are	not	valid	in	this	case	(e.g.	message	header
validation,	XPath	validation,	etc.)

So	much	for	receiving	JSON	message	data	in	Citrus.	Of	course	sending	JSON
messages	in	Citrus	is	also	very	easy.	Just	use	JSON	message	payloads	in	your	sending
message	action.

Citrus	Reference	Guide

85Json

<send	endpoint="httpMessageEndpoint">
				<message>
								<data>
										{
												"type"	:	"read",
												"mbean"	:	"java.lang:type=Memory",
												"attribute"	:	"HeapMemoryUsage",
												"path"	:	"used"
										}
								</data>
				</message>
</send>

Citrus	Reference	Guide

86Json

XHTML	message	validation

When	Citrus	receives	plain	Html	messages	we	likely	want	to	use	the	powerful	XML
validation	capabilities	such	as	XML	tree	comparison	or	XPath	support.	Unfortunately
Html	messages	do	not	follow	the	XML	well	formed	rules	very	strictly.	This	implies	that
XML	message	validation	will	fail	because	of	non	well	formed	Html	code.

XHTML	closes	this	gap	by	automatically	fixing	the	most	common	Html	XML	incompatible
rule	violations	such	as	missing	end	tags	(e.g.	
).

Let's	try	this	with	a	simple	example.	Very	first	thing	for	us	to	do	is	to	add	a	new	library
dependency	to	the	project.	Citrus	is	using	the	jtidy	library	in	order	to	prepare	the	HTML
and	XHTML	messages	for	validation.	As	this	3rd	party	dependency	is	optional	in	Citrus
we	have	to	add	it	now	to	our	project	dependency	list.	Just	add	the	jtidy	dependency	to
your	Maven	project	POM.

<dependency>
				<groupId>net.sf.jtidy</groupId>
				<artifactId>jtidy</artifactId>
				<version>r938</version>
		</dependency>

Please	refer	to	the	jtidy	project	documentation	for	the	latest	versions.	Now	everything	is
ready.	As	usual	the	Citrus	message	validator	for	XHTML	is	active	in	background	by
default.	You	can	overwrite	this	default	implementation	by	placing	a	Spring	bean	with	id
defaultXhtmlMessageValidator	to	the	Citrus	application	context.

<bean	id="defaultXhtmlMessageValidator"	class="com.consol.citrus.validation.xhtml.XhtmlMessageValidator"

Now	we	can	tell	the	test	case	receiving	action	that	we	want	to	use	the	XHTML	message
validation	in	our	test	case.

Citrus	Reference	Guide

87Xhtml

<receive	endpoint="httpMessageEndpoint">
				<message	type="xhtml">
								<data>
										<![CDATA[
												<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.1//EN"	"org/w3c/xhtml/xhtml1-strict.dtd">
												<html	xmlns="http://www.w3.org/1999/xhtml">
												<head>
														<title>Citrus	Hello	World</title>
												</head>
												<body>
														<h1>Hello	World!</h1>
														

														<p>This	is	a	test!</p>
												</body>
]]>
								</data>
				</message>
</receive>

The	message	receiving	action	in	our	test	case	has	to	specify	a	message	format	type
type="xhtml"	.	As	you	can	see	the	Html	message	payload	get	XHTML	specific
DOCTYPE	processing	instruction.	The	xhtml1-strict.dtd	is	mandatory	in	the	XHTML
message	validation.	For	better	convenience	all	XHTML	dtd	files	are	packaged	within
Citrus	so	you	can	use	this	as	a	relative	path.

The	incoming	Html	message	is	automatically	converted	into	proper	XHTML	code	with
well	formed	XML.	So	now	the	XHTML	message	validator	can	use	the	XML	message
validation	mechanism	of	Citrus	for	comparing	received	and	expected	data.	As	usual	you
can	use	test	variables,	ignore	element	expressions	and	XPath	expressions.

Citrus	Reference	Guide

88Xhtml

Plain	text	message	validation

Plain	text	message	validation	is	the	easiest	validation	in	Citrus	that	you	can	think	of.	This
validation	just	performs	an	exact	Java	String	match	of	received	and	expected	message
payloads.

As	usual	a	default	message	validator	for	plaintext	messages	is	active	by	default.	Citrus
will	pick	this	message	validator	for	all	messages	of	type="plaintext"	.	The	default
message	validator	implementation	can	be	overwritten	by	placing	a	Spring	bean	with	id
defaultPlaintextMessageValidator	to	the	Spring	application	context.

<bean	id="defaultPlaintextMessageValidator"	class="com.consol.citrus.validation.text.PlainTextMessageValidator"

In	the	test	case	receiving	action	we	tell	Citrus	to	use	plain	text	message	validation.

<receive	endpoint="httpMessageEndpoint">
				<message	type="plaintext">
								<data>Hello	World!</data>
				</message>
</receive>

With	the	message	format	type	type="plaintext"	set	Citrus	performs	String	equals	on	the
message	payloads	(received	and	expected).	Only	exact	match	will	pass	the	test.

By	the	way	sending	plain	text	messages	in	Citrus	is	also	very	easy.	Just	use	the	plain
text	message	payload	data	in	your	sending	message	action.

<send	endpoint="httpMessageEndpoint">
				<message>
								<data>Hello	World!</data>
				</message>
</send>

Of	course	test	variables	are	supported	in	the	plain	text	payloads.	The	variables	are
replace	by	the	referenced	values	before	sending	or	receiving	the	message.

Citrus	Reference	Guide

89Plaintext

Binary	message	validation

Binary	message	validation	is	not	very	easy	to	do	especially	when	it	comes	to	compare
data	with	a	given	control	message.	As	a	tester	you	want	to	validate	the	binary	content.	In
Citrus	the	way	to	compare	binary	message	content	is	to	use	base64	String	encoding.
The	binary	data	is	encoded	as	base64	character	sequence	and	there	fore	is	comparable
with	an	expected	content.

The	received	message	content	does	not	have	to	be	base64	encoded.	Citrus	is	doing	this
conversion	automatically	before	validation	takes	place.	The	binary	data	can	be	anything
e.g.	images,	pdf	or	gzip	content.

The	default	message	validator	for	binary	messages	is	active	by	default.	Citrus	will	pick
this	message	validator	for	all	messages	of	type="binary_base64"	.	The	default
message	validator	implementation	can	be	overwritten	by	placing	a	Spring	bean	with	id
defaultBinaryBase64MessageValidator	to	the	Spring	application	context.

<bean	id="defaultBinaryBase64MessageValidator"	class="com.consol.citrus.validation.text.BinaryBase64MessageValidator"

In	the	test	case	receiving	action	we	tell	Citrus	to	use	binary	base64	message	validation.

<receive	endpoint="httpMessageEndpoint">
				<message	type="binary_base64">
								<data></data>
				</message>
</receive>

With	the	message	format	type	type="binary_base64"	Citrus	performs	the	base64
character	sequence	validation.	Incoming	message	content	is	automatically	encoded	as
base64	String	and	compared	to	the	expected	data.	This	way	we	can	make	sure	that	the
binary	content	is	as	expected.

By	the	way	sending	binary	base64	messages	in	Citrus	is	also	very	easy.	Just	use	the
binary	base64	encoding	function	to	do	so.

Citrus	Reference	Guide

90Binary

<send	endpoint="httpMessageEndpoint">
				<message>
								<data>citrus:encodeBase64('Hello	World!')</data>
				</message>
</send>

Citrus	Reference	Guide

91Binary

Using	XPath
Some	time	ago	in	this	document	we	have	already	seen	how	XML	message	payloads	are
constructed	when	sending	and	receiving	messages.	Now	using	XPath	is	a	very	powerful
way	of	accessing	elements	in	complex	XML	structures.	The	XPath	expression	language
is	very	handy	when	it	comes	to	save	element	values	as	test	variables	or	when	validating
special	elements	in	a	XML	message	structure.

XPath	is	a	very	powerful	technology	for	walking	XML	trees.	This	W3C	standard	stands
for	advanced	XML	tree	handling	using	a	special	syntax	as	query	language.	Citrus
supports	the	XPath	syntax	in	the	following	fields:

<message><element	path="[XPath-Expression]"></message>
<validate><xpath	expression="[XPath-Expression]"/></validate>
<extract><message	path="[XPath-Expression]"></extract>
<ignore	path="[XPath-Expression]"/>

The	next	program	listing	indicates	the	power	in	using	XPath	with	Citrus:

<message>
		<validate>
				<xpath	expression="//User/Name"	value="John"/>
				<xpath	expression="//User/Address[@type='office']/Street"	value="Companystreet	21"/>
				<xpath	expression="//User/Name"	value="${userName}"/>
				<xpath	expression="//User/@isAdmin"	value="${isAdmin}"/>
				<xpath	expression="//User/@isAdmin"	value="true"	result-type="boolean"/>
				<xpath	expression="//*[.='search-for']"	value="searched-for"/>
				<xpath	expression="count(//orderStatus[.='success'])"	value="3"	result-type="number"/>
		</validate>
</message>

Now	we	describe	the	XPath	usage	in	Citrus	step	by	step.

Manipulate	with	XPath

Some	elements	in	XML	message	payloads	might	be	of	dynamic	nature.	Just	think	of
generated	identifiers	or	timestamps.	Also	we	do	not	want	to	repeat	the	same	static
identifier	several	times	in	our	test	cases.	This	is	the	time	where	test	variables	and
dynamic	message	element	overwrite	come	in	handy.	The	idea	is	simple.	We	want	to

Citrus	Reference	Guide

92Xpath

overwrite	a	specific	message	element	in	our	payload	with	a	dynamic	value.	This	can	be
done	with	XPath	or	inline	variable	declarations.	Lets	have	a	look	at	an	example	listing
showing	both	ways:

XML	DSL

<message>
		<payload>
				<TestMessage>
						<MessageId>${messageId}</MessageId>
						<CreatedBy>_</CreatedBy>
						<VersionId>${version}</VersionId>
				</TestMessage>
		</payload>
		<element	path="/TestMessage/CreatedBy"	value="${user}"/>
</message>

The	program	listing	above	shows	ways	of	setting	variable	values	inside	a	message
template.	First	of	all	you	can	simply	place	variable	expressions	inside	the	message	(see
how	${messageId}	is	used).	In	addition	to	that	you	can	also	use	XPath	expressions	to
explicitly	overwrite	message	elements	before	validation.

The	XPath	expression	evaluates	and	searches	for	the	right	element	in	the	message
payload.	The	previously	defined	variable	${user}	replaces	the	element	value.	Of	course
this	works	with	XML	attributes	too.

Both	ways	via	XPath	or	inline	variable	expressions	are	equal	to	each	other.	With	respect
to	the	complexity	of	XML	namespaces	and	XPath	you	may	find	the	inline	variable
expression	more	comfortable	to	use.	Anyway	feel	free	to	choose	the	way	that	fits	best
for	you.	This	is	how	we	can	add	dynamic	variable	values	to	the	control	template	in	order
to	increase	maintainability	and	robustness	of	message	validation.

Tip	Validation	matchers	put	validation	mechanisms	to	a	new	level	offering	dynamic
assertion	statements	for	validation.	Have	a	look	at	the	possibilities	with	assertion
statements	invalidation-matchers###	Validate	with	XPath

We	have	already	seen	how	to	validate	whole	XML	structures	with	control	message
templates.	All	elements	are	validated	and	compared	one	after	another.	In	some	cases
this	approach	might	be	too	extensive.	Imagine	the	tester	only	needs	to	validate	a	small
subset	of	message	elements.	The	definition	of	control	templates	in	combination	with
several	ignore	statements	is	not	appropriate	in	this	case.	You	would	rather	want	to	use
explicit	element	validation.

Citrus	Reference	Guide

93Xpath

XML	DSL

<message>
		<validate>
				<xpath	expression="/TestRequest/MessageId"	value="${messageId}"/>
				<xpath	expression="/TestRequest/VersionId"	value="2"/>
		</validate>
</message>

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("helloServiceServer")
								.validate("/TestRequest/MessageId",	"${messageId}")
								.validate("//VersionId",	"2")
								.header("Operation",	"sayHello");
}

Instead	of	comparing	the	whole	message	some	message	elements	are	validated
explicitly	via	XPath.	Citrus	evaluates	the	XPath	expression	on	the	received	message	and
compares	the	result	value	to	the	control	value.	The	basic	message	structure	as	well	as
all	other	message	elements	are	not	included	into	this	explicit	validation.

Note	If	this	type	of	element	validation	is	chosen	neither	nor	nor	template	definitions	are
allowed	in	Citrus	XML	test	cases.

Tip	Citrus	offers	an	alternative	dot-notated	syntax	in	order	to	walk	through	XML	trees.	In
case	you	are	not	familiar	with	XPath	or	simply	need	a	very	easy	way	to	find	your	element
inside	the	XML	tree	you	might	use	this	way.	Every	element	hierarchy	in	the	XML	tree	is
represented	with	a	simple	dot	-	for	example:

TestRequest.VersionId

The	expression	will	search	the	XML	tree	for	the	respective	element.	Attributes	are
supported	too.	In	case	the	last	element	in	the	dot-notated	expression	is	a	XML	attribute
the	framework	will	automatically	find	it.

Of	course	this	dot-notated	syntax	is	very	simple	and	might	not	be	applicable	for	more
complex	tree	navigation.	XPath	is	much	more	powerful	-	no	doubt.	However	the	dot-
notated	syntax	might	help	those	of	you	that	are	not	familiar	with	XPath.	So	the	dot-
notation	is	supported	wherever	XPath	expressions	might	apply.

Citrus	Reference	Guide

94Xpath

The	Xpath	expressions	can	evaluate	to	different	result	types.	By	default	Citrus	is
operating	on	NODE	and	STRING	result	types	so	that	you	can	validate	some	element
value.	But	you	can	also	use	different	result	types	such	as	NODESET	and	BOOLEAN	.
See	this	example	how	that	works:

XML	DSL

<message>
		<validate>
				<xpath	expression="/TestRequest/Error"	value="false"	result-type="boolean"/>
				<xpath	expression="/TestRequest/Status[.='success']"	value="3"	result-type="number"/>
				<xpath	expression="/TestRequest/OrderType"	value="[single,	multi,	multi]"	result-type="node-set"
		</validate>
</message>

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("helloServiceServer")
								.validate("boolean:/TestRequest/Error",	false)
								.validate("number:/TestRequest/Status[.='success']",	3)
								.validate("node-set:/TestRequest/OrderType",	"[single,	multi,	multi]")
								.header("Operation",	"sayHello");
}

In	the	example	above	we	use	different	expression	result	types.	First	we	want	to	make
sure	nor	/TestRequest/Error	element	is	present.	This	can	be	done	with	a	boolean	result
type	and	false	value.	Second	we	want	to	validate	the	number	of	found	elements	for	the
expression	/TestRequest/Status[.='success']	.	The	XPath	expression	evaluates	to	a
node	list	that	results	in	its	list	size	to	be	checked.	And	last	not	least	we	evaluate	to	a
node-set	result	type	where	all	values	in	the	node	list	will	be	translated	to	a	comma
delimited	string	value.

Now	lets	have	a	look	at	some	more	powerful	validation	expressions	using	matcher
implementations.	Up	to	now	we	have	seen	that	XPath	expression	results	are
comparable	with	equalTo	operations.	We	would	like	to	add	some	more	powerful
validation	such	as	greaterThan,	lessThan,	hasSize	and	much	more.	Therefore	we
have	introduced	Hamcrest	validation	matcher	support	in	Citrus.	Hamcrest	is	a	very
poweful	matcher	library	that	provides	a	fantastic	set	of	matcher	implementations.	Lets
see	how	we	can	add	these	in	our	test	case:

Citrus	Reference	Guide

95Xpath

XML	DSL

<message>
		<validate>
				<xpath	expression="/TestRequest/Error"	value="@assertThat(anyOf(empty(),	nullValue()))@"/>
				<xpath	expression="/TestRequest/Status[.='success']"	value="@assertThat(greaterThan(0))@"
				<xpath	expression="/TestRequest/OrderType"	value="@assertThat(hasSize(3))@"	result-type="node-set"
		</validate>
</message>

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("helloServiceServer")
								.validate("/TestRequest/Error",	anyOf(empty(),	nullValue()))
								.validate("number:/TestRequest/Status[.='success']",	greaterThan(0))
								.validate("node-set:/TestRequest/OrderType",	hasSize(3))
								.header("Operation",	"sayHello");
}

When	using	the	XML	DSL	we	have	to	use	the	assertThat	validation	matcher	syntax	for
defining	the	Hamcrest	matchers.	You	can	combine	matcher	implementation	as	seen	in
the	anyOf(empty(),	nullValue())	expression.	When	using	the	Java	DSL	you	can	just	add
the	matcher	as	expected	result	object.	Citrus	evaluates	the	matchers	and	makes	sure
everything	is	as	expected.	This	is	a	very	powerful	validation	mechanism	as	it	also	works
with	node-sets	containing	multiple	values	as	list.

This	is	how	you	can	add	very	powerful	message	element	validation	in	XML	using	XPath
expressions.

Extract	variables	with	XPath

Imagine	you	receive	a	message	in	your	test	with	some	generated	message	identifier
values.	You	have	no	chance	to	predict	the	identifier	value	because	it	was	generated	at
runtime	by	a	foreign	application.	You	can	ignore	the	value	in	order	to	protect	your
validation.	But	in	many	cases	you	might	need	to	return	this	identifier	in	the	respective
response	message	or	somewhat	later	on	in	the	test.	So	we	have	to	save	the	dynamic
message	content	for	reuse	in	later	test	steps.	The	solution	is	simple	and	very	powerful.
We	can	extract	dynamic	values	from	received	messages	and	save	those	to	test
variables.	Add	this	code	to	your	message	receiving	action.

Citrus	Reference	Guide

96Xpath

XML	DSL

<extract>
		<header	name="Operation"	variable="operation"/>
		<message	path="/TestRequest/VersionId"	variable="versionId"/>
</extract>

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("helloServiceServer")
								.extractFromHeader("Operation",	"operation")
								.extractFromPayload("//TestRequest/VersionId",	"versionId");

				echo("Extracted	operation	from	header	is:	${operation}");
				echo("Extracted	version	from	payload	is:	${versionId}");
}

As	you	can	see	Citrus	is	able	to	extract	both	header	and	message	payload	content	into
test	variables.	It	does	not	matter	if	you	use	new	test	variables	or	existing	variables	as
target.	The	extraction	will	automatically	create	a	new	variable	in	case	it	does	not	exist.
The	time	the	variable	was	created	all	following	test	actions	can	access	the	test	variables
as	usual.	So	you	can	reference	the	variable	values	in	response	messages	or	other	test
steps	ahead.

Tip	We	can	also	use	expression	result	types	in	order	to	manipulate	the	test	variable
outcome.	In	case	we	use	a	boolean	result	type	the	existence	of	elements	can	be	saved
to	variable	values.	The	result	type	node-set	translates	a	node	list	result	to	a	comma
separated	string	of	all	values	in	this	node	list.	Simply	use	the	expression	result	type
attributes	as	shown	in	previous	sections.

XML	namespaces	in	XPath

When	it	comes	to	XML	namespaces	you	have	to	be	careful	with	your	XPath
expressions.	Lets	have	a	look	at	an	example	message	that	uses	XML	namespaces:

Citrus	Reference	Guide

97Xpath

<ns1:TestMessage	xmlns:ns1="http://citrus.com/namespace">
				<ns1:TestHeader>
								<ns1:CorrelationId>_</ns1:CorrelationId>
								<ns1:Timestamp>2001-12-17T09:30:47.0Z</ns1:Timestamp>
								<ns1:VersionId>2</ns1:VersionId>
				</ns1:TestHeader>
				<ns1:TestBody>
								<ns1:Customer>
												<ns1:Id>1</ns1:Id>
								</ns1:Customer>
				</ns1:TestBody>
</ns1:TestMessage>

Now	we	would	like	to	validate	some	elements	in	this	message	using	XPath

<message>
		<validate>
				<xpath	expression="//TestMessage/TestHeader/VersionId"	value="2"/>
				<xpath	expression="//TestMessage/TestHeader/CorrelationId"	value="${correlationId}"/>
		</validate>
</message>

The	validation	will	fail	although	the	XPath	expression	looks	correct	regarding	the	XML
tree.	Because	the	message	uses	the	namespace
xmlns:ns1="http://citrus.com/namespace"	with	its	prefix	ns1	our	XPath	expression	is
not	able	to	find	the	elements.	The	correct	XPath	expression	uses	the	namespace	prefix
as	defined	in	the	message.

<message>
		<validate>
				<xpath	expression="//ns1:TestMessage/ns1:TestHeader/ns1:VersionId"	value="2"/>
				<xpath	expression="//ns1:TestMessage/ns1:TestHeader/ns1:CorrelationId"	value="${correlationId}"
</message>

Now	the	expressions	work	fine	and	the	validation	is	successful.	But	this	is	quite	error
prone.	This	is	because	the	test	is	now	depending	on	the	namespace	prefix	that	is	used
by	some	application.	As	soon	as	the	message	is	sent	with	a	different	namespace	prefix
(e.g.	ns2)	the	validation	will	fail	again.

You	can	avoid	this	effect	when	specifying	your	own	namespace	context	and	your	own
namespace	prefix	during	validation.

Citrus	Reference	Guide

98Xpath

http://citrus.com/namespace

<message>
		<validate>
				<xpath	expression="//pfx:TestMessage/pfx:TestHeader/pfx:VersionId"	value="2"/>
				<xpath	expression="//pfx:TestMessage/pfx:TestHeader/pfx:CorrelationId"	value="${correlationId}"
				<namespace	prefix="pfx"	value="http://citrus.com/namespace"/>
		</validate>
</message>

Now	the	test	in	independent	from	any	namespace	prefix	in	the	received	message.	The
namespace	context	will	resolve	the	namespaces	and	find	the	elements	although	the
message	might	use	different	prefixes.	The	only	thing	that	matters	is	that	the	namespace
value	(http://citrus.com/namespace)	matches.

Tip	Instead	of	this	namespace	context	on	validation	level	you	can	also	have	a	global
namespace	context	which	is	valid	in	all	test	cases.	We	just	add	a	bean	in	the	basic
Spring	application	context	configuration	which	defines	global	namespace	mappings.

<namespace-context>
				<namespace	prefix="def"	uri="http://www.consol.de/samples/sayHello"/>
</namespace-context>

Once	defined	the	def	namespace	prefix	is	valid	in	all	test	cases	and	all	XPath
expressions.	This	enables	you	to	free	your	test	cases	from	namespace	prefix	bindings
that	might	be	broken	with	time.	You	can	use	these	global	namespace	mappings
wherever	XPath	expressions	are	valid	inside	a	test	case	(validation,	ignore,	extract).

Default	namespaces	in	XPath

In	the	previous	section	we	have	seen	that	XML	namespaces	can	get	tricky	with	XPath
validation.	Default	namespaces	can	do	even	more!	So	lets	look	at	the	example	with
default	namespaces:

Citrus	Reference	Guide

99Xpath

http://citrus.com/namespace

<TestMessage	xmlns="http://citrus.com/namespace">
				<TestHeader>
								<CorrelationId>_</CorrelationId>
								<Timestamp>2001-12-17T09:30:47.0Z</Timestamp>
								<VersionId>2</VersionId>
				</TestHeader>
				<TestBody>
								<Customer>
												<Id>1</Id>
								</Customer>
				</TestBody>
</TestMessage>

The	message	uses	default	namespaces.	The	following	approach	in	XPath	will	fail	due	to
namespace	problems.

<message>
		<validate>
				<xpath	expression="//TestMessage/TestHeader/VersionId"	value="2"/>
				<xpath	expression="//TestMessage/TestHeader/CorrelationId"	value="${correlationId}"/>
		</validate>
</message>

Even	default	namespaces	need	to	be	specified	in	the	XPath	expressions.	Look	at	the
following	code	listing	that	works	fine	with	default	namespaces:

<message>
		<validate>
				<xpath	expression="//:TestMessage/:TestHeader/:VersionId"	value="2"/>
				<xpath	expression="//:TestMessage/:TestHeader/:CorrelationId"	value="${correlationId}"/>
		</validate>
</message>

Tip	It	is	recommended	to	use	the	namespace	context	as	described	in	the	previous
chapter	when	validating.	Only	this	approach	ensures	flexibility	and	stable	test	cases
regarding	namespace	changes.

Citrus	Reference	Guide

100Xpath

Using	JSONPath
JSONPath	is	the	JSON	equivalent	to	XPath	in	the	XML	message	world.	With	JSONPath
expressions	you	can	query	and	manipulate	entries	of	a	JSON	message	structure.	The
JSONPath	expressions	evaluate	against	a	JSON	message	where	the	JSON	object
structure	is	represented	in	a	dot	notated	syntax.

You	will	see	that	JSONPath	is	a	very	powerful	technology	when	it	comes	to	find	object
entries	in	a	complex	JSON	hierarchy	structure.	Also	JSONPath	can	help	to	do	message
manipulations	before	a	message	is	sent	out	for	instance.	Citrus	supports	JSONPath
expressions	in	various	scenarios:

<message><element	path="[JSONPath-Expression]"></message>
<validate><json-path	expression="[JSONPath-Expression]"/></validate>
<extract><message	path="[JSONPath-Expression]"></extract>
<ignore	path="[JSONPath-Expression]"/>

Manipulate	with	JSONPath

First	thing	we	want	to	do	with	JSONPath	is	to	manipulate	a	message	content	before	it	is
actually	sent	out.	This	is	very	useful	when	working	with	message	file	resources	that	are
reused	accross	multiple	test	cases.	Each	test	case	can	manipulate	the	message	content
individually	with	JSONPath	before	sending.	Lets	have	a	look	at	this	simple	sample:

<message	type="json">
		<resource	file="file:path/to/user.json"	/>
		<element	path="$.user.name"	value="Admin"	/>
		<element	path="$.user.admin"	value="true"	/>
		<element	path="$..status"	value="closed"	/>
</message>

We	use	a	basic	message	content	file	that	is	called	user.json	.	The	content	of	the	file	is
following	JSON	data	structure:

Citrus	Reference	Guide

101Json-path

{	user:
		{
				"id":	citrus:randomNumber(10)
				"name":	"Unknown",
				"admin":	"?",
				"projects":
						[{
								"name":	"Project1",
								"status":	"open"
						},
						{
								"name":	"Project2",
								"status":	"open"
						},
						{
								"name":	"Project3",
								"status":	"closed"
						}]
		}
}

Citrus	loads	the	file	content	and	used	it	as	message	payload.	Before	the	message	is
sent	out	the	JSONPath	expressions	have	the	chance	to	manipulate	the	message
content.	All	JSONPath	expressions	are	evaluated	and	the	give	values	overwrite	existing
values	accordingly.	The	resulting	message	looks	like	follows:

{	user:
		{
				"id":	citrus:randomNumber(10)
				"name":	"Admin",
				"admin":	"true",
				"projects":
						[{
								"name":	"Project1",
								"status":	"closed"
						},
						{
								"name":	"Project2",
								"status":	"closed"
						},
						{
								"name":	"Project3",
								"status":	"closed"
						}]
		}
}

Citrus	Reference	Guide

102Json-path

The	JSONPath	expressions	have	set	the	user	name	to	Admin	.	The	admin	boolean
property	was	set	to	true	and	all	project	status	values	were	set	to	closed	.	Now	the
message	is	ready	to	be	sent	out.	In	case	a	JSONPath	expression	should	fail	to	find	a
matching	element	within	the	message	structure	the	test	case	will	fail.

With	this	JSONPath	mechanism	ou	are	able	to	manipulate	message	content	before	it	is
sent	or	received	within	Citrus.	This	makes	life	very	easy	when	using	message	resource
files	that	are	reused	across	multiple	test	cases.

Validate	with	JSONPath

Lets	continue	to	use	JSONPath	expressions	when	validating	a	receive	message	in
Citrus:

XML	DSL

<message	type="json">
		<validate>
				<json-path	expression="$.user.name"	value="Penny"/>
				<json-path	expression="$['user']['name']"	value="${userName}"/>
				<json-path	expression="$.user.aliases"	value="["penny","jenny","nanny"]"/>
				<json-path	expression="$.user[?(@.admin)].password"	value="@startsWith('$%00')@"/>
				<json-path	expression="$.user.address[?(@.type='office')]"
								value="{"city":"Munich","street":"Company	Street","type":"office"}"/>
		</validate>
</message>

Java	DSL

receive(someEndpoint)
				.messageType(MessageType.JSON)
				.validate("$.user.name",	"Penny")
				.validate("$['user']['name']",	"${userName}")
				.validate("$.user.aliases",	"["penny","jenny","nanny"]")
				.validate("$.user[?(@.admin)].password",	"@startsWith('$%00')@")
				.validate("$.user.address[?(@.type='office')]",	"{"city":"Munich","street":"Company	Street","type":"office"}");

The	above	JSONPath	expressions	will	be	evaluated	when	Citrus	validates	the	received
message.	The	expression	result	is	compared	to	the	expected	value	where	expectations
can	be	static	values	as	well	as	test	variables	and	validation	matcher	expressions.	In
case	a	JSONPath	expression	should	not	be	able	to	find	any	elements	the	test	case	will
also	fail.

Citrus	Reference	Guide

103Json-path

JSON	is	a	pretty	simple	yet	powerful	message	format.	Simplified	a	JSON	message	just
knows	JSONObject,	JSONArray	and	JSONValue	items.	The	handling	of	JSONObject
and	JSONValue	items	in	JSONPath	expressions	is	straight	forward.	We	just	use	a	dot
notated	syntax	for	walking	through	the	JSONObject	hierarchy.	The	handling	of
JSONArray	items	is	also	not	very	difficult	either.	Citrus	will	try	the	best	to	convert
JSONArray	items	to	String	representation	values	for	comparison.

Important	JSONPath	expressions	will	only	work	on	JSON	message	formats.	This	is	why
we	have	to	tell	Citrus	the	correct	message	format.	By	default	Citrus	is	working	with	XML
message	data	and	therefore	the	XML	validation	mechanisms	do	apply	by	default.	With
the	message	type	attribute	set	to	json	we	make	sure	that	Citrus	enables	JSON	specific
features	on	the	message	validation	such	as	JSONPath	support.

Now	lets	get	a	bit	more	complex	with	validation	matchers	and	JSON	object	functions.
Citrus	tries	to	give	you	the	most	comfortable	validation	capabilities	when	comparing
JSON	object	values	and	JSON	arrays.	One	first	thing	you	can	use	is	object	functions	like
keySet()	or	size()	.	These	functionality	is	not	covered	by	JSONPath	out	of	the	bow	but
added	by	Citrus.	Se	the	following	example	on	how	to	use	it:

XML	DSL

<message	type="json">
		<validate>
				<json-path	expression="$.user.keySet()"	value="[id,name,admin,projects]"/>
				<json-path	expression="$.user.aliases.size()"	value="3"/>
		</validate>
</message>

Java	DSL

receive(someEndpoint)
				.messageType(MessageType.JSON)
				.validate("$.user.keySet()",	"[id,name,admin,projects]")
				.validate("$.user.aliases.size()",	"3");

The	object	functions	do	return	special	JSON	object	related	properties	such	as	the	set	of
keys	for	an	object	or	the	size	of	an	JSON	array.

Now	lets	get	even	more	comfortable	validation	capabilities	with	matchers.	Citrus
supports	Hamcrest	matchers	which	gives	us	a	very	powerful	way	of	validating	JSON
object	elements	and	arrays.	See	the	following	examples	that	demonstrate	how	this
works:

Citrus	Reference	Guide

104Json-path

XML	DSL

<message	type="json">
		<validate>
				<json-path	expression="$.user.keySet()"	value="@assertThat(contains(id,name,admin,projects))@"
				<json-path	expression="$.user.aliases.size()"	value="@assertThat(allOf(greaterThan(0),	lessThan(5)))@"
		</validate>
</message>

Java	DSL

receive(someEndpoint)
				.messageType(MessageType.JSON)
				.validate("$.user.keySet()",	contains("id","name","admin","projects"))
				.validate("$.user.aliases.size()",	allOf(greaterThan(0),	lessThan(5)));

When	using	the	XML	DSL	we	have	to	use	the	assertThat	validation	matcher	syntax	for
defining	the	Hamcrest	matchers.	You	can	combine	matcher	implementation	as	seen	in
the	allOf(greaterThan(0),	lessThan(5))	expression.	When	using	the	Java	DSL	you	can
just	add	the	matcher	as	expected	result	object.	Citrus	evaluates	the	matchers	and
makes	sure	everything	is	as	expected.	This	is	a	very	powerful	validation	mechanism	as	it
combines	the	Hamcrest	matcher	capabilities	with	JSON	message	validation.

Extract	variables	with	JSONPath

Citrus	is	able	to	save	message	content	to	test	variables	at	test	runtime.	When	an
incoming	message	is	passing	the	message	validation	the	user	can	extract	some	values
of	that	received	message	to	new	test	variables	for	later	use	in	the	test.	This	is	especially
handsome	when	having	to	send	back	some	dynamic	values.	So	lets	save	some	values
using	JSONPath:

Citrus	Reference	Guide

105Json-path

<message	type="json">
		<data>
				{	user:
						{
								"name":	"Admin",
								"password":	"secret",
								"admin":	"true",
								"aliases":	["penny","chef","master"]
						}
				}
		</data>
		<extract>
				<message	path="$.user.name"	variable="userName"/>
				<message	path="$.user.aliases"	variable="userAliases"/>
				<message	path="$.user[?(@.admin)].password"	variable="adminPassword"/>
		</extract>
</message>

With	this	example	we	have	extracted	three	new	test	variables	via	JSONPath	expression
evaluation.	The	three	test	variables	will	be	available	to	all	upcoming	test	actions.	The
variable	values	are:

userName=Admin
userAliases=["penny","chef","master"]
adminPassword=secret

As	you	can	see	we	can	also	extract	complex	JSONObject	items	or	JSONArray	items.
The	test	variable	value	is	a	String	representation	of	the	complex	object.

Ignore	with	JSONPath

The	next	usage	scenario	for	JSONPath	expressions	in	Citrus	is	the	ignoring	of	elements
during	message	validation.	As	you	already	know	Citrus	provides	powerful	validation
mechanisms	for	XML	and	JSON	message	format.	The	framework	is	able	to	compare
received	and	expected	message	contents	with	powerful	validator	implementations.	Now
it	this	time	we	want	to	use	a	JSONPath	expression	for	ignoring	a	very	specific	entry	in
the	JSON	object	structure.

Citrus	Reference	Guide

106Json-path

<message	type="json">
		<data>
		{
						"users":
						[{
								"name":	"Jane",
								"token":	"?",
								"lastLogin":	0
						},
						{
								"name":	"Penny",
								"token":	"?",
								"lastLogin":	0
						},
						{
								"name":	"Mary",
								"token":	"?",
								"lastLogin":	0
						}]
		}
		</data>
		<ignore	expression="$.users[*].token"	/>
		<ignore	expression="$..lastLogin"	/>
</message>

This	time	we	add	JSONPath	expressions	as	ignore	statements.	This	means	that	we
explicitly	leave	out	the	evaluated	elements	from	validation.	Obviously	this	mechanism	is
a	good	thing	to	do	when	dynamic	message	data	simply	is	not	deterministic	such	as
timestamps	and	dynamic	identifiers.	In	the	example	above	we	explicitly	skip	the	token
entry	and	all	lastLogin	values	that	are	obviously	timestamp	values	in	milliseconds.

The	JSONPath	evaluation	is	very	powerful	when	it	comes	to	select	a	set	of	JSON
objects	and	elements.	This	is	how	we	can	ignore	several	elements	with	one	single
JSONPath	expression	which	is	very	powerful.

Citrus	Reference	Guide

107Json-path

Test	actions
This	chapter	gives	a	brief	description	to	all	test	actions	that	a	tester	can	incorporate	into
the	test	case.	Besides	sending	and	receiving	messages	the	tester	may	access	these
actions	in	order	to	build	a	more	complex	test	scenario	that	fits	the	desired	use	case.

Citrus	Reference	Guide

108Actions

Sending	messages

In	a	integration	test	scenario	we	want	to	trigger	processes	and	call	interface	services	on
the	system	under	test.	In	order	to	do	this	we	need	to	be	able	to	send	messages	to
various	message	transports.	Therefore	the	send	message	test	action	in	Citrus	is	one	of
the	most	important	test	actions.	First	of	all	let	us	have	a	look	at	the	Citrus	message
definition	in	Citrus:

A	message	consists	of	a	message	header	(name-value	pairs)	and	a	message	payload.
Later	in	this	section	we	will	see	different	ways	of	constructing	a	message	with	payload
and	header	values.	But	first	of	all	let's	concentrate	on	a	simple	sending	message	action
inside	a	test	case.

XML	DSL

Citrus	Reference	Guide

109Send

<testcase	name="SendMessageTest">
				<description>Basic	send	message	example</description>

				<variables>
								<variable	name="text"	value="Hello	Citrus!"/>
								<variable	name="messageId"	value="Mx1x123456789"/>
				</variables>

				<actions>
								<send	endpoint="helloServiceEndpoint">
												<message>
																<payload>
																				<TestMessage>
																								<Text>${text}</Text>
																				</TestMessage>
																</payload>
												</message>
												<header>
																<element	name="Operation"	value="sayHello"/>
																<element	name="MessageId"	value="${messageId}"/>
												</header>
								</send>
				</actions>
</testcase>

The	sample	uses	both	header	and	payload	as	message	parts	to	send.	In	both	parts	you
can	use	variable	definitions	(see	${text}	and	${messageId}).	So	first	of	all	let	us	recap
what	variables	do.	Test	variables	are	defined	at	the	very	beginning	of	the	test	case	and
are	valid	throughout	all	actions	that	take	place	in	the	test.	This	means	that	actions	can
simply	reference	a	variable	by	the	expression	${variable-name}	.

Tip	Use	variables	wherever	you	can!	At	least	the	important	entities	of	a	test	should	be
defined	as	variables	at	the	beginning.	The	test	case	improves	maintainability	and
flexibility	when	using	variables.

Now	lets	have	a	closer	look	at	the	sending	action.	The	'endpoint'	attribute	might	catch
your	attention	first.	This	attribute	references	a	message	endpoint	in	Citrus	configuration
by	name.	As	previously	mentioned	the	message	endpoint	definition	lives	in	a	separate
configuration	file	and	contains	the	actual	message	transport	settings.	In	this	example	the
"helloServiceEndpoint"	is	referenced	which	is	a	message	endpoint	for	sending	out
messages	via	JMS	or	HTTP	for	instance.

The	test	case	is	not	aware	of	any	transport	details,	because	it	does	not	have	to.	The
advantages	are	obvious:	On	the	one	hand	multiple	test	cases	can	reference	the
message	endpoint	definition	for	better	reuse.	Secondly	test	cases	are	independent	of

Citrus	Reference	Guide

110Send

message	transport	details.	So	connection	factories,	user	credentials,	endpoint	uri	values
and	so	on	are	not	present	in	the	test	case.

In	other	words	the	"endpoint"	attribute	of	the	element	specifies	which	message
endpoint	definition	to	use	and	therefore	where	the	message	should	go	to.	Once	again	all
available	message	endpoints	are	configured	in	a	separate	Citrus	configuration	file.	We
will	come	to	this	later	on.	Be	sure	to	always	pick	the	right	message	endpoint	type	in
order	to	publish	your	message	to	the	right	destination.

If	you	do	not	like	the	XML	language	you	can	also	use	pure	Java	code	to	define	the	same
test.	In	Java	you	would	also	make	use	of	the	message	endpoint	definition	and	reference
this	instance.	The	same	test	as	shown	above	in	Java	DSL	looks	like	this:

Java	DSL	designer

import	org.testng.ITestContext;
import	org.testng.annotations.Test;
import	com.consol.citrus.annotations.CitrusTest;
import	com.consol.citrus.dsl.testng.TestNGCitrusTestDesigner;

@Test
public	class	SendMessageTestDesigner	extends	TestNGCitrusTestDesigner	{

				@CitrusTest(name	=	"SendMessageTest")
				public	void	sendMessageTest()	{
								description("Basic	send	message	example");

								variable("text",	"Hello	Citrus!");
								variable("messageId",	"Mx1x123456789");

								send("helloServiceEndpoint")
																.payload("<TestMessage>"	+
																				"<Text>${text}</Text>"	+
																				"</TestMessage>")
																.header("Operation",	"sayHello")
																.header("RequestTag",	"${messageId}");
				}
}

Java	DSL	runner

Citrus	Reference	Guide

111Send

import	org.testng.ITestContext;
import	org.testng.annotations.Test;
import	com.consol.citrus.annotations.CitrusTest;
import	com.consol.citrus.dsl.testng.TestNGCitrusTestRunner;

@Test
public	class	SendMessageTestRunner	extends	TestNGCitrusTestRunner	{

				@CitrusTest(name	=	"SendMessageTest")
				public	void	sendMessageTest()	{
								variable("text",	"Hello	Citrus!");
								variable("messageId",	"Mx1x123456789");

								send(action	->	action.endpoint("helloServiceEndpoint")
																.payload("<TestMessage>"	+
																								"<Text>${text}</Text>"	+
																				"</TestMessage>")
																.header("Operation",	"sayHello")
																.header("RequestTag",	"${messageId}"));
				}
}

Instead	of	using	the	XML	tags	for	send	we	use	methods	from
TestNGCitrusTestDesigner	class.	The	same	message	endpoint	is	referenced	within
the	send	message	action.

Now	that	the	message	sender	pattern	is	clear	we	can	concentrate	on	how	to	specify	the
message	content	to	be	sent.	There	are	several	possibilities	for	you	to	define	message
content	in	Citrus:

message	:	This	element	constructs	the	message	to	be	sent.	There	are	several	child
elements	available:

payload	:	Nested	XML	payload	as	direct	child	node.

data	:	Inline	CDATA	definition	of	the	message	payload

resource	:	External	file	resource	holding	the	message	payload

The	syntax	would	be:

The	file	path	prefix	indicates	the	resource	type,	so	the	file	location	is	resolved	either	as
file	system	resource	(file:)	or	classpath	resource	(classpath:).

element	:	Explicitly	overwrite	values	in	the	XML	message	payload	using	XPath.	You
can	replace	message	content	with	dynamic	values	before	sending.	Each	entry
provides	a	"path"	and	"value"	attribute.	The	"path"	gives	a	XPath	expression

Citrus	Reference	Guide

112Send

evaluating	to	a	XML	node	element	or	attribute	in	the	message.	The	"value"	can	be	a
variable	expression	or	any	other	static	value.	Citrus	will	replace	the	value	before
sending	the	message.

header	:	Defines	a	header	for	the	message	(e.g.	JMS	header	information	or	SOAP
header):

element	:	Each	header	receives	a	"name"	and	"value".	The	"name"	will	be	the	name
of	the	header	entry	and	"value"	its	respective	value.	Again	the	usage	of	variable
expressions	as	value	is	supported	here,	too.

XML	DSL

<send	endpoint="helloServiceEndpoint">
				<message>
								<payload>
												<!--	message	payload	as	XML	-->
								</payload>
				</message>
</send>

<send	endpoint="helloServiceEndpoint">
				<message>
								<data>
												<![CDATA[
																<!--	message	payload	as	XML	-->
]]>
								</data>
				</message>
</send>

<send	endpoint="helloServiceEndpoint">
				<message>
								<resource	file="classpath:com/consol/citrus/messages/TestRequest.xml"	/>
				</message>
</send>

The	most	important	thing	when	dealing	with	sending	actions	is	to	prepare	the	message
payload	and	header.	You	are	able	to	construct	the	message	payload	either	by	nested
XML	child	nodes	(payload),	as	inline	CDATA	()	or	external	file	().

Citrus	Reference	Guide

113Send

Note	Sometimes	the	nested	XML	message	payload	elements	may	cause	XSD	schema
validation	rule	violations.	This	is	because	of	variable	values	not	fitting	the	XSD	schema
rules	for	example.	In	this	scenario	you	could	also	use	simple	CDATA	sections	as
payload	data.	In	this	case	you	need	to	use	the	element	in	contrast	to	the	element	that	we
have	used	in	our	examples	so	far.

With	this	alternative	you	can	skip	the	XML	schema	validation	from	your	IDE	at	design
time.	Unfortunately	you	will	loose	the	XSD	auto	completion	features	many	XML	editors
offer	when	constructing	your	payload.

The	The	same	possibilities	apply	to	the	Citrus	Java	DSL.

Java	DSL	designer

@CitrusTest
public	void	messagingTest()	{
				send("helloServiceEndpoint")
								.payload("<TestMessage>"	+
																"<Text>Hello!</Text>"	+
												"</TestMessage>");
}

@CitrusTest
public	void	messagingTest()	{
				send("helloServiceEndpoint")
								.payload(new	ClassPathResource("com/consol/citrus/messages/TestRequest.xml"));
}

@CitrusTest
public	void	messagingTest()	{
				send("helloServiceEndpoint")
								.payloadModel(new	TestRequest("Hello	Citrus!"));
}

@CitrusTest
public	void	messagingTest()	{
				send("helloServiceEndpoint")
								.message(new	DefaultMessage("Hello	World!")));
}

Citrus	Reference	Guide

114Send

Besides	defining	message	payloads	as	normal	Strings	and	via	external	file	resource
(classpath	and	file	system)	you	can	also	use	model	objects	as	payload	data	in	Java
DSL.	This	model	object	payload	requires	a	proper	message	marshaller	that	should	be
available	as	Spring	bean	inside	the	application	context.	By	default	Citrus	is	searching	for
a	bean	of	type	org.springframework.oxm.Marshaller	.

In	case	you	have	multiple	message	marshallers	in	the	application	context	you	have	to
tell	Citrus	which	one	to	use	in	this	particular	send	message	action.

@CitrusTest
public	void	messagingTest()	{
				send("helloServiceEndpoint")
								.payloadModel(new	TestRequest("Hello	Citrus!"),	"myMessageMarshallerBean");
}

Now	Citrus	will	marshal	the	message	payload	with	the	message	marshaller	bean	named
myMessageMarshallerBean	.	This	way	you	can	have	multiple	message	marshaller
implementations	active	in	your	project	(XML,	JSON,	and	so	on).

Last	not	least	the	message	can	be	defined	as	Citrus	message	object.	Here	you	can
choose	one	of	the	different	message	implementations	used	in	Citrus	for	SOAP,	Http	or
JMS	messages.	Or	you	just	use	the	default	message	implementation	or	maybe	a	custom
implementation.

Before	sending	takes	place	you	can	explicitly	overwrite	some	message	values	in
payload.	You	can	think	of	overwriting	specific	message	elements	with	variable	values.
Also	you	can	overwrite	values	using	XPath	(xpath)	or	JSONPath	(json-path)
expressions.

The	message	header	is	part	of	our	duty	of	defining	proper	messages,	too.	So	Citrus
uses	name-value	pairs	like	"Operation"	and	"MessageId"	in	the	next	example	to	set
message	header	entries.	Depending	on	what	message	endpoint	is	used	and	which
message	transport	underneath	the	header	values	will	be	shipped	in	different	ways.	In
JMS	the	headers	go	to	the	header	section	of	the	message,	in	Http	we	set	mime	headers
accordingly,	in	SOAP	we	can	access	the	SOAP	header	elements	and	so	on.	Citrus	aims
to	do	the	hard	work	for	you.	So	Citrus	knows	how	to	set	headers	on	different	message
transports.

XML	DSL

Citrus	Reference	Guide

115Send

<send	endpoint="helloServiceEndpoint">
				<message>
								<payload>
												<TestMessage>
																<Text>Hello!</Text>
												</TestMessage>
								</payload>
				</message>
				<header>
								<element	name="Operation"	value="sayHello"/>
				</header>
</receive>

The	message	headers	to	send	are	defined	by	a	simple	name	and	value	pair.	Of	course
you	can	use	test	variables	in	header	values	as	well.	Let's	see	how	this	looks	like	in	Java
DSL:

Java	DSL	designer

@CitrusTest
public	void	messagingTest()	{
				receive("helloServiceEndpoint")
								.payload("<TestMessage>"	+
																"<Text>Hello!</Text>"	+
												"</TestMessage>")
								.header("Operation",	"sayHello");
}

Java	DSL	runner

@CitrusTest
public	void	messagingTest()	{
				receive(action	->	action.endpoint("helloServiceEndpoint")
								.payload("<TestMessage>"	+
																"<Text>Hello!</Text>"	+
												"</TestMessage>")
								.header("Operation",	"sayHello"));
}

This	is	basically	how	to	send	messages	in	Citrus.	The	test	case	is	responsible	for
constructing	the	message	content	while	the	predefined	message	endpoint	holds
transport	specific	settings.	Test	cases	reference	endpoint	components	to	publish
messages	to	the	outside	world.	The	variable	support	in	message	payload	and	message
header	enables	you	to	add	dynamic	values	before	sending	out	the	message.

Citrus	Reference	Guide

116Send

Citrus	Reference	Guide

117Send

Receiving	messages

Just	like	sending	messages	the	receiving	part	is	a	very	important	action	in	an	integration
test.	Honestly	the	receive	action	is	even	more	important	in	Citrus	as	we	also	want	to
validate	the	incoming	message	contents.	We	are	writing	a	test	so	we	also	need
assertions	and	checks	that	everything	works	as	expected.

As	already	mentioned	before	a	message	consists	of	a	message	header	(name-value
pairs)	and	a	message	payload.	Later	in	this	document	we	will	see	how	to	validate
incoming	messages	with	payload	and	header	values.	We	start	with	a	very	simple
example:

XML	DSL

<receive	endpoint="helloServiceEndpoint">
				<message>
								<payload>
												<TestMessage>
																<Text>${text}</Text>
												</TestMessage>
								</payload>
				</message>
				<header>
								<element	name="Operation"	value="sayHello"/>
								<element	name="MessageId"	value="${messageId}"/>
				</header>
</receive>

Overall	the	receive	message	action	looks	quite	similar	to	the	send	message	action.
Concepts	are	identical	as	we	define	the	message	content	with	payload	and	header
values.	We	can	use	test	variables	in	both	message	payload	an	headers.	Now	let	us	have
a	look	at	the	Java	DSL	representation	of	this	simple	example:

Java	DSL	designer

Citrus	Reference	Guide

118Receive

@CitrusTest
public	void	messagingTest()	{
				receive("helloServiceEndpoint")
								.payload("<TestMessage>"	+
																				"<Text>${text}</Text>"	+
																"</TestMessage>")
								.header("Operation",	"sayHello")
								.header("MessageId",	"${messageId}");
}

Java	DSL	runner

@CitrusTest
public	void	messagingTest()	{
				receive(action	->	action.endpoint("helloServiceEndpoint")
																.payload("<TestMessage>"	+
																						"<Text>${text}</Text>"	+
																				"</TestMessage>")
																.header("Operation",	"sayHello")
																.header("MessageId",	"${messageId}"));
}

The	receive	action	waits	for	a	message	to	arrive.	The	whole	test	execution	is	stopped
while	waiting	for	the	message.	This	is	important	to	ensure	the	step	by	step	test	workflow
processing.	Of	course	you	can	specify	message	timeouts	so	the	receiver	will	only	wait	a
given	amount	of	time	before	raising	a	timeout	error.	Following	from	that	timeout
exception	the	test	case	fails	as	the	message	did	not	arrive	in	time.	Citrus	defines	default
timeout	settings	for	all	message	receiving	tasks.

In	a	good	case	scenario	the	message	arrives	in	time	and	the	content	can	be	validated	as
a	next	step.	This	validation	can	be	done	in	various	ways.	On	the	one	hand	you	can
specify	a	whole	XML	message	that	you	expect	as	control	template.	In	this	case	the
received	message	structure	is	compared	to	the	expected	message	content	element	by
element.	On	the	other	hand	you	can	use	explicit	element	validation	where	only	a	small
subset	of	message	elements	is	included	into	validation.

Besides	the	message	payload	Citrus	will	also	perform	validation	on	the	received
message	header	values.	Test	variable	usage	is	supported	as	usual	during	the	whole
validation	process	for	payload	and	header	checks.

In	general	the	validation	component	(validator)	in	Citrus	works	hand	in	hand	with	a
message	receiving	component	as	the	following	figure	shows:

Citrus	Reference	Guide

119Receive

The	message	receiving	component	passes	the	message	to	the	validator	where	the
individual	validation	steps	are	performed.	Let	us	have	a	closer	look	at	the	validation
options	and	features	step	by	step.

Validate	message	payloads

The	most	detailed	validation	of	incoming	messages	is	to	define	some	expected	message
payload.	The	Citrus	message	validator	will	then	perform	a	detailed	message	payload
comparison.	The	incoming	message	has	to	match	exactly	to	the	expected	message
payload.	The	different	message	validator	implementations	in	Citrus	provide	deep
comparison	of	message	structures	such	as	XML,	JSON	and	so	on.

So	by	defining	an	expected	message	payload	we	validate	the	incoming	message	in
syntax	and	semantics.	In	case	a	difference	is	identified	by	the	message	validator	the
validation	and	the	test	case	fails	with	respective	exceptions.	This	is	how	you	can	define
message	payloads	in	receive	action:

XML	DSL

<receive	endpoint="helloServiceEndpoint">
<message>
		<payload>
				<!--	message	payload	as	XML	-->
		</payload>
</message>
</receive>

<receive	endpoint="helloServiceEndpoint">
<message>
		<data>
						<![CDATA[
								<!--	message	payload	as	XML	-->
]]>
		</data>
</message>
</receive>

Citrus	Reference	Guide

120Receive

<receive	endpoint="helloServiceEndpoint">
<message>
		<resource	file="classpath:com/consol/citrus/messages/TestRequest.xml"	/>
</message>
</receive>

The	three	examples	above	represent	three	different	ways	of	defining	the	message
payload	in	a	receive	message	action.	On	the	one	hand	we	can	use	inline	message
payloads	as	nested	XML	or	CDATA	sections	in	the	test.	On	the	other	hand	we	can	load
the	message	content	from	external	file	resource.

Note	Sometimes	the	nested	XML	message	payload	elements	may	cause	XSD	schema
validation	rule	violations.	This	is	because	of	variable	values	not	fitting	the	XSD	schema
rules	for	example.	In	this	scenario	you	could	also	use	simple	CDATA	sections	as
payload	data.	In	this	case	you	need	to	use	the	element	in	contrast	to	the	element	that	we
have	used	in	our	examples	so	far.

With	this	alternative	you	can	skip	the	XML	schema	validation	from	your	IDE	at	design
time.	Unfortunately	you	will	loose	the	XSD	auto	completion	features	many	XML	editors
offer	when	constructing	your	payload.

In	Java	DSL	we	also	have	multiple	options	for	specifying	the	message	payloads:

Java	DSL	designer

@CitrusTest
public	void	messagingTest()	{
				receive("helloServiceEndpoint")
								.payload("<TestMessage>"	+
																				"<Text>Hello!</Text>"	+
																"</TestMessage>");
}

@CitrusTest
public	void	messagingTest()	{
				receive("helloServiceEndpoint")
								.payload(new	ClassPathResource("com/consol/citrus/messages/TestRequest.xml"));
}

Citrus	Reference	Guide

121Receive

@CitrusTest
public	void	messagingTest()	{
				receive("helloServiceEndpoint")
								.payloadModel(new	TestRequest("Hello	Citrus!"));
}

@CitrusTest
public	void	messagingTest()	{
				receive("helloServiceEndpoint")
								.message(new	DefaultMessage("Hello	World!")));
}

The	examples	above	represent	the	basic	variations	of	how	to	define	message	payloads
in	Citrus	Java	DSL.	The	payload	can	be	a	simple	String	or	a	Spring	file	resource
(classpath	or	file	system).	In	addition	to	that	we	can	use	a	model	object.	When	using
model	objects	as	payloads	we	need	a	proper	message	marshaller	implementation	in	the
Spring	application	context.	By	default	this	is	a	marshaller	bean	of	type
org.springframework.oxm.Marshaller	that	has	to	be	present	in	the	Spring	application
context.	You	can	add	such	a	bean	for	XML	and	JSON	message	marshalling	for	instance.

In	case	you	have	multiple	message	marshallers	in	the	application	context	you	have	to
tell	Citrus	which	one	to	use	in	this	particular	send	message	action.

@CitrusTest
public	void	messagingTest()	{
				receive("helloServiceEndpoint")
								.payloadModel(new	TestRequest("Hello	Citrus!"),	"myMessageMarshallerBean");
}

Now	Citrus	will	marshal	the	message	payload	with	the	message	marshaller	bean	named
myMessageMarshallerBean	.	This	way	you	can	have	multiple	message	marshaller
implementations	active	in	your	project	(XML,	JSON,	and	so	on).

Last	not	least	the	message	can	be	defined	as	Citrus	message	object.	Here	you	can
choose	one	of	the	different	message	implementations	used	in	Citrus	for	SOAP,	Http	or
JMS	messages.	Or	you	just	use	the	default	message	implementation	or	maybe	a	custom
implementation.

In	general	the	expected	message	content	can	be	manipulated	using	XPath	(xpath)	or
JSONPath	(json-path).	In	addition	to	that	you	can	ignore	some	elements	that	are
skipped	in	comparison.	We	will	describe	this	later	on	in	this	section.	Now	lets	continue

Citrus	Reference	Guide

122Receive

with	message	header	validation.

Validate	message	headers

Message	headers	are	used	widely	in	enterprise	messaging	solution:	The	message
headers	are	part	of	the	message	semantics	and	need	to	be	validated,	too.	Citrus	can
validate	message	header	by	name	and	value.

XML	DSL

<receive	endpoint="helloServiceEndpoint">
				<message>
								<payload>
								<TestMessage>
												<Text>Hello!</Text>
								</TestMessage>
								</payload>
				</message>
				<header>
								<element	name="Operation"	value="sayHello"/>
				</header>
</receive>

The	expected	message	headers	are	defined	by	a	name	and	value	pair.	Citrus	will	check
that	the	expected	message	header	is	present	and	will	check	the	value.	In	case	the
message	header	is	not	found	or	the	value	does	not	match	Citrus	will	raise	an	exception
and	the	test	fails.	You	can	use	validation	matchers	(validation-matchers)	for	a	more
powerful	validation	of	header	values,	too.

Let's	see	how	this	looks	like	in	Java	DSL:

Java	DSL	designer

@CitrusTest
public	void	messagingTest()	{
				receive("helloServiceEndpoint")
								.payload("<TestMessage>"	+
																"<Text>Hello!</Text>"	+
												"</TestMessage>")
								.header("Operation",	"sayHello");
}

Java	DSL	runner

Citrus	Reference	Guide

123Receive

@CitrusTest
public	void	messagingTest()	{
				receive(action	->	action.endpoint("helloServiceEndpoint")
																.payload("<TestMessage>"	+
																						"<Text>Hello!</Text>"	+
																				"</TestMessage>")
																.header("Operation",	"sayHello"));
}

Header	definition	in	Java	DSL	is	straight	forward	as	we	just	define	name	and	value	as
usual.	This	completes	the	message	validation	when	receiving	a	message	in	Citrus.	The
message	validator	implementations	may	add	additional	validation	capabilities	such	as
XML	schema	validation	or	XPath	and	JSONPath	validation.	Please	refer	to	the
respective	chapters	in	this	guide	to	learn	more	about	that.

Message	selectors

The	element	inside	the	receiving	action	defines	key-value	pairs	in	order	to	filter	the
messages	being	received.	The	filter	applies	to	the	message	headers.	This	means	that	a
receiver	will	only	accept	messages	matching	a	header	element	value.	In	messaging
applications	the	header	information	often	holds	message	ids,	correlation	ids,	operation
names	and	so	on.	With	this	information	given	you	can	explicitly	listen	for	messages	that
belong	to	your	test	case.	This	is	very	helpful	to	avoid	receiving	messages	that	are	still
available	on	the	message	destination.

Lets	say	the	tested	software	application	keeps	sending	messages	that	belong	to
previous	test	cases.	This	could	happen	in	retry	situations	where	the	application	error
handling	automatically	tries	to	solve	a	communication	problem	that	occurred	during
previous	test	cases.	As	a	result	a	message	destination	(e.g.	a	JMS	message	queue)
contains	messages	that	are	not	valid	any	more	for	the	currently	running	test	case.	The
test	case	might	fail	because	the	received	message	does	not	apply	to	the	actual	use
case.	So	we	will	definitely	run	into	validation	errors	as	the	expected	message	control
values	do	not	match.

Now	we	have	to	find	a	way	to	avoid	these	problems.	The	test	could	filter	the	messages
on	a	destination	to	only	receive	messages	that	apply	for	the	use	case	that	is	being
tested.	The	Java	Messaging	System	(JMS)	came	up	with	a	message	header	selector
that	will	only	accept	messages	that	fit	the	expected	header	values.

Let	us	have	a	closer	look	at	a	message	selector	inside	a	receiving	action:

Citrus	Reference	Guide

124Receive

XML	DSL

<selector>
				<element>	name="correlationId"	value="Cx1x123456789"</element>
				<element>	name="operation"	value="getOrders"</element>
</selector>

Java	DSL	designer

@CitrusTest
public	void	receiveMessageTest()	{
				receive("testServiceEndpoint")
								.selector("correlationId='Cx1x123456789'	AND	operation='getOrders'");
}

Java	DSL	runner

@CitrusTest
public	void	receiveMessageTest()	{
				receive(action	->	action.endpoint("testServiceEndpoint")
																.selector("correlationId='Cx1x123456789'	AND	operation='getOrders'"));
}

This	example	shows	how	message	selectors	work.	The	selector	will	only	accept
messages	that	meet	the	correlation	id	and	the	operation	in	the	header	values.	All	other
messages	on	the	message	destination	are	ignored.	The	selector	elements	are
automatically	associated	to	each	other	using	the	logical	AND	operator.	This	means	that
the	message	selector	string	would	look	like	this:	correlationId	=	'Cx1x123456789'	AND
operation	=	'getOrders'	.

Instead	of	using	several	elements	in	the	selector	you	can	also	define	a	selector	string
directly	which	gives	you	more	power	in	constructing	the	selection	logic	yourself.	This
way	you	can	use	AND	logical	operators	yourself.

<selector>
				<value>
								correlationId	=	'Cx1x123456789'	AND	operation	=	'getOrders'
				</value>
</selector>

Citrus	Reference	Guide

125Receive

Important	In	case	you	want	to	run	tests	in	parallel	message	selectors	become	essential
in	your	test	cases.	The	different	tests	running	at	the	same	time	will	steal	messages	from
each	other	when	you	lack	of	message	selection	mechanisms.

Important	Previously	only	JMS	message	destinations	offered	support	for	message
selectors!	With	Citrus	version	1.2	we	introduced	message	selector	support	for	Spring
Integration	message	channels,	too	(seemessage-channel-selector-support).

Groovy	MarkupBuilder

With	the	Groovy	MarkupBuilder	you	can	build	XML	message	payloads	in	a	simple	way,
without	having	to	write	the	typical	XML	overhead.	For	example	we	use	a	Groovy	script	to
construct	the	XML	message	to	be	sent	out.	Instead	of	a	plain	CDATA	XML	section	or	the
nested	payload	XML	data	we	write	a	Groovy	script	snippet.	The	Groovy	MarkupBuilder
generates	the	XML	message	payload	with	exactly	the	same	result:

XML	DSL

<send	endpoint="helloServiceEndpoint">
<message>
				<builder	type="groovy">
								markupBuilder.TestMessage	{
																MessageId('${messageId}')
																Timestamp('?')
																VersionId('2')
																Text('Hello	Citrus!')
												}
								}
				</builder>
				<element	path="/TestMessage/Timestamp"
																value="${createDate}"/>
				</message>
				<header>
								<element	name="Operation"	value="sayHello"/>
								<element	name="MessageId"	value="${messageId}"/>
				</header>
</send>

We	use	the	builder	element	with	type	groovy	and	the	MarkupBuilder	code	is	directly
written	to	this	element.	As	you	can	see	from	the	example	above,	you	can	mix	XPath	and
Groovy	markup	builder	code.	The	MarkupBuilder	syntax	is	very	easy	and	follows	the
simple	rule:	markupBuilder.ROOT-ELEMENT{	CHILD-ELEMENTS	}	.	However	the
tester	has	to	follow	some	simple	rules	and	naming	conventions	when	using	the	Citrus
MarkupBuilder	extension:

Citrus	Reference	Guide

126Receive

The	MarkupBuilder	is	accessed	within	the	script	over	an	object	named
markupBuilder.	The	name	of	the	custom	root	element	follows	with	all	its	child
elements.
Child	elements	may	be	defined	within	curly	brackets	after	the	root-element	(the
same	applies	for	further	nested	child	elements)
Attributes	and	element	values	are	defined	within	round	brackets,	after	the	element
name
Attribute	and	element	values	have	to	stand	within	apostrophes	(e.g.	attribute-name:
'attribute-value')

The	Groovy	MarkupBuilder	script	may	also	be	used	within	receive	actions	as	shown	in
the	following	listing:

XML	DSL

<send	endpoint="helloServiceEndpoint">
				<message>
								<builder	type="groovy"	file="classpath:com/consol/citrus/groovy/helloRequest.groovy"/>
				</message>
</send>

<receive	endpoint="helloServiceEndpoint"	timeout="5000">
				<message>
								<builder	type="groovy">
												markupBuilder.TestResponse(xmlns:	'http://www.consol.de/schemas/samples/sayHello.xsd'){
																MessageId('${messageId}')
																CorrelationId('${correlationId}')
																User('HelloService')
																Text('Hello	${user}')
												}
								</builder>
				</message>
</receive>

As	you	can	see	it	is	also	possible	to	define	the	script	as	external	file	resource.	In	addition
to	that	namespace	support	is	given	as	normal	attribute	definition	within	the	round
brackets	after	the	element	name.

The	MarkupBuilder	implementation	in	Groovy	offers	great	possibilities	in	defining
message	payloads.	We	do	not	need	to	write	XML	tag	overhead	and	we	can	construct
complex	message	payloads	with	Groovy	logic	like	iterations	and	conditional	elements.
For	detailed	MarkupBuilder	descriptions	please	see	the	official	Groovy	documentation.

Citrus	Reference	Guide

127Receive

Citrus	Reference	Guide

128Receive

Database	actions

In	many	cases	it	is	necessary	to	access	the	database	during	a	test.	This	enables	a	tester
to	also	validate	the	persistent	data	in	a	database.	It	might	also	be	helpful	to	prepare	the
database	with	some	test	data	before	running	a	test.	You	can	do	this	using	the	two
database	actions	that	are	described	in	the	following	sections.

In	general	Citrus	handles	SELECT	statements	differently	to	other	statements	like
INSERT,	UPDATE	and	DELETE.	When	executing	a	SQL	query	with	SELECT	you	are
able	to	add	validation	steps	on	the	result	sets	returned	from	the	database.	This	is	not
allowed	when	executing	update	statements	like	INSERT,	UPDATE,	DELETE.

Important	Do	not	mix	statements	of	type	SELECT	with	others	in	a	single	sql	test	action.
This	will	lead	to	errors	because	validation	steps	are	not	valid	for	statements	other	than
SELECT.	Please	use	separate	test	actions	for	update	statements.

SQL	update,	insert,	delete

The	action	simply	executes	a	group	of	SQL	statements	in	order	to	change	data	in	a
database.	Typically	the	action	is	used	to	prepare	the	database	at	the	beginning	of	a	test
or	to	clean	up	the	database	at	the	end	of	a	test.	You	can	specify	SQL	statements	like
INSERT,	UPDATE,	DELETE,	CREATE	TABLE,	ALTER	TABLE	and	many	more.

On	the	one	hand	you	can	specify	the	statements	as	inline	SQL	or	stored	in	an	external
SQL	resource	file	as	shown	in	the	next	two	examples.

XML	DSL

<actions>
				<sql	datasource="someDataSource">
								<statement>DELETE	FROM	CUSTOMERS</statement>
								<statement>DELETE	FROM	ORDERS</statement>
				</sql>

				<sql	datasource="myDataSource">
								<resource	file="file:tests/unit/resources/script.sql"/>
				</sql>
</actions>

Java	DSL	designer

Citrus	Reference	Guide

129Database

@Autowired
@Qualifier("myDataSource")
private	DataSource	dataSource;

@CitrusTest
public	void	sqlTest()	{
				sql(dataSource)
								.statement("DELETE	FROM	CUSTOMERS")
								.statement("DELETE	FROM	ORDERS");

				sql(dataSource)
								.sqlResource("file:tests/unit/resources/script.sql");
}

Java	DSL	runner

@Autowired
@Qualifier("myDataSource")
private	DataSource	dataSource;

@CitrusTest
public	void	sqlTest()	{
				sql(action	->	action.dataSource(dataSource)
								.statement("DELETE	FROM	CUSTOMERS")
								.statement("DELETE	FROM	ORDERS"));

				sql(action	->	action.dataSource(dataSource)
								.sqlResource("file:tests/unit/resources/script.sql"));
}

The	first	action	uses	inline	SQL	statements	defined	directly	inside	the	test	case.	The
next	action	uses	an	external	SQL	resource	file	instead.	The	file	resource	can	hold
several	SQL	statements	separated	by	new	lines.	All	statements	inside	the	file	are
executed	sequentially	by	the	framework.

Important	You	have	to	pay	attention	to	some	rules	when	dealing	with	external	SQL
resources.

Each	statement	should	begin	in	a	new	line
It	is	not	allowed	to	define	statements	with	word	wrapping
Comments	begin	with	two	dashes	"--"

Note	The	external	file	is	referenced	either	as	file	system	resource	or	class	path
resource,	by	using	the	"file:"	or	"classpath:"	prefix.

Citrus	Reference	Guide

130Database

Both	examples	use	the	"datasource"	attribute.	This	value	defines	the	database	data
source	to	be	used.	The	connection	to	a	data	source	is	mandatory,	because	the	test	case
does	not	know	about	user	credentials	or	database	names.	The	'datasource'	attribute
references	predefined	data	sources	that	are	located	in	a	separate	Spring	configuration
file.

SQL	query

The	query	action	is	specially	designed	to	execute	SQL	queries	(SELECT	*	FROM).	So
the	test	is	able	to	read	data	from	a	database.	The	query	results	are	validated	against
expected	data	as	shown	in	the	next	example.

XML	DSL

<sql	datasource="testDataSource">
				<statement>select	NAME	from	CUSTOMERS	where	ID='${customerId}'</statement>
				<statement>select	count(*)	from	ERRORS</statement>
				<statement>select	ID	from	ORDERS	where	DESC	LIKE	'Def%'</statement>
				<statement>select	DESCRIPTION	from	ORDERS	where	ID='${id}'</statement>

				<validate	column="ID"	value="1"/>
				<validate	column="NAME"	value="Christoph"/>
				<validate	column="COUNT(*)"	value="${rowsCount}"/>
				<validate	column="DESCRIPTION"	value="null"/>
</sql>

Java	DSL	designer

@Autowired
@Qualifier("testDataSource")
private	DataSource	dataSource;

@CitrusTest
public	void	databaseQueryTest()	{
				query(dataSource)
										.statement("select	NAME	from	CUSTOMERS	where	CUSTOMER_ID='${customerId}'")
										.statement("select	COUNT(1)	as	overall_cnt	from	ERRORS")
										.statement("select	ORDER_ID	from	ORDERS	where	DESCRIPTION	LIKE	'Migrate%'")
										.statement("select	DESCRIPTION	from	ORDERS	where	ORDER_ID	=	2")
										.validate("ORDER_ID",	"1")
										.validate("NAME",	"Christoph")
										.validate("OVERALL_CNT",	"${rowsCount}")
										.validate("DESCRIPTION",	"NULL");
}

Citrus	Reference	Guide

131Database

Java	DSL	runner

@Autowired
@Qualifier("testDataSource")
private	DataSource	dataSource;

@CitrusTest
public	void	databaseQueryTest()	{
				query(action	->	action.dataSource(dataSource)
												.statement("select	NAME	from	CUSTOMERS	where	CUSTOMER_ID='${customerId}'")
												.statement("select	COUNT(1)	as	overall_cnt	from	ERRORS")
												.statement("select	ORDER_ID	from	ORDERS	where	DESCRIPTION	LIKE	'Migrate%'")
												.statement("select	DESCRIPTION	from	ORDERS	where	ORDER_ID	=	2")
												.validate("ORDER_ID",	"1")
												.validate("NAME",	"Christoph")
												.validate("OVERALL_CNT",	"${rowsCount}")
												.validate("DESCRIPTION",	"NULL"));
}

The	action	offers	a	wide	range	of	validating	functionality	for	database	result	sets.	First	of
all	you	have	to	select	the	data	via	SQL	statements.	Here	again	you	have	the	choice	to
use	inline	SQL	statements	or	external	file	resource	pattern.

The	result	sets	are	validated	through	elements.	It	is	possible	to	do	a	detailed	check	on
every	selected	column	of	the	result	set.	Simply	refer	to	the	selected	column	name	in
order	to	validate	its	value.	The	usage	of	test	variables	is	supported	as	well	as	database
expressions	like	count(),	avg(),	min(),	max().

You	simply	define	the	entry	with	the	column	name	as	the	"column"	attribute	and	any
expected	value	expression	as	expected	"value".	The	framework	then	will	check	the
column	to	fit	the	expected	value	and	raise	validation	errors	in	case	of	mismatch.

Looking	at	the	first	SELECT	statement	in	the	example	you	will	see	that	test	variables	are
supported	in	the	SQL	statements.	The	framework	will	replace	the	variable	with	its
respective	value	before	sending	it	to	the	database.

In	the	validation	section	variables	can	be	used	too.	Look	at	the	third	validation	entry,
where	the	variable	"${rowsCount}"	is	used.	The	last	validation	in	this	example	shows,
that	NULL	values	are	also	supported	as	expected	values.

If	a	single	validation	happens	to	fail,	the	whole	action	will	fail	with	respective	validation
errors.

Citrus	Reference	Guide

132Database

Important	The	validation	with	""	meets	single	row	result	sets	as	you	specify	a	single
column	control	value.	In	case	you	have	multiple	rows	in	a	result	set	you	rather	need	to
validate	the	columns	with	multiple	control	values	like	this:

		<validate	column="someColumnName">
						<values>
										<value>Value	in	1st	row</value>
										<value>Value	in	2nd	row</value>
										<value>Value	in	3rd	row</value>
										<value>Value	in	x	row</value>
						</values>															
		</validate>

Within	Java	you	can	pass	a	variable	argument	list	to	the	validate	method	like	this:

query(dataSource)
				.statement("select	NAME	from	WEEKDAYS	where	NAME	LIKE	'S%'")
				.validate("NAME",	"Saturday",	"Sunday")

Next	example	shows	how	to	work	with	multiple	row	result	sets	and	multiple	values	to
expect	within	one	column:

Citrus	Reference	Guide

133Database

		<sql	datasource="testDataSource">
						<statement>select	WEEKDAY	as	DAY,	DESCRIPTION	from	WEEK</statement>
						<validate	column="DAY">
										<values>
														<value>Monday</value>
														<value>Tuesday</value>
														<value>Wednesday</value>
														<value>Thursday</value>
														<value>Friday</value>
														<value>@ignore@</value>
														<value>@ignore@</value>
										</values>																
						</validate>
						<validate	column="DESCRIPTION">
										<values>
														<value>I	hate	Mondays!</value>
														<value>Tuesday	is	sports	day</value>
														<value>The	mid	of	the	week</value>
														<value>Thursday	we	play	chess</value>
														<value>Friday,	the	weekend	is	near!</value>
														<value>@ignore@</value>
														<value>@ignore@</value>
										</values>																
						</validate>
		</sql>

For	the	validation	of	multiple	rows	the	element	is	able	to	host	a	list	of	control	values	for	a
column.	As	you	can	see	from	the	example	above,	you	have	to	add	a	control	value	for
each	row	in	the	result	set.	This	also	means	that	we	have	to	take	care	of	the	total	number
of	rows.	Fortunately	we	can	use	the	ignore	placeholder,	in	order	to	skip	the	validation	of
a	specific	row	in	the	result	set.	Functions	and	variables	are	supported	as	usual.

Important	It	is	important,	that	the	control	values	are	defined	in	the	correct	order,
because	they	are	compared	one	on	one	with	the	actual	result	set	coming	from	database
query.	You	may	need	to	add	"order	by"	SQL	expressions	to	get	the	right	order	of	rows
returned.	If	any	of	the	values	fails	in	validation	or	the	total	number	of	rows	is	not	equal,
the	whole	action	will	fail	with	respective	validation	errors.

Groovy	SQL	result	set	validation

Groovy	provides	great	support	for	accessing	Java	list	objects	and	maps.	As	a	Java	SQL
result	set	is	nothing	but	a	list	of	map	representations,	where	each	entry	in	the	list	defines
a	row	in	the	result	set	and	each	map	entry	represents	the	columns	and	values.	So	with

Citrus	Reference	Guide

134Database

Groovy's	list	and	map	access	we	have	great	possibilities	to	validate	a	SQL	result	set	-
out	of	the	box.

XML	DSL

<sql	datasource="testDataSource">
				<statement>select	ID	from	CUSTOMERS	where	NAME='${customerName}'</statement>
				<statement>select	ORDERTYPE,	STATUS	from	ORDERS	where	ID='${orderId}'</statement>

				<validate-script	type="groovy">
								assert	rows.size()	==	2
								assert	rows[0].ID	==	'1'
								assert	rows[1].STATUS	==	'in	progress'
								assert	rows[1]	==	[ORDERTYPE:'SampleOrder',	STATUS:'in	progress']															
				</validate-script>
</sql>

Java	DSL	designer

query(dataSource)
				.statement("select	ORDERTYPE,	STATUS	from	ORDERS	where	ID='${orderId}'")
				.validateScript("assert	rows.size	==	2;"	+
												"assert	rows[0].ID	==	'1';"	+
												"assert	rows[0].STATUS	==	'in	progress';",	"groovy");

Java	DSL	runner

query(action	->	action.dataSource(dataSource)
				.statement("select	ORDERTYPE,	STATUS	from	ORDERS	where	ID='${orderId}'")
				.validateScript("assert	rows.size	==	2;"	+
												"assert	rows[0].ID	==	'1';"	+
												"assert	rows[0].STATUS	==	'in	progress';",	"groovy"));

As	you	can	see	Groovy	provides	fantastic	access	methods	to	the	SQL	result	set.	We	can
browse	the	result	set	with	named	column	values	and	check	the	size	of	the	result	set.	We
are	also	able	to	search	for	an	entry,	iterate	over	the	result	set	and	have	other	helpful
operations.	For	a	detailed	description	of	the	list	and	map	handling	in	Groovy	my	advice
for	you	is	to	have	a	look	at	the	official	Groovy	documentation.

Note	In	general	other	script	languages	do	also	support	this	kind	of	list	and	map	access.
For	now	we	just	have	implemented	the	Groovy	script	support,	but	the	framework	is	ready
to	work	with	all	other	great	script	languages	out	there,	too	(e.g.	Scala,	Clojure,	Fantom,

Citrus	Reference	Guide

135Database

etc.).	So	if	you	prefer	to	work	with	another	language	join	and	help	us	implement	those
features.

Save	result	set	values

Now	the	validation	of	database	entries	is	a	very	powerful	feature	but	sometimes	we
simply	do	not	know	the	persisted	content	values.	The	test	may	want	to	read	database
entries	into	test	variables	without	validation.	Citrus	is	able	to	do	that	with	the	following
expressions:

XML	DSL

<sql	datasource="testDataSource">
				<statement>select	ID	from	CUSTOMERS	where	NAME='${customerName}'</statement>
				<statement>select	STATUS	from	ORDERS	where	ID='${orderId}'</statement>

				<extract	column="ID"	variable="${customerId}"/>
				<extract	column="STATUS"	variable="${orderStatus}"/>
</sql>

Java	DSL	designer

query(dataSource)
				.statement("select	STATUS	from	ORDERS	where	ID='${orderId}'")
				.extract("STATUS",	"orderStatus");

Java	DSL	runner

query(action	->	action.dataSource(dataSource)
				.statement("select	STATUS	from	ORDERS	where	ID='${orderId}'")
				.extract("STATUS",	"orderStatus"));

We	can	save	the	database	column	values	directly	to	test	variables.	Of	course	you	can
combine	the	value	extraction	with	the	normal	column	validation	described	earlier	in	this
chapter.	Please	keep	in	mind	that	we	can	not	use	these	operations	on	result	sets	with
multiple	rows.	Citrus	will	always	use	the	first	row	in	a	result	set.

Citrus	Reference	Guide

136Database

Sleep

This	action	shows	how	to	make	the	test	framework	sleep	for	a	given	amount	of	time.	The
attribute	'time'	defines	the	amount	of	time	to	wait	in	seconds.	As	shown	in	the	next
example	decimal	values	are	supported	too.	When	no	waiting	time	is	specified	the	default
time	of	50000	milliseconds	applies.

XML	DSL

<testcase	name="sleepTest">
				<actions>
								<sleep	seconds="3.5"/>

								<sleep	milliseconds="500"/>

								<sleep/>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	sleepTest()	{
				sleep(500);	//	sleep	500	milliseconds

				sleep();	//	sleep	default	time
}

When	should	somebody	use	this	action?	To	us	this	action	was	always	very	useful	in
case	the	test	needed	to	wait	until	an	application	had	done	some	work.	For	example	in
some	cases	the	application	took	some	time	to	write	some	data	into	the	database.	We
waited	then	a	small	amount	of	time	in	order	to	avoid	unnecessary	test	failures,	because
the	test	framework	simply	validated	the	database	too	early.	Or	as	another	example	the
test	may	wait	a	given	time	until	retry	mechanisms	are	triggered	in	the	tested	application
and	then	proceed	with	the	test	actions.

Citrus	Reference	Guide

137Sleep

Java

The	test	framework	is	written	in	Java	and	runs	inside	a	Java	virtual	machine.	The
functionality	of	calling	other	Java	objects	and	methods	in	this	same	Java	VM	through
Java	Reflection	is	self-evident.	With	this	action	you	can	call	any	Java	API	available	at
runtime	through	the	specified	Java	classpath.

The	action	syntax	looks	like	follows:

<java	class="com.consol.citrus.test.util.InvocationDummy">
				<constructor>
								<argument	type="">Test	Invocation</argument>
				</constructor>
				<method	name="invoke">
								<argument	type="String[]">1,2</argument>
				</method>
</java>

<java	class="com.consol.citrus.test.util.InvocationDummy">
				<constructor>
								<argument	type="">Test	Invocation</argument>
				</constructor>
				<method	name="invoke">
								<argument	type="int">4</argument>
								<argument	type="String">Test	Invocation</argument>
								<argument	type="boolean">true</argument>
				</method>
</java>

<java	class="com.consol.citrus.test.util.InvocationDummy">
				<method	name="main">
								<argument	type="String[]">4,Test,true	</argument>
				</method>
</java>

The	Java	class	is	specified	by	fully	qualified	class	name.	Constructor	arguments	are
added	using	the	element	with	a	list	of	child	elements.	The	type	of	the	argument	is
defined	within	the	respective	attribute	"type".	By	default	the	type	would	be	String.

The	invoked	method	on	the	Java	object	is	simply	referenced	by	its	name.	Method
arguments	do	not	bring	anything	new	after	knowing	the	constructor	argument	definition,
do	they?.

Citrus	Reference	Guide

138Java

Method	arguments	support	data	type	conversion	too,	even	string	arrays	(useful	when
calling	CLIs).	In	the	third	action	in	the	example	code	you	can	see	that	colon	separated
strings	are	automatically	converted	to	string	arrays.

Simple	data	types	are	defined	by	their	name	(int,	boolean,	float	etc.).	Be	sure	that	the
invoked	method	and	class	constructor	fit	your	arguments	and	vice	versa,	otherwise	you
will	cause	errors	at	runtime.

Besides	instantiating	a	fully	new	object	instance	for	a	class	how	about	reusing	a	bean
instance	available	in	Spring	bean	container.	Simply	use	the	ref	attribute	and	refer	to	an
existing	bean	in	Spring	application	context.

<java	ref="invocationDummy">
				<method	name="invoke">
								<argument	type="int">4</argument>
								<argument	type="String">Test	Invocation</argument>
								<argument	type="boolean">true</argument>
				</method>
</java>

<bean	id="invocationDummy"	class="com.consol.citrus.test.util.InvocationDummy"/>

The	method	is	invoked	on	the	Spring	bean	instance.	This	is	very	useful	as	you	can	inject
other	objects	(e.g.	via	Autowiring)	to	the	Spring	bean	instance	before	method	invocation
in	test	takes	place.	This	enables	you	to	execute	any	Java	logic	inside	a	test	case.

Citrus	Reference	Guide

139Java

Receive	timeout

In	some	cases	it	might	be	necessary	to	validate	that	a	message	is	not	present	on	a
destination.	This	means	that	this	action	expects	a	timeout	when	receiving	a	message
from	an	endpoint	destination.	For	instance	the	tester	intends	to	ensure	that	no	message
is	sent	to	a	certain	destination	in	a	time	period.	In	that	case	the	timeout	would	not	be	a
test	aborting	error	but	the	expected	behavior.	And	in	contrast	to	the	normal	behavior
when	a	message	is	received	in	the	time	period	the	test	will	fail	with	error.

In	order	to	validate	such	a	timeout	situation	the	action	shall	help.	The	usage	is	very
simple	as	the	following	example	shows:

XML	DSL

<testcase	name="receiveJMSTimeoutTest">
				<actions>
								<expect-timeout	endpoint="myEndpoint"	wait="500"/>
				</actions>
</testcase>

Java	DSL	designer

@Autowired
@Qualifier("myEndpoint")
private	Endpoint	myEndpoint;

@CitrusTest
public	void	receiveTimeoutTest()	{
				receiveTimeout(myEndpoint)
								.timeout(500);
}

Java	DSL	runner

@Autowired
@Qualifier("myEndpoint")
private	Endpoint	myEndpoint;

@CitrusTest
public	void	receiveTimeoutTest()	{
				receiveTimeout(action	->	action.endpoint(myEndpoint)
																				.timeout(500));
}

Citrus	Reference	Guide

140Timeout

The	action	offers	two	attributes:

endpoint	:	Reference	to	a	message	endpoint	that	will	try	to	receive	messages.

wait/timeout	:	Time	period	to	wait	for	messages	to	arrive

Sometimes	you	may	want	to	add	some	selector	on	the	timeout	receiving	action.	This
way	you	can	very	selective	check	on	a	message	to	not	be	present	on	a	message
destination.	This	is	possible	with	defining	a	message	selector	on	the	test	action	as
follows.

XML	DSL

<expect-timeout	endpoint="myEndpoint"	wait="500">
		<select>MessageId='123456789'<select/>
<expect-timeout/>

Java	DSL	designer

@CitrusTest
public	void	receiveTimeoutTest()	{
				receiveTimeout(myEndpoint)
								.selector("MessageId	=	'123456789'")
								.timeout(500);
}

Java	DSL	runner

@CitrusTest
public	void	receiveTimeoutTest()	{
				receiveTimeout(action	->	action.endpoint(myEndpoint)
																				.selector("MessageId	=	'123456789'")
																				.timeout(500));
}

Citrus	Reference	Guide

141Timeout

Echo

The	action	prints	messages	to	the	console/logger.	This	functionality	is	useful	when
debugging	test	runs.	The	property	"message"	defines	the	text	that	is	printed.	Tester
might	use	it	to	print	out	debug	messages	and	variables	as	shown	the	next	code
example:

XML	DSL

<testcase	name="echoTest">
				<variables>
								<variable	name="date"	value="citrus:currentDate()"/>
				</variables>
				<actions>
								<echo>
												<message>Hello	Test	Framework</message>
								</echo>

								<echo>
												<message>Current	date	is:	${date}</message>
								</echo>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	echoTest()	{
				variable("date",	"citrus:currentDate()");

				echo("Hello	Test	Framework");
				echo("Current	date	is:	${date}");
}

Result	on	the	console:

Hello	Test	Framework
Current	time	is:	05.08.2008

Citrus	Reference	Guide

142Echo

Stop	time

Time	measurement	during	a	test	can	be	very	helpful.	The	action	creates	and	monitors
multiple	timelines.	The	action	offers	the	attribute	"id"	to	identify	a	time	line.	The	tester
can	of	course	use	more	than	one	time	line	with	different	ids	simultaneously.

Read	the	next	example	and	you	will	understand	the	mix	of	different	time	lines:

XML	DSL

<testcase	name="StopTimeTest">
				<actions>
								<trace-time/>

								<trace-time	id="time_line_id"/>

								<sleep	seconds="3.5"/>

								<trace-time	id="	time_line_id	"/>

								<sleep	milliseconds="5000"/>

								<trace-time/>

								<trace-time	id="	time_line_id	"/>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	stopTimeTest()	{
				stopTime();
				stopTime("time_line_id");
				sleep(3.5);	//	do	something
				stopTime("time_line_id");
				sleep(5000);	//	do	something
				stopTime();
				stopTime("time_line_id");
}

The	test	output	looks	like	follows:

Citrus	Reference	Guide

143Stop-time

Starting	TimeWatcher:
Starting	TimeWatcher:	time_line_id
TimeWatcher	time_line_id	after	3500	milliseconds
TimeWatcher	after	8500	seconds
TimeWatcher	time_line_id	after	8500	milliseconds

Note	In	case	no	time	line	id	is	specified	the	framework	will	measure	the	time	for	a	default
time	line.To	print	out	the	current	elapsed	time	for	a	time	line	you	simply	have	to	place	the
action	into	the	action	chain	again	and	again,	using	the	respective	time	line	identifier.	The
elapsed	time	will	be	printed	out	to	the	console	every	time.

Citrus	Reference	Guide

144Stop-time

Create	variables

As	you	know	variables	usually	are	defined	at	the	beginning	of	the	test	case	(testcase-
variables).	It	might	also	be	helpful	to	reset	existing	variables	as	well	as	to	define	new
variables	during	the	test.	The	action	is	able	to	declare	new	variables	or	overwrite	existing
ones.

XML	DSL

<testcase	name="createVariablesTest">
				<variables>
								<variable	name="myVariable"	value="12345"/>
								<variable	name="id"	value="54321"/>
				</variables>
				<actions>
								<echo>
												<message>Current	variable	value:	${myVariable}</message>
								</echo>

								<create-variables>
												<variable	name="myVariable"	value="${id}"/>
												<variable	name="newVariable"	value="'this	is	a	test'"/>
								</create-variables>

								<echo>
												<message>Current	variable	value:	${myVariable}	</message>
								</echo>

								<echo>
												<message>
														New	variable	'newVariable'	has	the	value:	${newVariable}
												</message>
								</echo>
				</actions>
</testcase>

Java	DSL	designer	and	runner

Citrus	Reference	Guide

145Create-variables

@CitrusTest
public	void	createVariableTest()	{
				variable("myVariable",	"12345");
				variable("id",	"54321");

				echo("Current	variable	value:	${myVariable}");

				createVariable("myVariable",	"${id}");
				createVariable("newVariable",	"this	is	a	test");

				echo("Current	variable	value:	${myVariable}");

				echo("New	variable	'newVariable'	has	the	value:	${newVariable}");
}

Note	Please	note	the	difference	between	the	variable()	method	and	the
createVariable()	method.	The	first	initializes	the	test	case	with	the	test	variables.	So	all
variables	defined	with	this	method	are	valid	from	the	very	beginning	of	the	test.	In
contrary	to	that	the	createVariable()	is	executed	within	the	test	action	chain.	The	newly
created	variables	are	then	valid	for	the	rest	of	the	test.	Trailing	actions	can	reference	the
variables	as	usual	with	the	variable	expression.

Citrus	Reference	Guide

146Create-variables

Trace	variables

You	already	know	the	action	that	prints	messages	to	the	console	or	logger.	The	action	is
specially	designed	to	trace	all	currently	valid	test	variables	to	the	console.	This	was
mainly	used	by	us	for	debug	reasons.	The	usage	is	quite	simple:

XML	DSL

<testcase	name="traceVariablesTest">
				<variables>
								<variable	name="myVariable"	value="12345"/>
								<variable	name="nextVariable"	value="54321"/>
				</variables>
				<actions>
								<trace-variables>
												<variable	name="myVariable"/>
												<variable	name="nextVariable"/>
								</trace-variables>

								<trace-variables/>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	traceTest()	{
				variable("myVariable",	"12345");
				variable("nextVariable",	"54321");

				traceVariables("myVariable",	"nextVariable");
				traceVariables();
}

Simply	add	the	action	to	your	action	chain	and	all	variables	will	be	printed	out	to	the
console.	You	are	able	to	define	a	special	set	of	variables	by	using	the	child	elements.
See	the	output	that	was	generated	by	the	test	example	above:

Current	value	of	variable	myVariable	=	12345
Current	value	of	variable	nextVariable	=	54321

Citrus	Reference	Guide

147Trace

Citrus	Reference	Guide

148Trace

Transform

The	action	transforms	XML	fragments	with	XSLT	in	order	to	construct	various	XML
representations.	The	transformation	result	is	stored	into	a	test	variable	for	further	usage.
The	property	xml-data	defines	the	XML	source,	that	is	going	to	be	transformed,	while
xslt-data	defines	the	XSLT	transformation	rules.	The	attribute	variable	specifies	the
target	test	variable	which	receives	the	transformation	result.	The	tester	might	use	the
action	to	transform	XML	messages	as	shown	in	the	next	code	example:

XML	DSL

		<testcase	name="transformTest">
						<actions>
										<transform	variable="result">
														<xml-data>
																		<![CDATA[
																						<TestRequest>
																										<Message>Hello	World!</Message>
																						</TestRequest>
]]>
														</xml-data>
														<xslt-data>
																		<![CDATA[
																						<xsl:stylesheet	version="1.0"	xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
																						<xsl:template	match="/">
																										<html>
																														<body>
																																		<h2>Test	Request</h2>
																																		<p>Message:	<xsl:value-of	select="TestRequest/Message"/></p>
																														</body>
																										</html>
																						</xsl:template>
																						</xsl:stylesheet>
]]>
														</xslt-data>
										</transform>
										<echo>
														<message>${result}</message>
										</echo>
						</actions>
		</testcase>

The	transformation	above	results	to:

Citrus	Reference	Guide

149Transform

		<html>
						<body>
										<h2>Test	Request</h2>
										<p>Message:	Hello	World!</p>
						</body>
		</html>

In	the	example	we	used	CDATA	sections	to	define	the	transformation	source	as	well	as
the	XSL	transformation	rules.	As	usual	you	can	also	use	external	file	resources	here.
The	transform	action	with	external	file	resources	looks	like	follows:

		<transform	variable="result">
						<xml-resource	file="classpath:transform-source.xml"/>
						<xslt-resource	file="classpath:transform.xslt"/>
		</transform>

The	Java	DSL	alternative	for	transforming	data	via	XSTL	in	Citrus	looks	like	follows:

Java	DSL	designer

Citrus	Reference	Guide

150Transform

@CitrusTest
public	void	transformTest()	{
				transform()
								.source("<TestRequest>"	+
																				"<Message>Hello	World!</Message>"	+
																"</TestRequest>")
								.xslt("<xsl:stylesheet	version=\"1.0\"	xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">\n"
																				"<xsl:template	match=\"/\">\n"	+
																				"<html>\n"	+
																								"<body>\n"	+
																												"<h2>Test	Request</h2>\n"	+
																												"<p>Message:	<xsl:value-of	select=\"TestRequest/Message\"/></p>\n"
																								"</body>\n"	+		
																				"</html>\n"	+
																				"</xsl:template>\n"	+
																"</xsl:stylesheet>")
								.result("result");

				echo("${result}");

				transform()
								.source(new	ClassPathResource("com/consol/citrus/actions/transform-source.xml"))
								.xslt(new	ClassPathResource("com/consol/citrus/actions/transform.xslt"))
								.result("result");

				echo("${result}");
}

Java	DSL	runner

Citrus	Reference	Guide

151Transform

@CitrusTest
public	void	transformTest()	{
				transform(action	->
								action.source("<TestRequest>"	+
																								"<Message>Hello	World!</Message>"	+
																				"</TestRequest>")
								.xslt("<xsl:stylesheet	version=\"1.0\"	xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">\n"
																"<xsl:template	match=\"/\">\n"	+
																"<html>\n"	+
																				"<body>\n"	+
																								"<h2>Test	Request</h2>\n"	+
																								"<p>Message:	<xsl:value-of	select=\"TestRequest/Message\"/></p>\n"	+
																				"</body>\n"	+
																"</html>\n"	+
																"</xsl:template>\n"	+
												"</xsl:stylesheet>")
								.result("result"));

				echo("${result}");

				transform(action	->
								action.source(new	ClassPathResource("com/consol/citrus/actions/transform-source.xml"))
														.xslt(new	ClassPathResource("com/consol/citrus/actions/transform.xslt"))
														.result("result"));

				echo("${result}");
}

Defining	multi-line	Strings	with	nested	quotes	is	no	fun	in	Java.	So	you	may	want	to	use
external	file	resources	for	your	scripts	as	shown	in	the	second	part	of	the	example.	In
fact	you	could	also	use	script	languages	like	Groovy	or	Scala	that	have	much	better
support	for	multi-line	Strings.

Citrus	Reference	Guide

152Transform

Groovy	script	execution

Groovy	is	an	agile	dynamic	language	for	the	Java	Platform.	Groovy	ships	with	a	lot	of
very	powerful	features	and	fits	perfectly	with	Java	as	it	is	based	on	Java	and	runs	inside
the	JVM.

The	Citrus	Groovy	support	might	be	the	entrance	for	you	to	write	customized	test
actions.	You	can	easily	execute	Groovy	code	inside	a	test	case,	just	like	a	normal	test
action.	The	whole	test	context	with	all	variables	is	available	to	the	Groovy	action.	This
means	someone	can	change	variable	values	or	create	new	variables	very	easily.

Let's	have	a	look	at	some	examples	in	order	to	understand	the	possible	Groovy	code
interactions	in	Citrus:

XML	DSL

<testcase	name="groovyTest">
		<variables>
				<variable	name="time"	value="citrus:currentDate()"/>
		</variables>
		<actions>
				<groovy>
								println	'Hello	Citrus'
				</groovy>
				<groovy>
								println	'The	variable	is:	${time}'
				</groovy>
				<groovy	resource="classpath:com/consol/citrus/script/example.groovy"/>
		</actions>
</testcase>

Java	DSL	designer

@CitrusTest
public	void	groovyTest()	{
				groovy("println	'Hello	Citrus'");
				groovy("println	'The	variable	is:	${time}'");

				groovy(new	ClassPathResource("com/consol/citrus/script/example.groovy"));
}

Java	DSL	runner

Citrus	Reference	Guide

153Groovy

@CitrusTest
public	void	groovyTest()	{
				groovy(action	->	action.script("println	'Hello	Citrus'"));
				groovy(action	->	action.script("println	'The	variable	is:	${time}'"));

				groovy(action	->	action.script(new	ClassPathResource("com/consol/citrus/script/example.groovy"
}

As	you	can	see	it	is	possible	to	write	Groovy	code	directly	into	the	test	case.	Citrus	will
interpret	and	execute	the	Groovy	code	at	runtime.	As	usual	nested	variable	expressions
are	replaced	with	respective	values.	In	general	this	is	done	in	advance	before	the
Groovy	code	is	interpreted.	For	more	complex	Groovy	code	sections	which	grow	in	lines
of	code	you	can	also	reference	external	file	resources.

After	this	basic	Groovy	code	usage	inside	a	test	case	we	might	be	interested	accessing
the	whole	TestContext.	The	TestContext	Java	object	holds	all	test	variables	and	function
definitions	for	the	test	case	and	can	be	referenced	in	Groovy	code	via	simple	naming
convention.	Just	access	the	object	reference	'context'	and	you	are	able	to	manipulate
the	TestContext	(e.g.	setting	a	new	variable	which	is	directly	ready	for	use	in	following
test	actions).

XML	DSL

<testcase	name="groovyTest">
		<actions>
				<groovy>
						context.setVariable("greetingText","Hello	Citrus")
						println	context.getVariable("greetingText")
				</groovy>
				<echo>
						<message>New	variable:	${greetingText}</message>
				</echo>
		</actions>
</testcase>

Note	The	implicit	TestContext	access	that	was	shown	in	the	previous	sample	works	with
a	default	Groovy	script	template	provided	by	Citrus.	The	Groovy	code	you	write	in	the
test	case	is	automatically	surrounded	with	a	Groovy	script	which	takes	care	of	handling
the	TestContext.	The	default	template	looks	like	follows:

Citrus	Reference	Guide

154Groovy

import	com.consol.citrus.*
import	com.consol.citrus.variable.*
import	com.consol.citrus.context.TestContext
import	com.consol.citrus.script.GroovyAction.ScriptExecutor

public	class	GScript	implements	ScriptExecutor	{
				public	void	execute(TestContext	context)	{
								@SCRIPTBODY@
				}
}

Your	code	is	placed	in	substitution	to	the	@SCRIPTBODY@	placeholder.	Now	you
might	understand	how	Citrus	handles	the	context	automatically.	You	can	also	write	your
own	script	templates	making	more	advanced	usage	of	other	Java	APIs	and	Groovy
code.	Just	add	a	script	template	path	to	the	test	action	like	this:

<groovy	script-template="classpath:my-custom-template.groovy">
		[...]
</groovy>

On	the	other	hand	you	can	disable	the	automatic	script	template	wrapping	in	your	action
at	all:

<groovy	use-script-template="false">
		println	'Just	use	some	Groovy	code'
</groovy>

The	next	example	deals	with	advanced	Groovy	code	and	writing	whole	classes.	We
write	a	new	Groovy	class	which	implements	the	ScriptExecutor	interface	offered	by
Citrus.	This	interface	defines	a	special	execute	method	and	provides	access	to	the
whole	TestContext	for	advanced	test	variables	access.

Citrus	Reference	Guide

155Groovy

<testcase	name="groovyTest">
		<variables>
				<variable	name="time"	value="citrus:currentDate()"/>
		</variables>
		<actions>
				<groovy>
						<![CDATA[
								import	com.consol.citrus.*
								import	com.consol.citrus.variable.*
								import	com.consol.citrus.context.TestContext
								import	com.consol.citrus.script.GroovyAction.ScriptExecutor

								public	class	GScript	implements	ScriptExecutor	{
												public	void	execute(TestContext	context)	{
																println	context.getVariable("time")
												}
								}
]]>
				</groovy>
		</actions>
</testcase>

Implementing	the	ScriptExecutor	interface	in	a	custom	Groovy	class	is	applicable	for
very	special	test	context	manipulations	as	you	are	able	to	import	and	use	other	Java	API
classes	in	this	code.

Citrus	Reference	Guide

156Groovy

Failing	the	test

The	fail	action	will	generate	an	exception	in	order	to	terminate	the	test	case	with	error.
The	test	case	will	therefore	not	be	successful	in	the	reports.

The	user	can	specify	a	custom	error	message	for	the	exception	in	order	to	describe	the
error	cause.	Here	is	a	very	simple	example	to	clarify	the	syntax:

XML	DSL

<testcase	name="failTest">
				<actions>
								<fail	message="Test	will	fail	with	custom	message"/>
				</actions>
</testcase>

Test	results:

Execution	of	test:	failTest	failed!	Nested	exception	is:	
com.consol.citrus.exceptions.CitrusRuntimeException:	
Test	will	fail	with	custom	message

[...]

CITRUS	TEST	RESULTS

failTest										:	failed	-	Exception	is:	Test	will	fail	with	custom	message

Found	1	test	cases	to	execute
Skipped	0	test	cases	(0.0%)
Executed	1	test	cases,	containing	3	actions
Tests	failed:								1	(100.0%)
Tests	successfully:		0	(0.0%)

While	using	the	Java	DSL	tester	might	want	to	raise	some	Java	exceptions	in	the	middle
of	configuring	the	test	case.	But	this	is	not	possible	as	we	have	to	separate	the	design
time	and	the	execution	time	of	the	test	case.	The	@CitrusTest	annotated	configuration
method	is	called	for	building	up	the	whole	test	case.	After	this	method	was	processed
the	test	gets	executed	in	runtime	oth	the	test.	If	you	specify	a	throws	exception
statement	in	the	configuration	method	this	will	not	be	done	at	runtime	but	at	design	time.
This	is	why	you	have	to	use	the	special	fail	test	action	which	raises	a	Java	exception
during	the	runtime	of	the	test.	The	next	example	will	not	work	as	expected:

Citrus	Reference	Guide

157Fail

Java	DSL	designer	and	runner

@CitrusTest
public	void	wrongUsageSample()	{
				//	some	test	actions

				throw	new	ValidationException("This	test	should	fail	now");	//	does	not	work	as	expected	
}

The	validation	exception	above	is	directly	raised	before	the	test	is	able	to	start	as	the
@CitrusTest	annotated	method	does	not	represent	the	test	runtime.	Instead	of	this	we
have	to	use	the	fail	action	as	follows:

Java	DSL	designer	and	runner

@CitrusTest
public	void	failTest()	{
				//	some	test	actions

				fail("This	test	should	fail	now");	//	fails	at	test	runtime	as	expected	
}

Now	the	test	fails	at	runtime	as	the	fail	action	is	raised	during	the	test	execution	as
expected.

Citrus	Reference	Guide

158Fail

Input

During	the	test	case	execution	it	is	possible	to	read	some	user	input	from	the	command
line.	The	test	execution	will	stop	and	wait	for	keyboard	inputs	over	the	standard	input
stream.	The	user	has	to	type	the	input	and	end	it	with	the	return	key.

The	user	input	is	stored	to	the	respective	variable	value.

XML	DSL

<testcase	name="inputTest">
				<variables>
								<variable	name="userinput"	value=""></variable>
								<variable	name="userinput1"	value=""></variable>
								<variable	name="userinput2"	value="y"></variable>
								<variable	name="userinput3"	value="yes"></variable>
								<variable	name="userinput4"	value=""></variable>
				</variables>
				<actions>
								<input/>
								<echo><message>user	input	was:	${userinput}</message></echo>

								<input	message="Now	press	enter:"	variable="userinput1"/>
								<echo><message>user	input	was:	${userinput1}</message></echo>

								<input	message="Do	you	want	to	continue?"	
																		valid-answers="y/n"	variable="userinput2"/>
								<echo><message>user	input	was:	${userinput2}</message></echo>

								<input	message="Do	you	want	to	continue?"	
																		valid-answers="yes/no"	variable="userinput3"/>
								<echo><message>user	input	was:	${userinput3}</message></echo>

								<input	variable="userinput4"/>
								<echo><message>user	input	was:	${userinput4}</message></echo>
				</actions>
</testcase>

As	you	can	see	the	input	action	is	customizable	with	a	prompt	message	that	is	displayed
to	the	user	and	some	valid	answer	possibilities.	The	user	input	is	stored	to	a	test	variable
for	further	use	in	the	test	case.	In	detail	the	input	action	offers	following	attributes:

message	->	message	displayed	to	the	user

valid-answers	->	optional	slash	separated	string	containing	the	possible	valid
answers

Citrus	Reference	Guide

159Input

variable	->	result	variable	name	holding	the	user	input	(default	=	${userinput})

The	same	action	in	Java	DSL	now	looks	quite	familiar	to	us	although	attribute	naming	is
slightly	different:

Java	DSL	designer

@CitrusTest
public	void	inputActionTest()	{
				variable("userinput",	"");
				variable("userinput1",	"");
				variable("userinput2",	"y");
				variable("userinput3",	"yes");
				variable("userinput4",	"");

				input();
				echo("user	input	was:	${userinput}");
				input().message("Now	press	enter:").result("userinput1");
				echo("user	input	was:	${userinput1}");
				input().message("Do	you	want	to	continue?").answers("y",	"n").result("userinput2");
				echo("user	input	was:	${userinput2}");
				input().message("Do	you	want	to	continue?").answers("yes",	"no").result("userinput3");
				echo("user	input	was:	${userinput3}");
				input().result("userinput4");
				echo("user	input	was:	${userinput4}");	
}

Java	DSL	runner

Citrus	Reference	Guide

160Input

@CitrusTest
public	void	inputActionTest()	{
				variable("userinput",	"");
				variable("userinput1",	"");
				variable("userinput2",	"y");
				variable("userinput3",	"yes");
				variable("userinput4",	"");

				input(action	->	{});
				echo("user	input	was:	${userinput}");
				input(action	->	action.message("Now	press	enter:").result("userinput1"));
				echo("user	input	was:	${userinput1}");
				input(action	->	action.message("Do	you	want	to	continue?").answers("y",	"n").result("userinput2"
				echo("user	input	was:	${userinput2}");
				input(action	->	action.message("Do	you	want	to	continue?").answers("yes",	"no").result("userinput3"
				echo("user	input	was:	${userinput3}");
				input(action	->	action.result("userinput4"));
				echo("user	input	was:	${userinput4}");
}

When	the	user	input	is	restricted	to	a	set	of	valid	answers	the	input	validation	of	course
can	fail	due	to	mismatch.	This	is	the	case	when	the	user	provides	some	input	not
matching	the	valid	answers	given.	In	this	case	the	user	is	again	asked	to	provide	valid
input.	The	test	action	will	continue	to	ask	for	valid	input	until	a	valid	answer	is	given.

Note	User	inputs	may	not	fit	to	automatic	testing	in	terms	of	continuous	integration
testing	where	no	user	is	present	to	type	in	the	correct	answer	over	the	keyboard.	In	this
case	you	can	always	skip	the	user	input	in	advance	by	specifying	a	variable	that
matches	the	user	input	variable	name.	As	the	user	input	variable	is	then	already	present
the	user	input	is	missed	out	and	the	test	proceeds	automatically.

Citrus	Reference	Guide

161Input

Load

You	are	able	to	load	properties	from	external	property	files	and	store	them	as	test
variables.	The	action	will	require	a	file	resource	either	from	class	path	or	file	system	in
order	to	read	the	property	values.

Let	us	look	at	an	example	to	get	an	idea	about	this	action:

Content	of	load.properties:

username=Mickey	Mouse
greeting.text=Hello	Test	Framework

XML	DSL

<testcase	name="loadPropertiesTest">
				<actions>
								<load>
												<properties	file="file:tests/resources/load.properties"/>
								</load>

								<trace-variables/>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	loadPropertiesTest()	{
				load("file:tests/resources/load.properties");

				traceVariables();
}

Output:

Current	value	of	variable	username	=	Mickey	Mouse
Current	value	of	variable	greeting.text	=	Hello	Test	Framework

The	action	will	load	all	available	properties	in	the	file	load.properties	and	store	them	to
the	test	case	as	local	variables.

Citrus	Reference	Guide

162Load

Important	Please	be	aware	of	the	fact	that	existing	variables	are	overwritten!

Citrus	Reference	Guide

163Load

Wait

With	this	action	you	can	make	your	test	wait	until	a	certain	condition	is	satisfied.	The
attribute	seconds	defines	the	amount	of	time	to	wait	in	seconds.	You	can	also	use	the
milliseconds	attribute	for	a	more	fine	grained	time	value.	The	attribute	interval	defines
the	amount	of	time	to	wait	between	each	check.	The	interval	is	always	specified	as
millisecond	time	interval.

If	the	check	does	not	exceed	within	the	defined	overall	waiting	time	then	the	test
execution	fails	with	an	appropriate	error	message.	There	are	different	types	of	conditions
to	check.

http	:	This	condition	is	based	on	a	Http	request	call	on	a	server	endpoint.	Citrus	will
wait	until	the	Http	response	is	as	defined	(e.g.	Http	200	OK).	This	is	useful	when
you	want	to	wait	for	a	server	to	start.

file	:	This	condition	checks	for	the	existence	of	a	file	on	the	local	file	system.	Citrus
will	wait	until	the	file	is	present.

Next	let	us	have	a	look	at	a	simple	example:

XML	DSL

<testcase	name="waitTest">
				<actions>
								<wait	seconds="10"	interval="2000"	>
										<http	url="http://sample.org/resource"	statusCode="200"	timeout="2000"	/>
								<wait/>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	waitTest()	{
				waitFor().http("http://sample.org/resource").seconds(10L).interval(2000L);
}

The	example	waits	for	some	Http	server	resource	to	be	available	with	Http	200	OK
response.	Citrus	will	use	HEAD	request	method	by	default.	You	can	set	the	request
method	with	the	method	attribute	on	the	Http	condition.

Citrus	Reference	Guide

164Wait

Next	let	us	have	a	look	at	the	file	condition	usage:

XML	DSL

<testcase	name="waitTest">
				<actions>
								<wait	seconds="10"	interval="2000"	>
										<file	path="path/to/resource/file.txt"	/>
								<wait/>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	waitTest()	{
				waitFor().file("path/to/resource/file.txt");
}

Citrus	checks	for	the	file	to	exist	under	the	given	path.	Only	if	the	file	exists	the	test	will
continue	with	further	test	actions.

When	should	somebody	use	this	action?	This	action	is	very	useful	when	you	want	your
test	to	wait	for	a	certain	event	to	occur	before	continuing	with	the	test	execution.	For
example	if	you	wish	that	your	test	waits	until	a	Docker	container	is	started	or	for	an
application	to	create	a	log	file	before	continuing,	then	use	this	action.	You	can	also
create	your	own	condition	statements	and	bind	it	to	the	test	action.

Citrus	Reference	Guide

165Wait

Purging	JMS	destinations

Purging	JMS	destinations	during	the	test	run	is	quite	essential.	Different	test	cases	can
influence	each	other	when	sending	messages	to	the	same	JMS	destinations.	A	test	case
should	only	receive	those	messages	that	actually	belong	to	it.	Therefore	it	is	a	good	idea
to	purge	all	JMS	queue	destinations	between	the	test	cases.	Obsolete	messages	that
are	stuck	in	a	JMS	queue	for	some	reason	are	then	removed	so	that	the	following	test
case	is	not	offended.

Note	Citrus	provides	special	support	for	JMS	related	features.	We	have	to	activate	those
JMS	features	in	our	test	case	by	adding	a	special	"jms"	namespace	and	schema
definition	location	to	the	test	case	XML.

<spring:beans	xmlns="http://www.citrusframework.org/schema/testcase"
								xmlns:spring="http://www.springframework.org/schema/beans"
								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
								xmlns:jms="http://www.citrusframework.org/schema/jms/testcase"
								xsi:schemaLocation="
								http://www.springframework.org/schema/beans
								http://www.springframework.org/schema/beans/spring-beans.xsd
								http://www.citrusframework.org/schema/testcase
								http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd
								http://www.citrusframework.org/schema/jms/testcase
								http://www.citrusframework.org/schema/jms/testcase/citrus-jms-testcase.xsd">

				[...]

</beans>

Now	we	are	ready	to	use	the	JMS	features	in	our	test	case	in	order	to	purge	some	JMS
queues.	This	can	be	done	with	following	action	definition:

XML	DSL

Citrus	Reference	Guide

166Purge-jms

<testcase	name="purgeTest">
		<actions>
						<jms:purge-jms-queues>
										<jms:queue	name="Some.JMS.QUEUE.Name"/>
										<jms:queue	name="Another.JMS.QUEUE.Name"/>
										<jms:queue	name="My.JMS.QUEUE.Name"/>
						</jms:purge-jms-queues>

						<jms:purge-jms-queues	connection-factory="connectionFactory">
										<jms:queue	name="Some.JMS.QUEUE.Name"/>
										<jms:queue	name="Another.JMS.QUEUE.Name"/>
										<jms:queue	name="My.JMS.QUEUE.Name"/>
						</jms:purge-jms-queues>
		</actions>
</testcase>

Notice	that	we	have	referenced	the	jms	namespace	when	using	the	purge-jms-queues
test	action.

Java	DSL	designer

@Autowired
@Qualifier("connectionFactory")
private	ConnectionFactory	connectionFactory;

@CitrusTest
public	void	purgeTest()	{
				purgeQueues()
								.queue("Some.JMS.QUEUE.Name")
								.queue("Another.JMS.QUEUE.Name");

				purgeQueues(connectionFactory)
								.timeout(150L)	//	custom	timeout	in	ms
								.queue("Some.JMS.QUEUE.Name")
								.queue("Another.JMS.QUEUE.Name");
}

Java	DSL	runner

Citrus	Reference	Guide

167Purge-jms

@Autowired
@Qualifier("connectionFactory")
private	ConnectionFactory	connectionFactory;

@CitrusTest
public	void	purgeTest()	{
				purgeQueues(action	->
								action.queue("Some.JMS.QUEUE.Name")
												.queue("Another.JMS.QUEUE.Name"));

				purgeQueues(action	->	action.connectionFactory(connectionFactory)
												.timeout(150L)	//	custom	timeout	in	ms
												.queue("Some.JMS.QUEUE.Name")
												.queue("Another.JMS.QUEUE.Name"));
}

Purging	the	JMS	queues	in	every	test	case	is	quite	exhausting	because	every	test	case
needs	to	define	a	purging	action	at	the	very	beginning	of	the	test.	Fortunately	the	test
suite	definition	offers	tasks	to	run	before,	between	and	after	the	test	cases	which	should
ease	up	this	tasks	a	lot.	The	test	suite	offers	a	very	simple	way	to	purge	the	destinations
between	the	tests.	Seetestsuite-before-testfor	more	information	about	this.

As	you	can	see	in	the	next	example	it	is	quite	easy	to	specify	a	group	of	destinations	in
the	Spring	configuration	that	get	purged	before	a	test	is	executed.

<citrus:before-test	id="purgeBeforeTest">
				<citrus:actions>
								<jms:purge-jms-queues>
												<jms:queue	name="Some.JMS.QUEUE.Name"/>
												<jms:queue	name="Another.JMS.QUEUE.Name"/>
								</jms:purge-jms-queues>
				</citrus:actions>
</citrus:before-test>

Note	Please	keep	in	mind	that	the	JMS	related	configuration	components	in	Citrus
belong	to	a	separate	XML	namespace	jms:	.	We	have	to	add	this	namespace
declaration	to	each	test	case	XML	and	Spring	bean	XML	configuration	file	as	described
at	the	very	beginning	of	this	section.

The	syntax	for	purging	the	destinations	is	the	same	as	we	used	it	inside	the	test	case.
So	now	we	are	able	to	purge	JMS	destinations	with	given	destination	names.	But
sometimes	we	do	not	want	to	rely	on	queue	or	topic	names	as	we	retrieve	destinations
over	JNDI	for	instance.	We	can	deal	with	destinations	coming	from	JNDI	lookup	like
follows:

Citrus	Reference	Guide

168Purge-jms

<jee:jndi-lookup	id="jmsQueueHelloRequestIn"	jndi-name="jms/jmsQueueHelloRequestIn"/>
<jee:jndi-lookup	id="jmsQueueHelloResponseOut"	jndi-name="jms/jmsQueueHelloResponseOut"/>

<citrus:before-test	id="purgeBeforeTest">
				<citrus:actions>
								<jms:purge-jms-queues>
												<jms:queue	ref="jmsQueueHelloRequestIn"/>
												<jms:queue	ref="jmsQueueHelloResponseOut"/>
								</jms:purge-jms-queues>
				</citrus:actions>
</citrus:before-test>

We	just	use	the	attribute	'ref'	instead	of	'name'	and	Citrus	is	looking	for	a	bean
reference	for	that	identifier	that	resolves	to	a	JMS	destination.	You	can	use	the	JNDI
bean	references	inside	a	test	case,	too.

XML	DSL

<testcase	name="purgeTest">
		<actions>
						<jms:purge-jms-queues>
										<jms:queue	ref="jmsQueueHelloRequestIn"/>
										<jms:queue	ref="jmsQueueHelloResponseOut"/>
						</jms:purge-jms-queues>
		</actions>
</testcase>

Of	course	you	can	use	queue	object	references	also	in	Java	DSL	test	cases.	Here	we
easily	can	use	Spring's	dependency	injection	with	autowiring	to	get	the	object	references
from	the	IoC	container.

Java	DSL	designer

Citrus	Reference	Guide

169Purge-jms

@Autowired
@Qualifier("jmsQueueHelloRequestIn")
private	Queue	jmsQueueHelloRequestIn;

@Autowired
@Qualifier("jmsQueueHelloResponseOut")
private	Queue	jmsQueueHelloResponseOut;

@CitrusTest
public	void	purgeTest()	{
				purgeQueues()
								.queue(jmsQueueHelloRequestIn)
								.queue(jmsQueueHelloResponseOut);
}

Java	DSL	runner

@Autowired
@Qualifier("jmsQueueHelloRequestIn")
private	Queue	jmsQueueHelloRequestIn;

@Autowired
@Qualifier("jmsQueueHelloResponseOut")
private	Queue	jmsQueueHelloResponseOut;

@CitrusTest
public	void	purgeTest()	{
				purgeQueues(action	->
								action.queue(jmsQueueHelloRequestIn)
												.queue(jmsQueueHelloResponseOut));
}

Note	You	can	mix	queue	name	and	queue	object	references	as	you	like	within	one
single	purge	queue	test	action.

Citrus	Reference	Guide

170Purge-jms

Purging	message	channels

Message	channels	define	central	messaging	destinations	in	Citrus.	These	are	namely	in
memory	message	queues	holding	messages	for	test	cases.	These	messages	may
become	obsolete	during	a	test	run,	especially	when	test	cases	fail	and	stop	in	their
message	consumption.	Purging	these	message	channel	destinations	is	essential	in
these	scenarios	in	order	to	not	influence	upcoming	test	cases.	Each	test	case	should
only	receive	those	messages	that	actually	refer	to	the	test	model.	Therefore	it	is	a	good
idea	to	purge	all	message	channel	destinations	between	the	test	cases.	Obsolete
messages	that	get	stuck	in	a	message	channel	destination	for	some	reason	are	then
removed	so	that	upcoming	test	case	are	not	broken.

Following	action	definition	purges	all	messages	from	a	list	of	message	channels:

XML	DSL

<testcase	name="purgeChannelTest">
		<actions>
						<purge-channel>
										<channel	name="someChannelName"/>
										<channel	name="anotherChannelName"/>
						</purge-channel>

						<purge-channel>
										<channel	ref="someChannel"/>
										<channel	ref="anotherChannel"/>
						</purge-channel>
		</actions>
</testcase>

As	you	can	see	the	test	action	supports	channel	names	as	well	as	channel	references	to
Spring	bean	instances.	When	using	channel	references	you	refer	to	the	Spring	bean	id
or	name	in	your	application	context.

The	Java	DSL	works	quite	similar	as	you	can	read	from	next	examples:

Java	DSL	designer

Citrus	Reference	Guide

171Purge-channels

@Autowired
@Qualifier("channelResolver")
private	DestinationResolver<MessageChannel>	channelResolver;

@CitrusTest
public	void	purgeTest()	{
				purgeChannels()
								.channelResolver(channelResolver)
								.channelNames("ch1",	"ch2",	"ch3")
								.channel("ch4");
}

Java	DSL	runner

@Autowired
@Qualifier("channelResolver")
private	DestinationResolver<MessageChannel>	channelResolver;

@CitrusTest
public	void	purgeTest()	{
				purgeChannels(action	->
								action.channelResolver(channelResolver)
																.channelNames("ch1",	"ch2",	"ch3")
																.channel("ch4"));
}

The	channel	resolver	reference	is	optional.	By	default	Citrus	will	automatically	use	a
Spring	application	context	channel	resolver	so	you	just	have	to	use	the	respective	Spring
bean	names	that	are	configured	in	the	Spring	application	context.	However	setting	a
custom	channel	resolver	may	be	adequate	for	you	in	some	special	cases.

While	speaking	of	Spring	application	context	bean	references	the	next	example	uses
such	bean	references	for	channels	to	purge.

Java	DSL	designer

Citrus	Reference	Guide

172Purge-channels

@Autowired
@Qualifier("channel1")
private	MessageChannel	channel1;

@Autowired
@Qualifier("channel2")
private	MessageChannel	channel2;

@Autowired
@Qualifier("channel3")
private	MessageChannel	channel3;

@CitrusTest
public	void	purgeTest()	{
				purgeChannels()
								.channels(channel1,	channel2)
								.channel(channel3);
}

Java	DSL	runner

@Autowired
@Qualifier("channel1")
private	MessageChannel	channel1;

@Autowired
@Qualifier("channel2")
private	MessageChannel	channel2;

@Autowired
@Qualifier("channel3")
private	MessageChannel	channel3;

@CitrusTest
public	void	purgeTest()	{
				purgeChannels(action	->
								action.channels(channel1,	channel2)
																.channel(channel3));
}

Message	selectors	enable	you	to	selectively	remove	messages	from	the	destination.	All
messages	that	pass	the	message	selection	logic	get	deleted	the	other	messages	will
remain	unchanged	inside	the	channel	destination.	The	message	selector	is	a	Spring
bean	that	implements	a	special	message	selector	interface.	A	possible	implementation
could	be	a	selector	deleting	all	messages	that	are	older	than	five	seconds:

Citrus	Reference	Guide

173Purge-channels

import	org.springframework.messaging.Message;
import	org.springframework.integration.core.MessageSelector;

public	class	TimeBasedMessageSelector	implements	MessageSelector	{

				public	boolean	accept(Message<?>	message)	{
								if	(System.currentTimeMillis()	-	message.getHeaders().getTimestamp()	>	5000)	{
												return	false;
								}	else	{
												return	true;
								}
				}

}

Note	The	message	selector	returns	false	for	those	messages	that	should	be	deleted
from	the	channel!

You	simply	define	the	message	selector	as	a	new	Spring	bean	in	the	Citrus	application
context	and	reference	it	in	your	test	action	property.

<bean	id="specialMessageSelector"	
				class="com.consol.citrus.special.TimeBasedMessageSelector"/>

Now	let	us	have	a	look	at	how	you	reference	the	selector	in	your	test	case:

XML	DSL

<purge-channels	message-selector="specialMessageSelector">
		<channel	name="someChannelName"/>
		<channel	name="anotherChannelName"/>
</purge-channels>

Java	DSL	designer

Citrus	Reference	Guide

174Purge-channels

@Autowired
@Qualifier("specialMessageSelector")
private	MessageSelector	specialMessageSelector;

@CitrusTest
public	void	purgeTest()	{
				purgeChannels()
								.channelNames("ch1",	"ch2",	"ch3")
								.selector(specialMessageSelector);
}

Java	DSL	runner

@Autowired
@Qualifier("specialMessageSelector")
private	MessageSelector	specialMessageSelector;

@CitrusTest
public	void	purgeTest()	{
				purgeChannels(action	->
								action.channelNames("ch1",	"ch2",	"ch3")
																.selector(specialMessageSelector));
}

In	the	examples	above	we	use	a	message	selector	implementation	that	gets	injected	via
Spring	IoC	container.

Purging	channels	in	each	test	case	every	time	is	quite	exhausting	because	every	test
case	needs	to	define	a	purging	action	at	the	very	beginning	of	the	test.	A	more	straight
forward	approach	would	be	to	introduce	some	purging	action	which	is	automatically
executed	before	each	test.	Fortunately	the	Citrus	test	suite	offers	a	very	simple	way	to
do	this.	It	is	described	intestsuite-before-test.

When	using	the	special	action	sequence	before	test	cases	we	are	able	to	purge	channel
destinations	every	time	a	test	case	executes.	See	the	upcoming	example	to	find	out	how
the	action	is	defined	in	the	Spring	configuration	application	context.

Citrus	Reference	Guide

175Purge-channels

<citrus:before-test	id="purgeBeforeTest">
				<citrus:actions>
								<purge-channel>
												<channel	name="fooChannel"/>
												<channel	name="barChannel"/>
								</purge-channel>
				</citrus:actions>
</citrus:before-test>

Just	use	this	before-test	bean	in	the	Spring	bean	application	context	and	the	purge
channel	action	is	active.	Obsolete	messages	that	are	waiting	on	the	message	channels
for	consumption	are	purged	before	the	next	test	in	line	is	executed.

Tip	Purging	message	channels	becomes	also	very	interesting	when	working	with	server
instances	in	Citrus.	Each	server	component	automatically	has	an	inbound	message
channel	where	incoming	messages	are	stored	to	internally.	So	if	you	need	to	clean	up	a
server	that	has	already	stored	some	incoming	messages	you	can	do	this	easily	by
purging	the	internal	message	channel.	The	message	channel	follows	a	naming
convention	{serverName}.inbound	where	{serverName}	is	the	Spring	bean	name	of
the	Citrus	server	endpoint	component.	If	you	purge	this	internal	channel	in	a	before	test
nature	you	are	sure	that	obsolete	messages	on	a	server	instance	get	purged	before
each	test	is	executed.

Citrus	Reference	Guide

176Purge-channels

Purging	endpoints

Citrus	works	with	message	endpoints	when	sending	and	receiving	messages.	In	general
endpoints	can	also	queue	messages.	This	is	especially	the	case	when	using	JMS
message	endpoints	or	any	server	endpoint	component	in	Citrus.	These	are	in	memory
message	queues	holding	messages	for	test	cases.	These	messages	may	become
obsolete	during	a	test	run,	especially	when	a	test	case	that	would	consume	the
messages	fails.	Deleting	all	messages	from	a	message	endpoint	is	therefore	a	useful
task	and	is	essential	in	such	scenarios	so	that	upcoming	test	cases	are	not	influenced.
Each	test	case	should	only	receive	those	messages	that	actually	refer	to	the	test	model.
Therefore	it	is	a	good	idea	to	purge	all	message	endpoint	destinations	between	the	test
cases.	Obsolete	messages	that	get	stuck	in	a	message	endpoint	destination	for	some
reason	are	then	removed	so	that	upcoming	test	case	are	not	broken.

Following	action	definition	purges	all	messages	from	a	list	of	message	endpoints:

XML	DSL

<testcase	name="purgeEndpointTest">
		<actions>
						<purge-endpoint>
										<endpoint	name="someEndpointName"/>
										<endpoint	name="anotherEndpointName"/>
						</purge-endpoint>

						<purge-endpoint>
										<endpoint	ref="someEndpoint"/>
										<endpoint	ref="anotherEndpoint"/>
						</purge-endpoint>
		</actions>
</testcase>

As	you	can	see	the	test	action	supports	endpoint	names	as	well	as	endpoint	references
to	Spring	bean	instances.	When	using	endpoint	references	you	refer	to	the	Spring	bean
name	in	your	application	context.

The	Java	DSL	works	quite	similar	-	have	a	look:

Java	DSL	designer

Citrus	Reference	Guide

177Purge-endpoints

@Autowired
@CitrusTest
public	void	purgeTest()	{
				purgeEndpoints()
								.endpointNames("endpoint1",	"endpoint2",	"endpoint3")
								.endpoint("endpoint4");
}

Java	DSL	runner

@Autowired
@CitrusTest
public	void	purgeTest()	{
				purgeEndpoints(action	->
								action.endpointNames("endpoint1",	"endpoint2",	"endpoint3")
																.endpoint("endpoint4"));
}

When	using	the	Java	DSL	we	can	inject	endpoint	objects	with	Spring	bean	container
IoC.	The	next	example	uses	such	bean	references	for	endpoints	in	a	purge	action.

Java	DSL	designer

@Autowired
@Qualifier("endpoint1")
private	Endpoint	endpoint1;

@Autowired
@Qualifier("endpoint2")
private	Endpoint	endpoint2;

@Autowired
@Qualifier("endpoint3")
private	Endpoint	endpoint3;

@CitrusTest
public	void	purgeTest()	{
				purgeEndpoints()
								.endpoints(endpoint1,	endpoint2)
								.endpoint(endpoint3);
}

Java	DSL	runner

Citrus	Reference	Guide

178Purge-endpoints

@Autowired
@Qualifier("endpoint1")
private	Endpoint	endpoint1;

@Autowired
@Qualifier("endpoint2")
private	Endpoint	endpoint2;

@Autowired
@Qualifier("endpoint3")
private	Endpoint	endpoint3;

@CitrusTest
public	void	purgeTest()	{
				purgeEndpoints(action	->
								action.endpoints(endpoint1,	endpoint2)
																.endpoint(endpoint3));
}

Message	selectors	enable	you	to	selectively	remove	messages	from	an	endpoint.	All
messages	that	meet	the	message	selector	condition	get	deleted	and	the	other
messages	remain	inside	the	endpoint	destination.	The	message	selector	is	either	a
normal	String	name-value	representation	or	a	map	of	key	value	pairs:

XML	DSL

<purge-endpoints>
		<selector>
				<value>operation	=	'sayHello'</value>
		</selector>
		<endpoint	name="someEndpointName"/>
		<endpoint	name="anotherEndpointName"/>
</purge-endpoints>

Java	DSL	designer

@CitrusTest
public	void	purgeTest()	{
				purgeEndpoints()
								.endpointNames("endpoint1",	"endpoint2",	"endpoint3")
								.selector("operation	=	'sayHello'");
}

Java	DSL	runner

Citrus	Reference	Guide

179Purge-endpoints

@CitrusTest
public	void	purgeTest()	{
				purgeEndpoints(action	->
								action.endpointNames("endpoint1",	"endpoint2",	"endpoint3")
																.selector("operation	=	'sayHello'"));
}

In	the	examples	above	we	use	a	String	to	represent	the	message	selector	expression.	In
general	the	message	selector	operates	on	the	message	header.	So	following	on	from
that	we	remove	all	messages	selectively	that	have	a	message	header	operation	with	its
value	sayHello	.

Purging	endpoints	in	each	test	case	every	time	is	quite	exhausting	because	every	test
case	needs	to	define	a	purging	action	at	the	very	beginning	of	the	test.	A	more	straight
forward	approach	would	be	to	introduce	some	purging	action	which	is	automatically
executed	before	each	test.	Fortunately	the	Citrus	test	suite	offers	a	very	simple	way	to
do	this.	It	is	described	intestsuite-before-test.

When	using	the	special	action	sequence	before	test	cases	we	are	able	to	purge
endpoint	destinations	every	time	a	test	case	executes.	See	the	upcoming	example	to
find	out	how	the	action	is	defined	in	the	Spring	configuration	application	context.

<citrus:before-test	id="purgeBeforeTest">
				<citrus:actions>
								<purge-endpoint>
												<endpoint	name="fooEndpoint"/>
												<endpoint	name="barEndpoint"/>
								</purge-endpoint>
				</citrus:actions>
</citrus:before-test>

Just	use	this	before-test	bean	in	the	Spring	bean	application	context	and	the	purge
endpoint	action	is	active.	Obsolete	messages	that	are	waiting	on	the	message	endpoints
for	consumption	are	purged	before	the	next	test	in	line	is	executed.

Tip	Purging	message	endpoints	becomes	also	very	interesting	when	working	with	server
instances	in	Citrus.	Each	server	component	automatically	has	an	inbound	message
endpoint	where	incoming	messages	are	stored	to	internally.	Citrus	will	automatically	use
this	incoming	message	endpoint	as	target	for	the	purge	action	so	you	can	just	use	the
server	instance	as	you	know	it	from	your	configuration	in	any	purge	action.

Citrus	Reference	Guide

180Purge-endpoints

Citrus	Reference	Guide

181Purge-endpoints

Assert	failure

Citrus	test	actions	fail	with	Java	exceptions	and	error	messages.	This	gives	you	the
opportunity	to	expect	an	action	to	fail	during	test	execution.	You	can	simple	assert	a
Java	exception	to	be	thrown	during	execution.	See	the	example	for	an	assert	action
definition	in	a	test	case:

XML	DSL

<testcase	name="assertFailureTest">
				<actions>
								<assert	exception="com.consol.citrus.exceptions.CitrusRuntimeException"
																			message="Unknown	variable	${date}">
												<when>
																<echo>
																				<message>Current	date	is:	${date}</message>
																</echo>
												</when>
								</assert>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	assertTest()	{
				assertException().exception(com.consol.citrus.exceptions.CitrusRuntimeException.class)
																					.message("Unknown	variable	${date}")
																.when(echo("Current	date	is:	${date}"));
}

Note	Note	that	the	assert	action	requires	an	exception.	In	case	no	exception	is	thrown
by	the	embedded	test	action	the	assertion	and	the	test	case	will	fail!

The	assert	action	always	wraps	a	single	test	action,	which	is	then	monitored	for	failure.
In	case	the	nested	test	action	fails	with	error	you	can	validate	the	error	in	its	type	and
error	message	(optional).	The	failure	has	to	fit	the	expected	one	exactly	otherwise	the
assertion	fails	itself.

Important	Important	to	notice	is	the	fact	that	asserted	exceptions	do	not	cause	failure	of
the	test	case.	As	you	except	the	failure	to	happen	the	test	continues	with	its	work	once
the	assertion	is	done	successfully.

Citrus	Reference	Guide

182Assert

Citrus	Reference	Guide

183Assert

Catch	exceptions

In	the	previous	chapter	we	have	seen	how	to	expect	failures	in	Citrus	with	assert	action.
Now	the	assert	action	is	designed	for	single	actions	to	be	monitored	and	for	failures	to
be	expected	in	any	case.	The	'catch'	action	in	contrary	can	hold	several	nested	test
actions	and	exception	failure	is	optional.

The	nested	actions	are	error	proof	for	the	chosen	exception	type.	This	means	possible
exceptions	are	caught	and	ignored	-	the	test	case	will	not	fail	for	this	exception	type.	But
only	for	this	particular	exception	type!	Other	exception	types	that	occur	during	execution
do	cause	the	test	to	fail	as	usual.

XML	DSL

<testcase	name="catchExceptionTest">
				<actions>
								<catch	exception="com.consol.citrus.exceptions.CitrusRuntimeException">
												<echo>
																<message>Current	date	is:	${date}</message>
												</echo>
								</catch>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	catchTest()	{
				catchException().exception(CitrusRuntimeException.class)
																				.when(echo("Current	date	is:	${date}"));
}

Important	Note	that	there	is	no	validation	available	in	a	catch	block.	So	catching
exceptions	is	just	to	make	a	test	more	stable	towards	errors	that	can	occur.	The	caught
exception	does	not	cause	any	failure	in	the	test.	The	test	case	may	continue	with
execution	as	if	there	was	not	failure.	Also	notice	that	the	catch	action	is	also	happy	when
no	exception	at	all	is	raised.	In	contrary	to	that	the	assert	action	requires	the	exception
and	an	assert	action	is	failing	in	positive	processing.

Catching	exceptions	like	this	may	only	fit	to	very	error	prone	action	blocks	where	failures
do	not	harm	the	test	case	success.	Otherwise	a	failure	in	a	test	action	should	always
reflect	to	the	whole	test	case	to	fail	with	errors.

Citrus	Reference	Guide

184Catch

Note	Java	developers	might	ask	why	not	use	try-catch	Java	block	instead?	The	answer
is	simple	yet	very	important	to	understand.	The	test	method	is	called	by	the	Java	DSL
test	case	builder	for	building	the	Citrus	test.	This	can	be	referred	to	as	the	design	time	of
the	test.	After	the	building	test	method	was	processed	the	test	gets	executed,	which	can
be	called	the	runtime	of	the	test.	This	means	that	a	try-catch	block	within	the	design	time
method	will	never	perform	during	the	test	run.	The	only	reliable	way	to	add	the	catch
capability	to	the	test	as	part	of	the	test	case	runtime	is	to	use	the	Citrus	test	action	which
gets	executed	during	test	runtime.

Citrus	Reference	Guide

185Catch

Running	Apache	Ant	build	targets

The	action	loads	a	build.xml	Ant	file	and	executes	one	or	more	targets	in	the	Ant	project.
The	target	is	executed	with	optional	build	properties	passed	to	the	Ant	run.	The	Ant	build
output	is	logged	with	Citrus	logger	and	the	test	case	success	is	bound	to	the	Ant	build
success.	This	means	in	case	the	Ant	build	fails	for	some	reason	the	test	case	will	also
fail	with	build	exception	accordingly.

See	this	basic	Ant	run	example	to	see	how	it	works	within	your	test	case:

XML	DSL

<testcase	name="AntRunTest">
				<variables>
								<variable	name="today"	value="citrus:currentDate()"/>
				</variables>
				<actions>
								<ant	build-file="classpath:com/consol/citrus/actions/build.xml">
												<execute	target="sayHello"/>
												<properties>
																<property	name="date"	value="${today}"/>
																<property	name="welcomeText"	value="Hello!"/>
												</properties>
								</ant>
				</actions>
</testcase>

Java	DSL	designer

@CitrusTest
public	void	antRunTest()	{
				variable("today",	"citrus:currentDate()");

				antrun("classpath:com/consol/citrus/actions/build.xml")
								.target("sayHello")
								.property("date",	"${today}")
								.property("welcomeText",	"$Hello!");
}

Java	DSL	runner

Citrus	Reference	Guide

186Antrun

@CitrusTest
public	void	antRunTest()	{
				variable("today",	"citrus:currentDate()");

				antrun(action	->	action.buildFilePath("classpath:com/consol/citrus/actions/build.xml")
																.target("sayHello")
																.property("date",	"${today}")
																.property("welcomeText",	"$Hello!"));
}

The	respective	build.xml	Ant	file	must	provide	the	target	to	call.	For	example:

<project	name="citrus-build"	default="sayHello">
				<property	name="welcomeText"	value="Welcome	to	Citrus!"></property>

				<target	name="sayHello">
								<echo	message="${welcomeText}	-	Today	is	${date}"></echo>
				</target>

				<target	name="sayGoodbye">
								<echo	message="Goodbye	everybody!"></echo>
				</target>
</project>

As	you	can	see	you	can	pass	custom	build	properties	to	the	Ant	build	execution.	Existing
Ant	build	properties	are	replaced	and	you	can	use	the	properties	in	your	build	file	as
usual.

You	can	also	call	multiple	targets	within	one	single	build	run	by	using	a	comma
separated	list	of	target	names:

XML	DSL

<testcase	name="AntRunTest">
				<variables>
								<variable	name="today"	value="citrus:currentDate()"/>
				</variables>
				<actions>
								<ant	build-file="classpath:com/consol/citrus/actions/build.xml">
												<execute	targets="sayHello,sayGoodbye"/>
												<properties>
																<property	name="date"	value="${today}"/>
												</properties>
								</ant>
				</actions>
</testcase>

Citrus	Reference	Guide

187Antrun

Java	DSL	designer

@CitrusTest
public	void	antRunTest()	{
				variable("today",	"citrus:currentDate()");

				antrun("classpath:com/consol/citrus/actions/build.xml")
								.targets("sayHello",	"sayGoodbye")
								.property("date",	"${today}");
}

Java	DSL	runner

@CitrusTest
public	void	antRunTest()	{
				variable("today",	"citrus:currentDate()");

				antrun(action	->	action.buildFilePath("classpath:com/consol/citrus/actions/build.xml")
																.targets("sayHello",	"sayGoodbye")
																.property("date",	"${today}"));
}

The	build	properties	can	live	in	external	file	resource	as	an	alternative	to	the	inline
property	definitions.	You	just	have	to	use	the	respective	file	resource	path	and	all	nested
properties	get	loaded	as	build	properties.

In	addition	to	that	you	can	also	define	a	custom	build	listener.	The	build	listener	must
implement	the	Ant	API	interface	org.apache.tools.ant.BuildListener	.	During	the	Ant
build	run	the	build	listener	is	called	with	several	callback	methods	(e.g.	buildStarted(),
buildFinished(),	targetStarted(),	targetFinished(),	...).	This	is	how	you	can	add	additional
logic	to	the	Ant	build	run	from	Citrus.	A	custom	build	listener	could	manage	the	fail	state
of	your	test	case,	in	particular	by	raising	some	exception	forcing	the	test	case	to	fail
accordingly.

XML	DSL

Citrus	Reference	Guide

188Antrun

<testcase	name="AntRunTest">
				<actions>
								<ant	build-file="classpath:com/consol/citrus/actions/build.xml"	
																build-listener="customBuildListener">
												<execute	target="sayHello"/>
												<properties	file="classpath:com/consol/citrus/actions/build.properties"/>
								</ant>
				</actions>
</testcase>

Java	DSL	designer

@Autowired
private	BuildListener	customBuildListener;

@CitrusTest
public	void	antRunTest()	{
				antrun("classpath:com/consol/citrus/actions/build.xml")
								.target("sayHello")
								.propertyFile("classpath:com/consol/citrus/actions/build.properties")
								.listener(customBuildListener);
}

Java	DSL	runner

@Autowired
private	BuildListener	customBuildListener;

@CitrusTest
public	void	antRunTest()	{
				antrun(action	->	action.buildFilePath("classpath:com/consol/citrus/actions/build.xml")
												.target("sayHello")
												.propertyFile("classpath:com/consol/citrus/actions/build.properties")
												.listener(customBuildListener));
}

The	customBuildListener	used	in	the	example	above	should	reference	a	Spring	bean
in	the	Citrus	application	context.	The	bean	implements	the	interface
org.apache.tools.ant.BuildListener	and	controls	the	Ant	build	run.

Citrus	Reference	Guide

189Antrun

Start/Stop	server	instances

Citrus	is	working	with	server	components	that	are	started	and	stopped	within	a	test	run.
This	can	be	a	Http	server	or	some	SMTP	mail	server	for	instance.	Usually	the	Citrus
server	components	are	automatically	started	when	Citrus	is	starting	and	respectively
stopped	when	Citrus	is	shutting	down.	Sometimes	it	might	be	helpful	to	explicitly	start
and	stop	a	server	instance	within	your	test	case.	Here	you	can	use	special	start	and	stop
test	actions	inside	your	test.	This	is	a	good	way	to	test	downtime	scenarios	of	interface
partners	with	respective	error	handling	when	connections	to	servers	are	lost

Let	me	explain	with	a	simple	sample	test	case:

XML	DSL

<testcase	name="sleepTest">
				<actions>
								<start	server="myMailServer"/>

								<sleep/>

								<stop	server="myMailServer"/>
				</actions>
</testcase>

The	start	and	stop	server	test	action	receive	a	server	name	which	references	a	Spring
bean	component	of	type	com.consol.citrus.server.Server	in	your	basic	Spring
application	context.	The	server	instance	is	started	or	stopped	within	the	test	case.	As
you	can	see	in	the	next	listing	we	can	also	start	and	stop	multiple	server	instances	within
a	single	test	action.

Citrus	Reference	Guide

190Manage-server

<testcase	name="sleepTest">
				<actions>
								<start>
												<servers>
																<server	name="myMailServer"/>
																<server	name="myFtpServer"/>
												</servers>
								</start>

								<sleep/>

								<stop>
												<servers>
																<server	name="myMailServer"/>
																<server	name="myFtpServer"/>
												</servers>
								</stop>
				</actions>
</testcase>

When	using	the	Java	DSL	the	best	way	to	reference	a	server	instance	is	to	autowire	the
Spring	bean	via	dependency	injection.	The	Spring	framework	takes	case	on	injecting	the
proper	Spring	bean	component	defined	in	the	SPring	application	context.	This	way	you
can	easily	start	and	stop	server	instances	within	Java	DSL	test	cases.

Java	DSL	designer	and	runner

@Autowired
@Qualifier("myFtpServer")
private	FtpServer	myFtpServer;

@CitrusTest
public	void	startStopServerTest()	{
				start(myFtpServer);

				sleep();

				stop(myFtpServer);
}

Note	Starting	and	stopping	server	instances	is	a	synchronous	test	action.	This	means
that	your	test	case	is	waiting	for	the	server	to	start	before	other	test	actions	take	place.
Startup	times	and	shut	down	of	server	instances	may	delay	your	test	accordingly.

Citrus	Reference	Guide

191Manage-server

As	you	can	see	starting	and	stopping	Citrus	server	instances	is	very	easy.	You	can	also
write	your	own	server	implementations	by	implementing	the	interface
com.consol.citrus.server.Server	.	All	custom	server	implementations	can	then	be
started	and	stopped	during	a	test	case.

Citrus	Reference	Guide

192Manage-server

Including	custom	test	actions

Now	we	have	a	look	at	the	opportunity	to	add	custom	test	actions	to	the	test	case	flow.
Let	us	start	this	section	with	an	example:

XML	DSL

<testcase	name="ActionReferenceTest">
				<actions>
								<action	reference="cleanUpDatabase"/>
								<action	reference="mySpecialAction"/>
				</actions>
</testcase>

The	generic	element	references	Spring	beans	that	implement	the	Java	interface
com.consol.citrus.TestAction	.	This	is	a	very	fast	way	to	add	your	own	action
implementations	to	a	Citrus	test	case.	This	way	you	can	easily	implement	your	own
actions	in	Java	and	include	them	into	the	test	case.

In	the	example	above	the	called	actions	are	special	database	cleanup	implementations.
The	actions	are	defined	as	Spring	beans	in	the	Citrus	configuration	and	get	referenced
by	their	bean	name	or	id.

<bean	id="cleanUpDatabase"	class="my.domain.citrus.actions.SpecialDatabaseCleanupAction">
				<property	name="dataSource"	ref="testDataSource"/>
</bean>

The	Spring	application	context	holds	your	custom	bean	implementations.	You	can	set
properties	and	use	the	full	Spring	power	while	implementing	your	custom	test	action	in
Java.	Let	us	have	a	look	on	how	such	a	Java	class	may	look	like.

Citrus	Reference	Guide

193Generic-action

import	com.consol.citrus.actions.AbstractTestAction;
import	com.consol.citrus.context.TestContext;

public	class	SpecialDatabaseCleanupAction	extends	AbstractTestAction	{

				@Autowired
				private	DataSource	dataSource;

				@Override
				public	void	doExecute(TestContext	context)	{
								JdbcTemplate	jdbcTemplate	=	new	JdbcTemplate(dataSource);

								jdbcTemplate.execute("...");
				}

}

All	you	need	to	do	in	your	Java	class	is	to	implement	the	Citrus
com.consol.citrus.TestAction	interface.	The	abstract	class
com.consol.citrus.actions.AbstractTestAction	may	help	you	to	start	with	your	custom
test	action	implementation	as	it	provides	basic	method	implementations	so	you	just	have
to	implement	the	doExecute()	method.

When	using	the	Java	test	case	DSL	you	are	also	quite	comfortable	with	including	your
custom	test	actions.

Java	DSL	designer	and	runner

@Autowired
private	SpecialDatabaseCleanupAction	cleanUpDatabaseAction;

@CitrusTest
public	void	genericActionTest()	{
				echo("Now	let's	include	our	special	test	action");

				action(cleanUpDatabaseAction);

				echo("That's	it!");
}

Using	anonymous	class	implementations	is	also	possible.

Java	DSL	designer	and	runner

Citrus	Reference	Guide

194Generic-action

@CitrusTest
public	void	genericActionTest()	{
				echo("Now	let's	call	our	special	test	action	anonymously");

				action(new	AbstractTestAction()	{
								public	void	doExecute(TestContext	context)	{
												//	do	something
								}
				});

				echo("That's	it!");
}

Citrus	Reference	Guide

195Generic-action

Stop	Timer

The	action	can	be	used	for	stopping	either	a	specific	timer	(containers-timer)	or	all	timers
running	within	a	test.	This	action	is	useful	when	timers	are	started	in	the	background
(using	parallel	or	fork=true)	and	you	wish	to	stop	these	timers	at	the	end	of	the	test.
Some	examples	of	using	this	action	are	provided	below:

XML	DSL

<testcase	name="timerTest">
				<actions>
						<timer	id="forkedTimer"	fork="true">
								<sleep	milliseconds="50"	/>
						</timer>

						<timer	fork="true">
								<sleep	milliseconds="50"	/>
						</timer>

						<timer	repeatCount="5">
								<sleep	milliseconds="50"	/>
						</timer>

						<stop-timer	timerId="forkedTimer"	/>
				</actions>
				<finally>
						<stop-timer	/>
				</finally>
		</testcase>

Java	DSL	designer	and	runner

Citrus	Reference	Guide

196Stop-timer

@CitrusTest
		public	void	timerTest()	{

				timer()
						.timerId("forkedTimer")
						.fork(true)
						.actions(sleep(50L)
);

				timer()
						.fork(true)
						.actions(sleep(50L)
);

				timer()
						.repeatCount(5)
						.actions(sleep(50L));

				stopTimer("forkedTimer")

				doFinally().actions(
						stopTimer()
);
				}

In	the	above	example	3	timers	are	started,	the	first	2	in	the	background	and	the	third	in
the	test	execution	thread.	Timer	#3	has	a	repeatCount	set	to	5	so	it	will	terminate
automatically	after	5	runs.	Timer	#1	and	#2	however	have	no	repeatCount	set	so	they
will	execute	until	they	are	told	to	stop.

Timer	#1	is	stopped	explicitly	using	the	first	stopTimer	action.	Here	the	stopTimer	action
includes	the	name	of	the	timer	to	stop.	This	is	convenient	when	you	wish	to	terminate	a
specific	timer.	However	since	no	timerId	was	set	for	timer	#2,	you	can	terminate	this
(and	all	other	timers)	using	the	'stopTimer'	action	with	no	explicit	timerId	set.

Citrus	Reference	Guide

197Stop-timer

Templates
Templates	group	action	sequences	to	a	logical	unit.	You	can	think	of	templates	as
reusable	components	that	are	used	in	several	tests.	The	maintenance	is	much	more
effective	because	the	templates	are	referenced	several	times.

The	template	always	has	a	unique	name.	Inside	a	test	case	we	call	the	template	by	this
unique	name.	Have	a	look	at	a	first	example:

<template	name="doCreateVariables">
				<create-variables>
								<variable	name="var"	value="123456789"/>
				</create-variables>

				<call-template	name="doTraceVariables"/>
</template>

<template	name="doTraceVariables">
				<echo>
								<message>Current	time	is:	${time}</message>
				</echo>

				<trace-variables/>
</template>

The	code	example	above	describes	two	template	definitions.	Templates	hold	a
sequence	of	test	actions	or	call	other	templates	themselves	as	seen	in	the	example
above.

Note	The	action	calls	other	templates	by	their	name.	The	called	template	not	necessarily
has	to	be	located	in	the	same	test	case	XML	file.	The	template	might	be	defined	in	a
separate	XML	file	other	than	the	test	case	itself:

XML	DSL

Citrus	Reference	Guide

198Templates

<testcase	name="templateTest">
				<variables>
								<variable	name="myTime"	value="citrus:currentDate()"/>
				</variables>
				<actions>
								<call-template	name="doCreateVariables"/>

								<call-template	name="doTraceVariables">
												<parameter	name="time"	value="${myTime}">
								</call-template>
				</actions>
</testcase>

Java	DSL	designer

@CitrusTest
public	void	templateTest()	{
				variable("myTime",	"citrus:currentDate()");

				applyTemplate("doCreateVariables");

				applyTemplate("doTraceVariables")
								.parameter("time",	"${myTime}");
}

Java	DSL	runner

@CitrusTest
public	void	templateTest()	{
				variable("myTime",	"citrus:currentDate()");

				applyTemplate(template	->	template.name("doCreateVariables"));

				applyTemplate(template	->	template.name("doTraceVariables")
																				.parameter("time",	"${myTime}"));
}

There	is	an	open	question	when	dealing	with	templates	that	are	defined	somewhere	else
outside	the	test	case.	How	to	handle	variables?	A	templates	may	use	different	variable
names	then	the	test	and	vice	versa.	No	doubt	the	template	will	fail	as	soon	as	special
variables	with	respective	values	are	not	present.	Unknown	variables	cause	the	template
and	the	whole	test	to	fail	with	errors.

Citrus	Reference	Guide

199Templates

So	a	first	approach	would	be	to	harmonize	variable	usage	across	templates	and	test
cases,	so	that	templates	and	test	cases	do	use	the	same	variable	naming.	But	this
approach	might	lead	to	high	calibration	effort.	Therefore	templates	support	parameters
to	solve	this	problem.	When	a	template	is	called	the	calling	actor	is	able	to	set	some
parameters.	Let	us	discuss	an	example	for	this	issue.

The	template	"doDateCoversion"	in	the	next	sample	uses	the	variable	${date}.	The
calling	test	case	can	set	this	variable	as	a	parameter	without	actually	declaring	the
variable	in	the	test	itself:

<call-template	name="doDateCoversion">
				<parameter	name="date"	value="${sampleDate}">
</call-template>

The	variable	sampleDate	is	already	present	in	the	test	case	and	gets	translated	into	the
date	parameter.	Following	from	that	the	template	works	fine	although	test	and	template
do	work	on	different	variable	namings.

With	template	parameters	you	are	able	to	solve	the	calibration	effort	when	working	with
templates	and	variables.	It	is	always	a	good	idea	to	check	the	used	variables/parameters
inside	a	template	when	calling	it.	There	might	be	a	variable	that	is	not	declared	yet	inside
your	test.	So	you	need	to	define	this	value	as	a	parameter.

Template	parameters	may	contain	more	complex	values	like	XML	fragments.	The	call-
template	action	offers	following	CDATA	variation	for	defining	complex	parameter	values:

<call-template	name="printXMLPayload">
				<parameter	name="payload">
						<value>
								<![CDATA[
										<HelloRequest	xmlns="http://www.consol.de/schemas/samples/sayHello.xsd">
												<Text>Hello	South	${var}</Text>
										</HelloRequest>
]]>
						</value>
				</parameter>
</call-template>

Important	When	a	template	works	on	variable	values	and	parameters	changes	to	these
variables	will	automatically	affect	the	variables	in	the	whole	test.	So	if	you	change	a
variable's	value	inside	a	template	and	the	variable	is	defined	inside	the	test	case	the

Citrus	Reference	Guide

200Templates

changes	will	affect	the	variable	in	a	global	context.	We	have	to	be	careful	with	this	when
executing	a	template	several	times	in	a	test,	especially	in	combination	with	parallel
containers	(seecontainers-parallel).

<parallel>
				<call-template	name="print">
								<parameter	name="param1"	value="1"/>
								<parameter	name="param2"	value="Hello	Europe"/>
				</call-template>
				<call-template	name="print">
								<parameter	name="param1"	value="2"/>
								<parameter	name="param2"	value="Hello	Asia"/>
				</call-template>
				<call-template	name="print">
								<parameter	name="param1"	value="3"/>
								<parameter	name="param2"	value="Hello	Africa"/>
				</call-template>
</parallel>

In	the	listing	above	a	template	print	is	called	several	times	in	a	parallel	container.	The
parameter	values	will	be	handled	in	a	global	context,	so	it	is	quite	likely	to	happen	that
the	template	instances	influence	each	other	during	execution.	We	might	get	such	print
messages:

2.	Hello	Europe
2.	Hello	Africa
3.	Hello	Africa

Index	parameters	do	not	fit	and	the	message	'Hello	Asia'	is	completely	gone.	This	is
because	templates	overwrite	parameters	to	each	other	as	they	are	executed	in	parallel
at	the	same	time.	To	avoid	this	behavior	we	need	to	tell	the	template	that	it	should
handle	parameters	as	well	as	variables	in	a	local	context.	This	will	enforce	that	each
template	instance	is	working	on	a	dedicated	local	context.	See	the	global-context
attribute	that	is	set	to	false	in	this	example:

<template	name="print"	global-context="false">
				<echo>
								<message>${param1}.${param2}</message>
				</echo>
</template>

After	that	template	instances	won't	influence	each	other	anymore.	But	notice	that
variable	changes	inside	the	template	then	do	not	affect	the	test	case	neither.

Citrus	Reference	Guide

201Templates

Citrus	Reference	Guide

202Templates

Containers
Similar	to	templates	a	container	element	holds	one	to	many	test	actions.	In	contrast	to
the	template	the	container	appears	directly	inside	the	test	case	action	chain,	meaning
that	the	container	is	not	referenced	by	more	than	one	test	case.

Containers	execute	the	embedded	test	actions	in	specific	logic.	This	can	be	an
execution	in	iteration	for	instance.	Combine	different	containers	with	each	other	and	you
will	be	able	to	generate	very	powerful	hierarchical	structures	in	order	to	create	a	complex
execution	logic.	In	the	following	sections	some	predefined	containers	are	described.

Citrus	Reference	Guide

203Containers

Sequential

The	sequential	container	executes	the	embedded	test	actions	in	strict	sequence.
Readers	now	might	search	for	the	difference	to	the	normal	action	chain	that	is	specified
inside	the	test	case.	The	actual	power	of	sequential	containers	does	show	only	in
combination	with	other	containers	like	iterations	and	parallels.	We	will	see	this	later
when	handling	these	containers.

For	now	the	sequential	container	seems	not	very	sensational	-	one	might	say	boring	-
because	it	simply	groups	a	pair	of	test	actions	to	sequential	execution.

XML	DSL

<testcase	name="sequentialTest">
				<actions>
								<sequential>
												<trace-time/>
												<sleep/>
												<echo>
																<message>Hallo	TestFramework</message>
												</echo>
												<trace-time/>
								</sequential>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	sequentialTest()	{
				sequential()
								.actions(
												stopTime(),
												sleep(1.0),
												echo("Hello	Citrus"),
												stopTime()
);
}

Citrus	Reference	Guide

204Sequential

Conditional

Now	we	deal	with	conditional	executions	of	test	actions.	Nested	actions	inside	a
conditional	container	are	executed	only	in	case	a	booleand	expression	evaluates	to	true.
Otherwise	the	container	execution	is	not	performed	at	all.

See	some	example	to	find	out	how	it	works	with	the	conditional	expression	string.

XML	DSL

<testcase	name="conditionalTest">
				<variables>
						<variable	name="index"	value="5"/>
						<variable	name="shouldSleep"	value="true"/>
				</variables>

				<actions>
								<conditional	expression="${index}	=	5">
												<sleep	seconds="10"/>
								</conditional>

								<conditional	expression="${shouldSleep}">
												<sleep	seconds="10"/>
								</conditional>

								<conditional	expression="@assertThat('${shouldSleep}',	'anyOf(is(true),	isEmptyString())')@"
												<sleep	seconds="10"/>
								</conditional>
				</actions>
</testcase>

Java	DSL	designer	and	runner

Citrus	Reference	Guide

205Conditional

@CitrusTest
public	void	conditionalTest()	{
				variable("index",	5);
				variable("shouldSleep",	true);

				conditional().when("${index}	=	5"))
								.actions(
												sleep(10000L)
);

				conditional().when("${shouldSleep}"))
								.actions(
												sleep(10000L)
);

				conditional().when("${shouldSleep}",	anyOf(is("true"),	isEmptyString()))
								.actions(
												sleep(10000L)
);
}

The	nested	sleep	action	is	executed	in	case	the	variable	${index}	is	equal	to	the	value
'5'.	This	conditional	execution	of	test	actions	is	useful	when	dealing	with	different	test
environments	such	as	different	operating	systems	for	instance.	The	conditional	container
also	supports	expressions	that	evaluate	to	the	character	sequence	"true"	or	"false"	as
shown	in	the	${shouldSleep}	example.

The	last	conditional	container	in	the	example	above	makes	use	of	Hamcrest	matchers.
The	matcher	evaluates	to	true	of	false	and	based	on	that	the	container	actions	are
executed	or	skipped.	The	Hamcrest	matchers	are	very	powerful	when	it	comes	to
evaluation	of	multiple	conditions	at	a	time.

Citrus	Reference	Guide

206Conditional

Parallel

Parallel	containers	execute	the	embedded	test	actions	concurrent	to	each	other.	Every
action	in	this	container	will	be	executed	in	a	separate	Java	Thread.	Following	example
should	clarify	the	usage:

XML	DSL

<testcase	name="parallelTest">
				<actions>
								<parallel>
												<sleep/>

												<sequential>
																<sleep/>
																<echo>
																				<message>1</message>
																</echo>
												</sequential>

												<echo>
																<message>2</message>
												</echo>

												<echo>
																<message>3</message>
												</echo>

												<iterate	condition="i	lt=	5"	
																								index="i">
																<echo>
																				<message>10</message>
																</echo>
												</iterate>
								</parallel>
				</actions>
</testcase>

Java	DSL	designer	and	runner

Citrus	Reference	Guide

207Parallel

@CitrusTest
public	void	paralletTest()	{
				parallel().actions(
								sleep(),
								sequential().actions(
												sleep(),
												echo("1")
),
								echo("2"),
								echo("3"),
								iterate().condition("i	lt=	5").index("i"))
												.actions(
																echo("10")
)
);
}

So	the	normal	test	action	processing	would	be	to	execute	one	action	after	another.	As
the	first	action	is	a	sleep	of	five	seconds,	the	whole	test	processing	would	stop	and	wait
for	5	seconds.	Things	are	different	inside	the	parallel	container.	Here	the	descending
test	actions	will	not	wait	but	execute	at	the	same	time.

Note	Note	that	containers	can	easily	wrap	other	containers.	The	example	shows	a
simple	combination	of	sequential	and	parallel	containers	that	will	archive	a	complex
execution	logic.	Actions	inside	the	sequential	container	will	execute	one	after	another.
But	actions	in	parallel	will	be	executed	at	the	same	time.

Citrus	Reference	Guide

208Parallel

Iterate

Iterations	are	very	powerful	elements	when	describing	complex	logic.	The	container
executes	the	embedded	actions	several	times.	The	container	will	continue	with	looping
as	long	as	the	defined	breaking	condition	string	evaluates	to	true	.	In	case	the	condition
evaluates	to	false	the	iteration	will	break	an	finish	execution.

XML	DSL

<testcase	name="iterateTest">
				<actions>
								<iterate	index="i"	condition="i	lt	5">
												<echo>
																<message>index	is:	${i}</message>
												</echo>
								</iterate>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	iterateTest()	{
				iterate().condition("i	lt	5").index("i"))
								.actions(
												echo("index	is:	${i}")
);
}

The	attribute	"index"	automatically	defines	a	new	variable	that	holds	the	actual	loop
index	starting	at	"1".	This	index	variable	is	available	as	a	normal	variable	inside	the
iterate	container.	Therefore	it	is	possible	to	print	out	the	actual	loop	index	in	the	echo
action	as	shown	in	the	above	example.

The	condition	string	is	mandatory	and	describes	the	actual	end	of	the	loop.	In	iterate
containers	the	loop	will	break	in	case	the	condition	evaluates	to	false	.

The	condition	string	can	be	any	Boolean	expression	and	supports	several	operators:

lt	(lower	than)

lt=	(lower	than	equals)

gt	(greater	than)

Citrus	Reference	Guide

209Iterate

gt=	(greater	than	equals)

=	(equals)

and	(logical	combining	of	two	Boolean	values)

or	(logical	combining	of	two	Boolean	values)

()	(brackets)

Important	It	is	very	important	to	notice	that	the	condition	is	evaluated	before	the	very
first	iteration	takes	place.	The	loop	therefore	can	be	executed	0-n	times	according	to	the
condition	value.

Now	the	boolean	expression	evaluation	as	described	above	is	limited	to	very	basic
operation	such	as	lower	than,	greater	than	and	so	on.	We	also	can	use	Hamcrest
matchers	in	conditions	that	are	way	more	powerful	than	that.

XML	DSL

<testcase	name="iterateTest">
				<actions>
								<iterate	index="i"	condition="@assertThat(lessThan(5))@">
												<echo>
																<message>index	is:	${i}</message>
												</echo>
								</iterate>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	iterateTest()	{
				iterate().condition(lessThan(5)).index("i"))
								.actions(
												echo("index	is:	${i}")
);
}

In	the	example	above	we	use	Hamcrest	matchers	as	condition.	You	can	combine
Hamcrest	matchers	and	create	very	powerful	condition	evaluations	here.

Citrus	Reference	Guide

210Iterate

Citrus	Reference	Guide

211Iterate

Repeat	until	true

Quite	similar	to	the	previously	described	iterate	container	this	repeating	container	will
execute	its	actions	in	a	loop	according	to	an	ending	condition.	The	condition	describes	a
Boolean	expression	using	the	operators	as	described	in	the	previous	chapter.

Note	The	loop	continues	its	work	until	the	provided	condition	evaluates	to	true	.	It	is	very
important	to	notice	that	the	repeat	loop	will	execute	the	actions	before	evaluating	the
condition.	This	means	the	actions	get	executed	1-n	times.

XML	DSL

<testcase	name="iterateTest">
				<actions>
								<repeat-until-true	index="i"	condition="(i	=	3)	or	(i	=	5)">
												<echo>
																<message>index	is:	${i}</message>
												</echo>
								</repeat-until-true>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	repeatTest()	{
				repeat().until("(i	gt	5)	or	(i	=	3)").index("i"))
								.actions(
												echo("index	is:	${i}")
);
}

As	you	can	see	the	repeat	container	is	only	executed	when	the	iterating	condition
expression	evaluates	to	false	.	By	the	time	the	condition	is	true	execution	is
discontinued.	You	can	use	basic	logical	operators	such	as	and,	or	and	so	on.

A	more	powerful	way	is	given	by	Hamcrest	matchers	that	are	directly	supported	in
condition	expressions.

XML	DSL

Citrus	Reference	Guide

212Repeat

<testcase	name="iterateTest">
				<actions>
								<repeat-until-true	index="i"	condition="@assertThat(anyOf(is(3),	is(5))@">
												<echo>
																<message>index	is:	${i}</message>
												</echo>
								</repeat-until-true>
				</actions>
</testcase>

Java	DSL	designer	and	runner

@CitrusTest
public	void	repeatTest()	{
				repeat().until(anyOf(is(3),	is(5)).index("i"))
								.actions(
												echo("index	is:	${i}")
);
}

The	Hamcrest	matcher	usage	simplifies	the	reading	a	lot.	And	it	empowers	you	to
combine	more	complex	condition	expressions.	So	I	personally	prefer	this	syntax.

Citrus	Reference	Guide

213Repeat

Repeat	on	error	until	true

The	next	looping	container	is	called	repeat-on-error-until-true.	This	container	repeats	a
group	of	actions	in	case	one	embedded	action	failed	with	error.	In	case	of	an	error	inside
the	container	the	loop	will	try	to	execute	all	embedded	actions	again	in	order	to	seek	for
overall	success.	The	execution	continues	until	all	embedded	actions	were	processed
successfully	or	the	ending	condition	evaluates	to	true	and	the	error-loop	will	lead	to	final
failure.

XML	DSL

<testcase	name="iterateTest">
				<actions>
								<repeat-onerror-until-true	index="i"	condition="i	=	5">
												<echo>
																<message>index	is:	${i}</message>
												</echo>
												<fail/>
								</repeat-onerror-until-true>
				</actions>
</testcase>

Java	DSL	designer

@CitrusTest
public	void	repeatOnErrorTest()	{
				repeatOnError(
								echo("index	is:	${i}"),
								fail("Force	loop	to	fail!")
).until("i	=	5").index("i");
}

Java	DSL	runner

@CitrusTest
public	void	repeatOnErrorTest()	{
				repeatOnError().until("i	=	5").index("i"))
								.actions(
												echo("index	is:	${i}"),
												fail("Force	loop	to	fail!")
);
}

Citrus	Reference	Guide

214Repeat-onerror

In	the	code	example	the	error-loop	continues	four	times	as	the	action	definitely	fails	the
test.	During	the	fifth	iteration	The	condition	"i=5"	evaluates	to	true	and	the	loop	breaks	its
processing	leading	to	a	final	failure	as	the	test	actions	were	not	successful.

Note	The	overall	success	of	the	test	case	depends	on	the	error	situation	inside	the
repeat-onerror-until-true	container.	In	case	the	loop	breaks	because	of	failing	actions
and	the	loop	will	discontinue	its	work	the	whole	test	case	is	failing	too.	The	error	loop
processing	is	successful	in	case	all	embedded	actions	were	not	raising	any	errors	during
an	iteration.

The	repeat-on-error	container	also	offers	an	automatic	sleep	mechanism.	This	auto-
sleep	property	will	force	the	container	to	wait	a	given	amount	of	time	before	executing
the	next	iteration.	We	used	this	mechanism	a	lot	when	validating	database	entries.	Let's
say	we	want	to	check	the	existence	of	an	order	entry	in	the	database.	Unfortunately	the
system	under	test	is	not	very	well	performing	and	may	need	some	time	to	store	the	new
order.	This	amount	of	time	is	not	predictable,	especially	when	dealing	with	different
hardware	on	our	test	environments	(local	testing	vs.	server	testing).	Following	from	that
our	test	case	may	fail	unpredictable	only	because	of	runtime	conditions.

We	can	avoid	unstable	test	cases	that	are	based	on	these	runtime	conditions	with	the
auto-sleep	functionality.

XML	DSL

<repeat-onerror-until-true	auto-sleep="1000"	condition="i	=	5"	index="i">
				<echo>
								<sql	datasource="testDataSource">
												<statement>
														SELECT	COUNT(1)	AS	CNT_ORDERS	
														FROM	ORDERS	
														WHERE	CUSTOMER_ID='${customerId}'
												</statement>
												<validate	column="CNT_ORDERS"	value="1"/>
								</sql>
				</echo>
</repeat-onerror-until-true>

Java	DSL	designer	and	runner

Citrus	Reference	Guide

215Repeat-onerror

@CitrusTest
public	void	repeatOnErrorTest()	{
				repeatOnError().until("i	=	5").index("i").autoSleep(1000))
								.actions(
												query(action	->	action.dataSource(testDataSource)
																.statement("SELECT	COUNT(1)	AS	CNT_ORDERS	FROM	ORDERS	WHERE	CUSTOMER_ID='${customerId}'"
																.validate("CNT_ORDERS",	"1"))
);
}

We	surrounded	the	database	check	with	a	repeat-onerror	container	having	the	auto-
sleep	property	set	to	1000	milliseconds.	The	repeat	container	will	try	to	check	the
database	up	to	five	times	with	an	automatic	sleep	of	1	second	before	every	iteration.
This	gives	the	system	under	test	up	to	five	seconds	time	to	store	the	new	entry	to	the
database.	The	test	case	is	very	stable	and	just	fits	to	the	hardware	environment.	On
slow	test	environments	the	test	may	need	several	iterations	to	successfully	read	the
database	entry.	On	very	fast	environments	the	test	may	succeed	right	on	the	first	try.

Important	We	changed	auto	sleep	time	from	seconds	to	milliseconds	with	Citrus	2.0
release.	So	if	you	are	coming	from	previous	Citrus	versions	be	sure	to	now	use	proper
millisecond	values.

So	fast	environments	are	not	slowed	down	by	static	sleep	operations	and	slower
environments	are	still	able	to	execute	this	test	case	with	high	stability.

Citrus	Reference	Guide

216Repeat-onerror

Timer

Timers	are	very	useful	containers	when	you	wish	to	execute	a	collection	of	test	actions
several	times	at	regular	intervals.	The	timer	component	generates	an	event	which	in	turn
triggers	the	execution	of	the	nested	test	actions	associated	with	timer.	This	can	be	useful
in	a	number	of	test	scenarios	for	example	when	Citrus	needs	to	simulate	a	heart	beat	or
if	you	are	debugging	a	test	and	you	wist	to	query	the	contents	of	the	database,	to
mention	just	a	few.	The	following	code	sample	should	demonstrate	the	power	and
flexibility	of	timers:

XML	DSL

<testcase	name="timerTest">
						<actions>
								<timer	id="forkedTimer"	interval="100"	fork="true">
										<echo>
												<message>I'm	going	to	run	in	the	background	and	let	some	other	test	actions	run	(nested	action	run	${forkedTimer-index}	times)
										</echo>
										<sleep	milliseconds="50"	/>
								</timer>

								<timer	repeatCount="3"	interval="100"	delay="50">
										<sleep	milliseconds="50"	/>
										<echo>
												<message>I'm	going	to	repeat	this	message	3	times	before	the	next	test	actions	are	executed
										</echo>
								</timer>

								<echo>
										<message>Test	almost	complete.	Make	sure	all	timers	running	in	the	background	are	stopped
								</echo>
						</actions>
						<finally>
								<stop-timer	timerId="forkedTimer"	/>
						</finally>
				</testcase>

Java	DSL	designer	and	runner

Citrus	Reference	Guide

217Timer

@CitrusTest
public	void	timerTest()	{

				timer()
								.timerId("forkedTimer")
								.interval(100L)
								.fork(true)
								.actions(
												echo("I'm	going	to	run	in	the	background	and	let	some	other	test	actions	run	(nested	action	run	${forkedTimer-index}	times)"
												sleep(50L)
);

				timer()
								.repeatCount(3)
								.interval(100L)
								.delay(50L)
								.actions(
												sleep(50L),
												echo("I'm	going	to	repeat	this	message	3	times	before	the	next	test	actions	are	executed"
);

				echo("Test	almost	complete.	Make	sure	all	timers	running	in	the	background	are	stopped");

				doFinally().actions(
								stopTimer("forkedTimer")
);
}

In	the	above	example	the	first	timer	(timerId	=	forkedTimer)	is	started	in	the	background.
By	default	timers	are	run	in	the	current	thread	of	execution	but	to	start	it	in	the
background	just	use	"fork=true".	Every	100	milliseconds	this	timer	emits	an	event	which
will	result	in	the	nested	actions	being	executed.	The	nested	'echo'	action	outputs	the
number	of	times	this	timer	has	already	been	executed.	It	does	this	with	the	help	of	an
'index'	variable,	in	this	example	${forkedTimer-index},	which	is	named	according	to	the
timer	id	with	the	suffix	'-index'.	No	limit	is	set	on	the	number	of	times	this	timer	should
run	so	it	will	keep	on	running	until	either	a	nested	test	action	fails	or	it	is	instructed	to
stop	(more	on	this	below).

The	second	timer	is	configured	to	run	3	times	with	a	delay	of	100	milliseconds	between
each	iteration.	Using	the	attribute	'delay'	we	can	get	the	timer	pause	for	50	milliseconds
before	running	the	nested	actions	for	the	first	time.	The	timer	is	configured	to	run	in	the
current	thread	of	execution	so	the	last	test	action,	the	'echo',	has	to	wait	for	this	timer	to
complete	before	it	is	executed.

Citrus	Reference	Guide

218Timer

So	how	do	we	tell	the	forked	timer	to	stop	running?	If	we	forget	to	do	this	the	timer	will
just	execute	indefinitely.	To	help	us	out	here	we	can	use	the	'stop-timer'	action.	By
adding	this	to	the	finally	block	we	ensure	that	the	timer	will	be	stopped,	even	if	some
nested	test	action	fails.	We	could	have	easily	added	it	as	a	nested	test	action,	to	the
forkedTimer	for	example,	but	if	some	other	test	action	failed	before	the	stop-timer	was
called,	the	timer	would	never	stop.

Note	You	can	also	configure	timers	to	run	in	the	background	using	the	'parallel'
container,	rather	than	setting	the	attribute	'fork'	to	true.	Using	parallel	allows	more	fine-
grained	control	of	the	test	and	has	the	added	advantage	that	all	errors	generated	from	a
nester	timer	action	are	visible	to	the	test	executer.	If	an	error	occurs	within	the	timer	then
the	test	status	is	set	to	failed.	Using	fork=true	an	error	causes	the	timer	to	stop
executing,	but	the	test	status	is	not	influenced	by	this	error.

Citrus	Reference	Guide

219Timer

Custom	containers

In	case	you	have	a	custom	action	container	implementation	you	might	also	want	to	use	it
in	Java	DSL.	The	action	containers	are	handled	with	special	care	in	the	Java	DSL
because	they	have	nested	actions.	So	when	you	call	a	test	action	container	in	the	Java
DSL	you	always	have	something	like	this:

Java	DSL	designer	and	runner

@CitrusTest
public	void	containerTest()	{
				echo("This	echo	is	outside	of	the	action	container");

				sequential()
								.actions(
												echo("Inside"),
												echo("Inside	once	more"),
												echo("And	again:	Inside!")
);

				echo("This	echo	is	outside	of	the	action	container");
}

Now	the	three	nested	actions	are	added	to	the	action	sequential	container	rather	than
to	the	test	case	itself	although	we	are	using	the	same	action	Java	DSL	methods	as
outside	the	container.	This	mechanism	is	only	working	because	Citrus	is	handling	test
action	containers	with	special	care.

A	custom	test	action	container	implementation	could	look	like	this:

public	class	ReverseActionContainer	extends	AbstractActionContainer	{
				@Override
				public	void	doExecute(TestContext	context)	{
								for	(int	i	=	getActions().size();	i	>	0;	i--)	{
												getActions().get(i-1).execute(context);
								}
				}
}

The	container	logic	is	very	simple:	The	container	executes	the	nested	actions	in	reverse
order.	As	already	mentioned	Citrus	needs	to	take	special	care	on	all	action	containers
when	executing	a	Java	DSL	test.	This	is	why	you	should	not	execute	a	custom	test
container	implementation	on	your	own.

Citrus	Reference	Guide

220Custom

@CitrusTest
public	void	containerTest()	{
				ReverseActionContainer	reverseContainer	=	new	ReverseActionContainer();
				reverseContainer.addTestAction(new	EchoAction().setMessage("Foo"));
				reverseContainer.addTestAction(new	EchoAction().setMessage("Bar"));
				run(reverseContainer);
}

The	above	custom	container	execution	is	going	to	fail	with	internal	error	as	the	Citrus
Java	DSL	was	not	able	to	recognise	the	action	container	as	it	should	be.	Also	the
EchoAction	instance	creation	is	not	very	comfortable.	Instead	you	can	use	a	special
container	Java	DSL	syntax	also	with	your	custom	container	implementation:

@CitrusTest
public	void	containerTest()	{
				container(new	ReverseActionContainer()).actions(
								echo("Foo"),
								echo("Bar")
);
}

The	custom	container	implementation	now	works	fine	with	the	automatically	nested	echo
actions.	And	we	are	able	to	use	the	usual	Java	DSL	syntactic	sugar	for	test	actions	like
echo	.

In	a	next	step	we	add	a	custom	superclass	for	all	our	test	classes	which	provides	a
helper	method	for	the	custom	container	implementation	in	order	to	have	a	even	more
comfortable	syntax.

Java	DSL	designer	and	runner

public	class	CustomCitrusBaseTest	extends	TestNGCitrusTestDesigner	{

				public	AbstractTestContainerBuilder<ReverseActionContainer>	reverse()	{
								return	container(new	ReverseActionContainer());
				}
}

Now	all	subclasses	can	use	the	new	reverse	method	for	calling	the	custom	container
implementation.

Citrus	Reference	Guide

221Custom

@CitrusTest
public	void	containerTest()	{
				reverse().actions(
								echo("Foo"),
								echo("Bar")
);
}

Nice!	This	is	how	we	should	integrate	customized	test	action	containers	to	the	Citrus
Java	DSL.

Citrus	Reference	Guide

222Custom

Finally	section
This	chapter	deals	with	a	special	section	inside	the	test	case	that	is	executed	even	in
case	errors	did	occur	during	the	test.	Lets	say	you	have	started	a	Jetty	web	server
instance	at	the	beginning	of	the	test	case	and	you	need	to	shutdown	the	server	when	the
test	has	finished	its	work.	Or	as	a	second	example	imagine	that	you	have	prepared
some	data	inside	the	database	at	the	beginning	of	your	test	and	you	want	to	make	sure
that	the	data	is	cleaned	up	at	the	end	of	the	test	case.

In	both	situations	we	might	run	into	some	problems	when	the	test	failed.	We	face	the
problem	that	the	whole	test	case	will	terminate	immediately	in	case	of	errors.	Cleanup
tasks	at	the	end	of	the	test	action	chain	may	not	be	executed	correctly.

Dirty	states	inside	the	database	or	still	running	server	instances	then	might	cause
problems	for	following	test	cases.	To	avoid	this	problems	you	should	use	the	finally	block
of	the	test	case.	The	section	contains	actions	that	are	executed	even	in	case	the	test
fails.	Using	this	strategy	the	database	cleaning	tasks	mentioned	before	will	find
execution	in	every	case	(success	or	failure).

The	following	example	shows	how	to	use	the	finally	section	at	the	end	of	a	test:

XML	DSL

Citrus	Reference	Guide

223Finally-section

<testcase	name="finallyTest">
				<variables>
								<variable	name="orderId"	value="citrus:randomNumber(5)"/>
								<variable	name="date"	value="citrus:currentDate('dd.MM.yyyy')"/>
				</variables>
				<actions>
								<sql	datasource="testDataSource">
												<statement>
																INSERT	INTO	ORDERS	VALUES	(${orderId},	1,	1,	'${date}')
												</statement>
								</sql>

								<echo>
												<message>
																ORDER	creation	time:	${date}
												</message>
								</echo>
				</actions>
				<finally>
								<sql	datasource="testDataSource">
												<statement>
														DELETE	FROM	ORDERS	WHERE	ORDER_ID='${orderId}'
												</statement>
								</sql>
				</finally>
</testcase>

In	the	example	the	first	action	creates	an	entry	in	the	database	using	an	INSERT
statement.	To	be	sure	that	the	entry	in	the	database	is	deleted	after	the	test,	the	finally
section	contains	the	respective	DELETE	statement	that	is	always	executed	regardless
the	test	case	state	(successful	or	failed).

Of	course	you	can	also	use	the	finally	block	in	the	Java	test	case	DSL.	Find	following
example	to	see	how	it	works:

Java	DSL	designer

Citrus	Reference	Guide

224Finally-section

@CitrusTest
public	void	finallySectionTest()	{
				variable("orderId",	"citrus:randomNumber(5)");
				variable("date",	"citrus:currentDate('dd.MM.yyyy')");

				sql(dataSource)
								.statement("INSERT	INTO	ORDERS	VALUES	(${orderId},	1,	1,	'${date}')");

				echo("ORDER	creation	time:	citrus:currentDate('dd.MM.yyyy')");

				doFinally(
								sql(dataSource).statement("DELETE	FROM	ORDERS	WHERE	ORDER_ID='${orderId}'")
);
}

Java	DSL	runner

@CitrusTest
public	void	finallySectionTest()	{
				variable("orderId",	"citrus:randomNumber(5)");
				variable("date",	"citrus:currentDate('dd.MM.yyyy')");

				sql(action	->	action.dataSource(dataSource)
												.statement("INSERT	INTO	ORDERS	VALUES	(${orderId},	1,	1,	'${date}')"));

				echo("ORDER	creation	time:	citrus:currentDate('dd.MM.yyyy')");

				doFinally()
								.actions(
												sql(action	->	action.dataSource(dataSource).statement("DELETE	FROM	ORDERS	WHERE	ORDER_ID='${orderId}'"
);
}

Note	Java	developers	might	ask	why	not	use	try-finally	Java	block	instead?	The	answer
is	simple	yet	very	important	to	understand.	The	@CitrusTest	annotated	method	is	called
at	design	time	of	the	test	case.	The	method	builds	the	test	case	afterwards	the	test	is
executed	at	runtime.	This	means	that	a	try-finally	block	within	the	@CitrusTest
annotated	method	will	never	perform	during	the	test	run	but	at	design	time	before	the
test	gets	executed.	This	is	why	we	have	to	add	the	finally	section	as	part	of	the	test	case
with	doFinally()	.

Citrus	Reference	Guide

225Finally-section

JMS	support
Citrus	provides	support	for	sending	and	receiving	JMS	messages.	We	have	to	separate
between	synchronous	and	asynchronous	communication.	So	in	this	chapter	we	explain
how	to	setup	JMS	message	endpoints	for	synchronous	and	asynchronous	outbound	and
inbound	communication

Note	The	JMS	components	in	Citrus	are	kept	in	a	separate	Maven	module.	If	not
already	done	so	you	have	to	include	the	module	as	Maven	dependency	to	your	project

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-jms</artifactId>
		<version>2.6.1</version>
</dependency>

Citrus	provides	a	"citrus-jms"	configuration	namespace	and	schema	definition	for	JMS
related	components	and	features.	Include	this	namespace	into	your	Spring	configuration
in	order	to	use	the	Citrus	JMS	configuration	elements.	The	namespace	URI	and	schema
location	are	added	to	the	Spring	configuration	XML	file	as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
							xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
							xmlns:citrus-jms="http://www.citrusframework.org/schema/jms/config"
							xsi:schemaLocation="
							http://www.springframework.org/schema/beans	
							http://www.springframework.org/schema/beans/spring-beans.xsd
							http://www.citrusframework.org/schema/jms/config
							http://www.citrusframework.org/schema/jms/config/citrus-jms-config.xsd">

				[...]

</beans>

After	that	you	are	able	to	use	customized	Citrus	XML	elements	in	order	to	define	the
Spring	beans.

JMS	endpoints

Citrus	Reference	Guide

226Jms

By	default	Citrus	JMS	endpoints	are	asynchronous.	So	let	us	first	of	all	deal	with
asynchronous	messaging	which	means	that	we	will	not	wait	for	any	response	message
after	sending	or	receiving	a	message.

The	test	case	itself	should	not	know	about	JMS	transport	details	like	queue	names	or
connection	credentials.	This	information	is	stored	in	the	endpoint	component
configuration	that	lives	in	the	basic	Spring	configuration	file	in	Citrus.	So	let	us	have	a
look	at	a	simple	JMS	message	endpoint	configuration	in	Citrus.

<citrus-jms:endpoint	id="helloServiceQueueEndpoint"
										destination-name="Citrus.HelloService.Request.Queue"
										timeout="10000"/>

The	endpoint	component	receives	an	unique	id	and	a	JMS	destination	name.	This	can
be	a	queue	or	topic	destination.	We	will	deal	with	JMS	topics	later	on.	For	now	the
timeout	setting	completes	our	first	JMS	endpoint	component	definition.

The	endpoint	needs	a	JMS	connection	factory	for	connecting	to	a	JMS	message	broker.
The	connection	factory	is	also	added	as	Spring	bean	to	the	Citrus	Spring	application
context.

<bean	id="connectionFactory"	
									class="org.apache.activemq.ActiveMQConnectionFactory">
				<property	name="brokerURL"	value="tcp://localhost:61616"	/>
</bean>

The	JMS	connection	factory	receives	the	JMS	message	broker	URL	and	is	able	to	hold
many	other	connection	specific	options.	In	this	example	we	use	the	Apache	ActiveMQ
connection	factory	implementation	as	we	want	to	use	the	ActiveMQ	message	broker.
Citrus	works	by	default	with	a	bean	id	connectionFactory	.	All	Citrus	JMS	component
will	automatically	recognize	this	connection	factory.

Tip	Spring	makes	it	very	easy	to	connect	to	other	JMS	broker	implementations	too	(e.g.
Apache	ActiveMQ,	TIBCO	Enterprise	Messaging	Service,	IBM	Websphere	MQ).	Just
add	the	required	connection	factory	implementation	as	connectionFactory	bean.

Note	All	of	the	Citrus	JMS	endpoint	components	will	automatically	look	for	a	bean
named	connectionFactory	by	default.	You	can	use	the	connection-factory	endpoint
attribute	in	order	to	use	another	connection	factory	instance	with	different	bean	names.

Citrus	Reference	Guide

227Jms

<citrus-jms:endpoint	id="helloServiceQueueEndpoint"
						destination-name="Citrus.HelloService.Request.Queue"
						connection-factory="myConnectionFacotry"/>

As	an	alternative	to	that	you	may	want	to	use	a	special	Spring	jms	template
implementation	as	custom	bean	in	your	endpoint.

<citrus-jms:endpoint	id="helloServiceQueueEndpoint"
														destination-name="Citrus.HelloService.Request.Queue"
														jms-template="myJmsTemplate"/>

The	endpoint	is	now	ready	to	be	used	inside	a	test	case.	Inside	a	test	case	you	can	send
or	receive	messages	using	this	endpoint.	The	test	actions	can	reference	the	JMS
endpoint	using	its	identifier.	When	sending	a	message	the	message	endpoint	creates	a
JMS	message	producer	and	will	simply	publish	the	message	to	the	defined	JMS
destination.	As	the	communication	is	asynchronous	by	default	producer	does	not	wait	for
a	synchronous	response.

When	receiving	a	messages	with	this	endpoint	the	endpoint	creates	a	JMS	consumer	on
the	JMS	destination.	The	endpoint	then	acts	as	a	message	driven	listener.	This	means
that	the	message	consumer	connects	to	the	given	destination	and	waits	for	messages	to
arrive.

Note	Besides	the	destination-name	attribute	you	can	also	provide	a	reference	to	a
destination	implementation.

<citrus-jms:endpoint	id="helloServiceQueueEndpoint"
																																destination="helloServiceQueue"/>

<amq:queue	id="helloServiceQueue"	physicalName="Citrus.HelloService.Request.Queue"/>

The	destination	attribute	references	to	a	JMS	destination	object	in	the	Spring	application
context.	In	the	example	above	we	used	the	ActiveMQ	queue	destination	component.
The	destination	reference	can	also	refer	to	a	JNDI	lookup	for	instance.

JMS	synchronous	endpoints

When	using	synchronous	message	endpoints	Citrus	will	manage	a	reply	destination	for
receiving	a	synchronous	response	message	on	the	reply	destination.	The	following
figure	illustrates	that	we	now	have	two	destinations	in	our	communication	scenario.

Citrus	Reference	Guide

228Jms

The	synchronous	message	endpoint	component	is	similar	to	the	asynchronous	brother
that	we	have	discussed	before.	The	only	difference	is	that	the	endpoint	will	automatically
manage	a	reply	destination	behind	the	scenes.	By	default	Citrus	uses	temporary	reply
destinations	that	get	automatically	deleted	after	the	communication	handshake	is	done.
Again	we	need	to	use	a	JMS	connection	factory	in	the	Spring	XML	configuration	as	the
component	need	to	connect	to	a	JMS	message	broker.

<citrus-jms:sync-endpoint	id="helloServiceSyncEndpoint"
										destination-name="Citrus.HelloService.InOut.Queue"
										timeout="10000"/>

The	synchronous	component	defines	a	target	destination	which	again	is	either	a	queue
or	topic	destination.	If	nothing	else	is	defined	the	endpoint	will	create	temporary	reply
destinations	on	its	own.	When	the	endpoint	has	sent	a	message	it	waits	synchronously
for	the	response	message	to	arrive	on	the	reply	destination.	You	can	receive	this	reply
message	in	your	test	case	by	referencing	this	same	endooint	in	a	receive	test	action.	In
case	no	reply	message	arrives	in	time	a	message	timeout	error	is	raised	respectively.

See	the	following	example	test	case	which	references	the	synchronous	message
endpoint	in	its	send	and	receive	test	action	in	order	to	send	out	a	message	and	wait	for
the	synchronous	response.

Citrus	Reference	Guide

229Jms

<testcase	name="synchronousMessagingTest">
				<actions>
								<send	endpoint="helloServiceSyncEndpoint">
												<message>
																<data>
																		[...]
																</data>
												</message>
								</send>

								<receive	endpoint="helloServiceSyncEndpoint">
												<message>
																<data>
																		[...]
																</data>
												</message>
								</receive>
				</actions>
</testcase>

We	initiated	the	synchronous	communication	by	sending	a	message	on	the	synchronous
endpoint.	The	second	step	then	receives	the	synchronous	message	on	the	temporary
reply	destination	that	was	automatically	created	for	us.

If	you	rather	want	to	define	a	static	reply	destination	you	can	do	so,	too.	The	static	reply
destination	is	not	deleted	after	communication	handshake.	You	may	need	to	work	with
message	selectors	then	in	order	to	pick	the	right	response	message	that	belongs	to	a
specific	communication	handshake.	You	can	define	a	static	reply	destination	on	the
synchronous	endpoint	component	as	follows.

<citrus-jms:sync-endpoint	id="helloServiceSyncEndpoint"
										destination-name="Citrus.HelloService.InOut.Queue"
										reply-destination-name="Citrus.HelloService.Reply.Queue"
										timeout="10000"/>

Instead	of	using	the	reply-destination-name	feel	free	to	use	the	destination	reference
with	reply-destination	attribute.	Again	you	can	use	a	JNDI	lookup	then	to	reference	a
destination	object.

Important	Be	aware	of	permissions	that	are	mandatory	for	creating	temporary
destinations.	Citrus	tries	to	create	temporary	queues	on	the	JMS	message	broker.
Following	from	that	the	Citrus	JMS	user	has	to	have	the	permission	to	do	so.	Be	sure
that	the	user	has	the	sufficient	rights	when	using	temporary	reply	destinations.

Citrus	Reference	Guide

230Jms

Up	to	now	we	have	sent	a	message	and	waited	for	a	synchronous	response	in	the	next
step.	Now	it	is	also	possible	to	switch	the	directions	of	send	and	receive	actions.	Then
we	have	the	situation	where	Citrus	receives	a	JMS	message	first	and	then	Citrus	is	in
charge	of	providing	a	proper	synchronous	response	message	to	the	initial	sender.

In	this	scenario	the	foreign	message	producer	has	stored	a	dynamic	JMS	reply	queue
destination	to	the	JMS	header.	So	Citrus	has	to	send	the	reply	message	to	this	specific
reply	destination,	which	is	dynamic	of	course.	Fortunately	the	heavy	lift	is	done	with	the
JMS	message	endpoint	and	we	do	not	have	to	change	anything	in	our	configuration.
Again	we	just	define	a	synchronous	message	endpoint	in	the	application	context.

<citrus-jms:sync-endpoint	id="helloServiceSyncEndpoint"
						destination-name="Citrus.HelloService.InOut.Queue"
						timeout="10000"/>

Now	the	only	thing	that	changes	here	is	that	we	first	receive	a	message	in	our	test	case
on	this	endpoint.	The	second	step	is	a	send	message	action	that	references	this	same
endpoint	and	we	are	done.	Citrus	automatically	manages	the	reply	destinations	for	us.

<testcase	name="synchronousMessagingTest">
		<actions>
								<receive	endpoint="helloServiceSyncEndpoint">
												<message>
																<data>
																		[...]
																</data>
												</message>
								</receive>

								<send	endpoint="helloServiceSyncEndpoint">
												<message>
																<data>
																		[...]
																</data>
												</message>
								</send>
				</actions>
</testcase>

Citrus	Reference	Guide

231Jms

JMS	topics

Up	to	now	we	have	used	JMS	queue	destinations	on	our	endpoints.	Citrus	is	also	able	to
connect	to	JMS	topic	destinations.	In	contrary	to	JMS	queues	which	represents	the
point-to-point	communication	JMS	topics	use	publish-subscribe	mechanism	in	order
to	spread	messages	over	JMS.	A	JMS	topic	producer	publishes	messages	to	the	topic,
while	the	topic	accepts	multiple	message	subscriptions	and	delivers	the	message	to	all
subscribers.

The	Citrus	JMS	endpoints	offer	the	attribute	'pub-sub-domain'	.	Once	this	attribute	is
set	to	true	Citrus	will	use	JMS	topics	instead	of	queue	destinations.	See	the	following
example	where	the	publish-subscribe	attribute	is	set	to	true	in	JMS	message	endpoint
components.

<citrus-jms:endpoint	id="helloServiceQueueEndpoint"
												destination="helloServiceQueue"
												pub-sub-domain="true"/>

When	using	JMS	topics	you	will	be	able	to	subscribe	several	test	actions	to	the	topic
destination	and	receive	a	message	multiple	times	as	all	subscribers	will	receive	the
message.

Important	It	is	very	important	to	keep	in	mind	that	Citrus	does	not	deal	with	durable
subscribers.	This	means	that	messages	that	were	sent	in	advance	to	the	message
subscription	are	not	delivered	to	the	message	endpoint.	So	racing	conditions	may	cause
problems	when	using	JMS	topic	endpoints	in	Citrus.	Be	sure	to	let	Citrus	subscribe	to
the	topic	before	messages	are	sent	to	it.	Otherwise	you	may	loose	some	messages	that
were	sent	in	advance	to	the	subscription.

JMS	message	headers

The	JMS	specification	defines	a	set	of	special	message	header	entries	that	can	go	into
your	JMS	message.	These	JMS	headers	are	stored	differently	in	a	JMS	message
header	than	other	custom	header	entries	do.	Therefore	these	special	header	values
should	be	set	in	a	special	syntax	that	we	discuss	in	the	next	paragraphs.

Citrus	Reference	Guide

232Jms

<header>
				<element	name="citrus_jms_correlationId"	value="${correlationId}"/>
				<element	name="citrus_jms_messageId"	value="${messageId}"/>
				<element	name="citrus_jms_redelivered"	value="${redelivered}"/>
				<element	name="citrus_jms_timestamp"	value="${timestamp}"/>
</header>

As	you	see	all	JMS	specific	message	headers	use	the	citrusjms	prefix.	This	prefix
comes	from	Spring	Integration	message	header	mappers	that	take	care	of	setting	those
headers	in	the	JMS	message	header	properly.

Typing	of	message	header	entries	may	also	be	of	interest	in	order	to	meet	the	JMS
standards	of	typed	message	headers.	For	instance	the	following	message	header	is	of
type	double	and	is	therefore	transferred	via	JMS	as	a	double	value.

<header>
				<element	name="amount"	value="19.75"	type="double"/>
</header>

SOAP	over	JMS

When	sending	SOAP	messages	you	have	to	deal	with	proper	envelope,	body	and
header	construction.	In	Citrus	you	can	add	a	special	message	converter	that	performs
the	heavy	lift	for	you.	Just	add	the	message	converter	to	the	JMS	endpoint	as	shown	in
the	next	program	listing:

<citrus-jms:endpoint	id="helloServiceSoapJmsEndpoint"
								destination-name="Citrus.HelloService.Request.Queue"
								message-converter="soapJmsMessageConverter"/>

<bean	id="soapJmsMessageConverter"	class="com.consol.citrus.jms.message.SoapJmsMessageConverter"

With	this	message	converter	you	can	skip	the	SOAP	envelope	completely	in	your	test
case.	You	just	deal	with	the	message	body	payload	and	the	header	entries.	The	rest	is
done	by	the	message	converter.	So	you	get	proper	SOAP	messages	on	the	producer
and	consumer	side.

Citrus	Reference	Guide

233Jms

HTTP	REST	support
REST	APIs	have	gained	more	and	more	significance	regarding	client-server	interfaces.
The	REST	client	is	nothing	but	a	HTTP	client	sending	HTTP	requests	usually	in	JSON
data	format	to	a	HTTP	server.	As	HTTP	is	a	synchronous	protocol	by	nature	the	client
receives	the	server	response	synchronously.	Citrus	is	able	to	connect	with	HTTP
services	and	test	REST	APIs	on	both	client	and	server	side	with	a	powerful	JSON
message	data	support.	In	the	next	sections	you	will	learn	how	to	invoke	HTTP	services
as	a	client	and	how	to	handle	REST	HTTP	requests	in	a	test	case.	We	deal	with	setting
up	a	HTTP	server	in	order	to	accept	client	requests	and	provide	proper	HTTP	responses
with	GET,	PUT,	DELETE	or	POST	request	method.

Note	The	http	components	in	Citrus	are	kept	in	a	separate	Maven	module.	So	you
should	add	the	module	as	Maven	dependency	to	your	project	accordingly.

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-http</artifactId>
		<version>2.6.1</version>
</dependency>

As	Citrus	provides	a	customized	HTTP	configuration	schema	for	the	Spring	application
context	configuration	files	we	have	to	add	name	to	the	top	level	beans	element.	Simply
include	the	http-config	namespace	in	the	configuration	XML	files	as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
			xmlns:citrus="http://www.citrusframework.org/schema/config"
			xmlns:citrus-http="http://www.citrusframework.org/schema/http/config"
			xsi:schemaLocation="
			http://www.springframework.org/schema/beans	
			http://www.springframework.org/schema/beans/spring-beans.xsd
			http://www.citrusframework.org/schema/config	
			http://www.citrusframework.org/schema/config/citrus-config.xsd
			http://www.citrusframework.org/schema/http/config	
			http://www.citrusframework.org/schema/http/config/citrus-http-config.xsd">

				[...]

</beans>

Citrus	Reference	Guide

234Http

Now	we	are	ready	to	use	the	customized	Citrus	HTTP	configuration	elements	with	the
citrus-http	namespace	prefix.

HTTP	REST	client

On	the	client	side	we	have	a	simple	HTTP	message	client	component	connecting	to	the
server.	The	request-url	attribute	defines	the	HTTP	server	endpoint	URL	to	connect	to.
As	usual	you	can	reference	this	client	in	your	test	case	in	order	to	send	and	receive
messages.	Citrus	as	client	waits	for	the	response	message	from	server.	After	that	the
response	message	goes	through	the	validation	process	as	usual.	Let	us	see	how	a
Citrus	HTTP	client	component	looks	like:

<citrus-http:client	id="helloHttpClient"
										request-url="http://localhost:8080/hello"
										request-method="GET"
										content-type="application/xml"
										timeout="60000"/>

The	request-method	defines	the	HTTP	method	to	use.	In	addition	to	that	we	can
specify	the	content-type	of	the	request	we	are	about	to	send.	The	client	builds	the	HTTP
request	and	sends	it	to	the	HTTP	server.	While	the	client	is	waiting	for	the	synchronous
HTTP	response	to	arrive	we	are	able	to	poll	several	times	for	the	response	message	in
our	test	case.	As	usual	aou	can	use	the	same	client	endpoint	in	your	test	case	to	send
and	receive	messages	synchronously.	In	case	the	reply	message	comes	in	too	late
according	to	the	timeout	settings	a	respective	timeout	error	is	raised.

Http	defines	several	request	methods	that	a	client	can	use	to	access	Http	server
resources.	In	the	example	client	above	we	are	using	GET	as	default	request	method.	Of
course	you	can	overwrite	this	setting	in	a	test	case	action	by	setting	the	HTTP	request
method	inside	the	sending	test	action.	The	Http	client	component	can	be	used	as	normal
endpoint	in	a	sending	test	action.	Use	something	like	this	in	your	test:

XML	DSL

Citrus	Reference	Guide

235Http

<send	endpoint="helloHttpClient">
				<message>
								<payload>
												<TestMessage>
																<Text>Hello	HttpServer</Text>
												</TestMessage>
								</payload>
				</message>
				<header>
								<element	name="citrus_http_method"	value="POST"/>
				</header>
</send>

Tip	Citrus	uses	the	Spring	REST	template	mechanism	for	sending	out	HTTP	requests.
This	means	you	have	great	customizing	opportunities	with	a	special	REST	template
configuration.	You	can	think	of	basic	HTTP	authentication,	read	timeouts	and	special
message	factory	implementations.	Just	use	the	custom	REST	template	attribute	in	client
configuration	like	this:

<citrus-http:client	id="helloHttpClient"
																															request-url="http://localhost:8080/hello"
																															request-method="GET"
																															content-type="text/plain"
																															rest-template="customizedRestTemplate"/>

<!--	Customized	rest	template	-->
<bean	name="customizedRestTemplate"	class="org.springframework.web.client.RestTemplate">
		<property	name="messageConverters">
				<util:list	id="converter">
						<bean	class="org.springframework.http.converter.StringHttpMessageConverter">
								<property	name="supportedMediaTypes">
										<util:list	id="types">
												<value>text/plain</value>
										</util:list>
								</property>
						</bean>
				</util:list>
		</property>
		<property	name="errorHandler">
				<!--	Custom	error	handler	-->
		</property>
		<property	name="requestFactory">
				<bean	class="org.springframework.http.client.HttpComponentsClientHttpRequestFactory">
						<property	name="readTimeout"	value="9000"	/>
				</bean>
		</property>
</bean>

Citrus	Reference	Guide

236Http

Up	to	now	we	have	used	a	normal	send	test	action	to	send	Http	requests	as	a	client.
This	is	completely	valid	strategy	as	the	Citrus	Http	client	is	a	normal	endpoint.	But	we
might	want	to	set	some	more	Http	REST	specific	properties	and	settings.	In	order	to
simplify	the	Http	usage	in	a	test	case	we	can	use	a	special	test	action	implementation.
The	Citrus	Http	specific	actions	are	located	in	a	separate	XML	namespace.	So	wen	need
to	add	this	namespace	to	our	test	case	XML	first.

<beans	xmlns="http://www.springframework.org/schema/beans"
								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
								xmlns:http="http://www.citrusframework.org/schema/http/testcase"
								xsi:schemaLocation="
								http://www.springframework.org/schema/beans
								http://www.springframework.org/schema/beans/spring-beans.xsd
								http://www.citrusframework.org/schema/http/testcase
								http://www.citrusframework.org/schema/http/testcase/citrus-http-testcase.xsd">

						[...]

				</beans>

The	test	case	is	now	ready	to	use	the	specific	Http	test	actions	by	using	the	prefix	http:	.

XML	DSL

<http:send-request	client="httpClient">
		<http:POST	path="/customer">
				<http:headers	content-type="application/xml"	accept="application/xml,	*/*">
						<http:header	name="CustomHeaderId"	value="${custom_header_id}"/>
				</http:headers>
				<http:body>
						<http:data>
								<![CDATA[
										<customer>
												<id>citrus:randomNumber()</id>
												<name>testuser</name>
										</customer>
]]>
						</http:data>
				</http:body>
		</http:POST>
</http:send-request>

The	action	above	uses	several	Http	specific	settings	such	as	the	request	method	POST
as	well	as	the	content-type	and	accept	headers.	As	usual	the	send	action	needs	a
target	Http	client	endpoint	component.	We	can	specify	a	request	path	attribute	that

Citrus	Reference	Guide

237Http

added	as	relative	path	to	the	base	uri	used	on	the	client.

When	using	a	GET	request	we	can	specify	some	request	uri	parameters.

XML	DSL

<http:send-request	client="httpClient">
		<http:GET	path="/customer/${custom_header_id}">
				<http:params	content-type="application/xml"	accept="application/xml,	*/*">
						<http:param	name="type"	value="active"/>
				</http:params>
		</http:GET>
</http:send-request>

The	send	action	above	uses	a	GET	request	on	the	endpoint	uri
http://localhost:8080/customer/1234?type=active	.

Of	course	when	sending	Http	client	requests	we	are	also	interested	in	receiving	Http
response	messages.	We	want	to	validate	the	success	response	with	Http	status	code.

XML	DSL

<http:receive-response	client="httpClient">
		<http:headers	status="200"	reason-phrase="OK"	version="HTTP/1.1">
				<http:header	name="CustomHeaderId"	value="${custom_header_id}"/>
		</http:headers>
		<http:body>
				<http:data>
						<![CDATA[
										<customerResponse>
												<success>true</success>
										</customerResponse>
]]>
				</http:data>
		</http:body>
</http:receive-response>

The	receive-response	test	action	also	uses	a	client	component.	We	can	expect
response	status	code	information	such	as	status	and	reason-phrase	.	Of	course	Citrus
will	raise	a	validation	exception	in	case	Http	status	codes	mismatch.

Up	to	now	we	have	used	XML	DSL	test	cases.	The	Java	DSL	in	Citrus	also	works	with
specific	Http	test	actions.	See	following	example	and	find	out	how	this	works:

XML	DSL

Citrus	Reference	Guide

238Http

http://localhost:8080/customer/1234?type=active

@CitrusTest
public	void	httpActionTest()	{
				http().client("httpClient")
										.send()
										.post("/customer")
										.payload("<customer>"	+
																				"<id>citrus:randomNumber()</id>"	+
																				"<name>testuser</name>"	+
																		"</customer>")
										.header("CustomHeaderId",	"${custom_header_id}")
										.contentType("text/xml")
										.accept("text/xml,	*/*");

				http().client("httpClient")
										.receive()
										.response(HttpStatus.OK)
										.payload("<customerResponse>"	+
																				"<success>true</success>"	+
																		"</customerResponse>")
										.header("CustomHeaderId",	"${custom_header_id}")
										.version("HTTP/1.1");
}

Now	we	can	send	and	receive	messages	as	Http	client	with	specific	test	actions.	Now
lets	move	on	to	the	Http	server.

HTTP	REST	server

The	HTTP	client	was	quite	easy	and	straight	forward.	Receiving	HTTP	messages	is	a
little	bit	more	complicated	because	Citrus	has	to	provide	server	functionality	listening	on
a	local	port	for	client	connections.	Therefore	Citrus	offers	an	embedded	HTTP	server
which	is	capable	of	handling	incoming	HTTP	requests.	Once	a	client	connection	is
accepted	the	HTTP	server	must	also	provide	a	proper	HTTP	response	to	the	client.	In
the	next	few	lines	you	will	see	how	to	simulate	server	side	HTTP	REST	service	with
Citrus.

<citrus-http:server	id="helloHttpServer"
																port="8080"
																auto-start="true"
																resource-base="src/it/resources"/>

Citrus	uses	an	embedded	Jetty	server	that	will	automatically	start	when	the	Spring
application	context	is	loaded	(auto-start="true").	The	basic	connector	is	listening	on	port
8080	for	requests.	Test	cases	can	interact	with	this	server	instance	via	message

Citrus	Reference	Guide

239Http

channels	by	default.	The	server	provides	an	inbound	channel	that	holds	incoming
request	messages.	The	test	case	can	receive	those	requests	from	the	channel	with	a
normal	receive	test	action.	In	a	second	step	the	test	case	can	provide	a	synchronous
response	message	as	reply	which	will	be	automatically	sent	back	to	the	HTTP	client	as
response.

The	figure	above	shows	the	basic	setup	with	inbound	channel	and	reply	channel.	You	as
a	tester	should	not	worry	about	this	to	much.	By	default	you	as	a	tester	just	use	the
server	as	synchronous	endpoint	in	your	test	case.	This	means	that	you	simply	receive	a
message	from	the	server	and	send	a	response	back.

<testcase	name="httpServerTest">
				<actions>
								<receive	endpoint="helloHttpServer">
												<message>
																<data>
																		[...]
																</data>
												</message>
								</receive>

								<send	endpoint="helloHttpServer">
												<message>
																<data>
																		[...]
																</data>
												</message>
								</send>
				</actions>
</testcase>

As	you	can	see	we	reference	the	server	id	in	both	receive	and	send	actions.	The	Citrus
server	instance	will	automatically	send	the	response	back	to	the	calling	HTTP	client.	In
most	cases	this	is	exactly	what	we	want	to	do	-	send	back	a	response	message	that	is
specified	inside	the	test.	The	HTTP	server	component	by	default	uses	a	channel
endpoint	adapter	in	order	to	forward	all	incoming	requests	to	an	in	memory	message
channel.	This	is	done	completely	behind	the	scenes.	The	Http	server	component
provides	some	more	customization	possibilities	when	it	comes	to	endpoint	adapter

Citrus	Reference	Guide

240Http

implementations.	This	topic	is	discussed	in	a	separate	sectionendpoint-adapter.	Up	to
now	we	keep	it	simple	by	synchronously	receiving	and	sending	messages	in	the	test
case.

Tip	The	default	channel	endpoint	adapter	automatically	creates	an	inbound	message
channel	where	incoming	messages	are	stored	to	internally.	So	if	you	need	to	clean	up	a
server	that	has	already	stored	some	incoming	messages	you	can	do	this	easily	by
purging	the	internal	message	channel.	The	message	channel	follows	a	naming
convention	{serverName}.inbound	where	{serverName}	is	the	Spring	bean	name	of
the	Citrus	server	endpoint	component.	If	you	purge	this	internal	channel	in	a	before	test
nature	you	are	sure	that	obsolete	messages	on	a	server	instance	get	purged	before
each	test	is	executed.

So	lets	get	back	to	our	mission	of	providing	response	messages	as	server	to	connected
clients.	As	you	might	know	Http	REST	works	with	some	characteristic	properties	when	it
comes	to	send	and	receive	messages.	For	instance	a	client	can	send	different	request
methods	GET,	POST,	PUT,	DELETE,	HEAD	and	so	on.	The	Citrus	server	may	verify
this	method	when	receiving	client	requests.	Therefore	we	have	introduced	special	Http
test	actions	for	server	communication.	Have	a	look	at	a	simple	example:

Citrus	Reference	Guide

241Http

<http:receive-request	server="helloHttpServer">
		<http:POST	path="/test">
				<http:headers	content-type="application/xml"	accept="application/xml,	*/*">
						<http:header	name="CustomHeaderId"	value="${custom_header_id}"/>
						<http:header	name="Authorization"	value="Basic	c29tZVVzZXJuYW1lOnNvbWVQYXNzd29yZA=="/>
				</http:headers>
				<http:body>
				<http:data>
						<![CDATA[
								<testRequestMessage>
										<text>Hello	HttpServer</text>
								</testRequestMessage>
]]>
				</http:data>
				</http:body>
		</http:POST>
		<http:extract>
				<http:header	name="X-MessageId"	variable="message_id"/>
		</http:extract>
</http:receive-request>

<http:send-response	server="helloHttpServer">
		<http:headers	status="200"	reason-phrase="OK"	version="HTTP/1.1">
				<http:header	name="X-MessageId"	value="${message_id}"/>
				<http:header	name="CustomHeaderId"	value="${custom_header_id}"/>
				<http:header	name="Content-Type"	value="application/xml"/>
		</http:headers>
		<http:body>
		<http:data>
				<![CDATA[
						<testResponseMessage>
								<text>Hello	Citrus</text>
						</testResponseMessage>
]]>
		</http:data>
		</http:body>
</http:send-response>

We	receive	a	client	request	and	validate	that	the	request	method	is	POST	on	request
path	/test	.	Now	we	can	validate	special	message	headers	such	as	content-type	.	In
addition	to	that	we	can	check	custom	headers	and	basic	authorization	headers.	As	usual
the	optional	message	body	is	compared	to	an	expected	message	template.	The	custom
X-MessageId	header	is	saved	to	a	test	variable	message_id	for	later	usage	in	the
response.

Citrus	Reference	Guide

242Http

The	response	message	defines	Http	typical	entities	such	as	status	and	reason-phrase	.
Here	the	tester	can	simulate	404	NOT_FOUND	errors	or	similar	other	status	codes	that
get	send	back	to	the	client.	In	our	example	everything	is	OK	and	we	send	back	a
response	body	and	some	custom	header	entries.

That	is	basically	how	Citrus	simulates	Http	server	operations.	We	receive	the	client
request	and	validate	the	request	properties.	Then	we	send	back	a	response	with	a	Http
status	code.

As	usual	all	these	Http	specific	actions	are	also	available	in	Java	DSL.

@CitrusTest
public	void	httpServerActionTest()	{
				http().server("helloHttpServer")
										.receive()
										.post("/test")
										.payload("<testRequestMessage>"	+
																				"<text<Hello	HttpServer</text>"	+
																		"</testRequestMessage>")
										.contentType("application/xml")
										.accept("application/xml,	*/*")
										.header("CustomHeaderId",	"${custom_header_id}")
										.header("Authorization",	"Basic	c29tZVVzZXJuYW1lOnNvbWVQYXNzd29yZA==")
										.extractFromHeader("X-MessageId",	"message_id");

				http().server("helloHttpServer")
										.send()
										.response(HttpStatus.OK)
										.payload("<testResponseMessage>"	+
																				"<text<Hello	Citrus</text>"	+
																		"</testResponseMessage>")
										.version("HTTP/1.1")
										.contentType("application/xml")
										.header("CustomHeaderId",	"${custom_header_id}")
										.header("X-MessageId",	"${message_id}");
}

This	is	the	exact	same	example	in	Java	DSL.	We	select	server	actions	first	and	receive
client	requests.	Then	we	send	back	a	response	with	a	HttpStatus.OK	status.	This
completes	the	server	actions	on	Http	message	transport.	Now	we	continue	with	some
more	Http	specific	settings	and	features.

HTTP	headers

Citrus	Reference	Guide

243Http

When	dealing	with	HTTP	request/response	communication	we	always	deal	with	HTTP
specific	headers.	The	HTTP	protocol	defines	a	group	of	header	attributes	that	both	client
and	server	need	to	be	able	to	handle.	You	can	set	and	validate	these	HTTP	headers	in
Citrus	quite	easy.	Let	us	have	a	look	at	a	client	operation	in	Citrus	where	some	HTTP
headers	are	explicitly	set	before	the	request	is	sent	out.

<http:send-request	client="httpClient">
		<http:POST>
				<http:headers>
								<http:header	name="CustomHeaderId"	value="${custom_header_id}"/>
								<http:header	name="Content-Type"	value="text/xml"/>
								<http:header	name="Accept"	value="text/xml,*/*"/>
				</http:headers>
				<http:body>
								<http:payload>
												<testRequestMessage>
																<text>Hello	HttpServer</text>
												</testRequestMessage>
								</http:payload>
				</http:body>
		</http:POST>
</http:send-request>

We	are	able	to	set	custom	headers	(CustomHeaderId)	that	go	directly	into	the	HTTP
header	section	of	the	request.	In	addition	to	that	testers	can	explicitly	set	HTTP	reserved
headers	such	as	Content-Type	.	Fortunately	you	do	not	have	to	set	all	headers	on	your
own.	Citrus	will	automatically	set	the	required	HTTP	headers	for	the	request.	So	we
have	the	following	HTTP	request	which	is	sent	to	the	server:

POST	/test	HTTP/1.1
Accept:	text/xml,	*/*
Content-Type:	text/xml
CustomHeaderId:	123456789
Accept-Charset:	macroman
User-Agent:	Jakarta	Commons-HttpClient/3.1
Host:	localhost:8091
Content-Length:	175
<testRequestMessage>
				<text>Hello	HttpServer</text>
</testRequestMessage>

On	server	side	testers	are	interested	in	validating	the	HTTP	headers.	Within	Citrus
receive	action	you	simply	define	the	expected	header	entries.	The	HTTP	specific
headers	are	automatically	available	for	validation	as	you	can	see	in	this	example:

Citrus	Reference	Guide

244Http

<http:receive-request	server="httpServer">
		<http:POST>
				<http:headers>
								<http:header	name="CustomHeaderId"	value="${custom_header_id}"/>
								<http:header	name="Content-Type"	value="text/xml"/>
								<http:header	name="Accept"	value="text/xml,*/*"/>
				</http:headers>
				<http:body>
								<http:payload>
												<testRequestMessage>
																<text>Hello	HttpServer</text>
												</testRequestMessage>
								</http:payload>
				</http:body>
		</http:POST>
</http:receive-request>

The	test	checks	on	custom	headers	and	HTTP	specific	headers	to	meet	the	expected
values.

Now	that	we	have	accepted	the	client	request	and	validated	the	contents	we	are	able	to
send	back	a	proper	HTTP	response	message.	Same	thing	here	with	HTTP	specific
headers.	The	HTTP	protocol	defines	several	headers	marking	the	success	or	failure	of
the	server	operation.	In	the	test	case	you	can	set	those	headers	for	the	response
message	with	conventional	Citrus	header	names.	See	the	following	example	to	find	out
how	that	works	for	you.

<http:send-response	server="httpServer">
				<http:headers	status="200"	reason-phrase="OK">
								<http:header	name="CustomHeaderId"	value="${custom_header_id}"/>
								<http:header	name="Content-Type"	value="text/xml"/>
				</http:headers>
				<http:body>
								<http:payload>
												<testResponseMessage>
																<text>Hello	Citrus	Client</text>
												</testResponseMessage>
								</http:payload>
				</http:body>
</http:send-response>

Once	more	we	set	the	custom	header	entry	(CustomHeaderId)	and	a	HTTP	reserved
header	(Content-Type)	for	the	response	message.	On	top	of	this	we	are	able	to	set	the
response	status	for	the	HTTP	response.	We	use	the	reserved	header	names	status	in
order	to	mark	the	success	of	the	server	operation.	With	this	mechanism	we	can	easily

Citrus	Reference	Guide

245Http

simulate	different	server	behaviour	such	as	HTTP	error	response	codes	(e.g.	404	-	Not
found,	500	-	Internal	error).	Let	us	have	a	closer	look	at	the	generated	response
message:

HTTP/1.1	200	OK
Content-Type:	text/xml;charset=UTF-8
Accept-Charset:	macroman
Content-Length:	205
Server:	Jetty(7.0.0.pre5)
<testResponseMessage>
				<text>Hello	Citrus	Client</text>
</testResponseMessage>

Tip	You	do	not	have	to	set	the	reason	phrase	all	the	time.	It	is	sufficient	to	only	set	the
HTTP	status	code.	Citrus	will	automatically	add	the	proper	reason	phrase	for	well	known
HTTP	status	codes.

The	only	thing	that	is	missing	right	now	is	the	validation	of	HTTP	status	codes	when
receiving	the	server	response	in	a	Citrus	test	case.	It	is	very	easy	as	you	can	use	the
Citrus	reserved	header	names	for	validation,	too.

<http:receive-response	client="httpClient">
				<http:headers	status="200"	reason-phrase="OK"	version="HTTP/1.1">
								<http:header	name="CustomHeaderId"	value="${custom_header_id}"/>
				</http:headers>
				<http:body>
								<http:payload>
												<testResponseMessage>
																<text>Hello	Test	Framework</text>
												</testResponseMessage>
								</http:payload>
				</http:body>
</http:receive-response>

Up	to	now	we	have	used	some	of	the	basic	Citrus	reserved	HTTP	header	names	(status,
version,	reason-phrase).	In	HTTP	RESTful	services	some	other	header	names	are
essential	for	validation.	These	are	request	attributes	like	query	parameters,	context	path
and	request	URI.	The	Citrus	server	side	REST	message	controller	will	automatically	add
all	this	information	to	the	message	header	for	you.	So	all	you	need	to	do	is	validate	the
header	entries	in	your	test.

The	next	example	receives	a	HTTP	GET	method	request	on	server	side.	Here	the	GET
request	does	not	have	any	message	payload,	so	the	validation	just	works	on	the
information	given	in	the	message	header.	We	assume	the	client	to	call

Citrus	Reference	Guide

246Http

http://localhost:8080/app/users?id=123456789	.	As	a	tester	we	need	to	validate	the
request	method,	request	URI,	context	path	and	the	query	parameters.

<http:receive-request	server="httpServer">
		<http:GET	path="/app/users"	context-path="/app">
				<http:params>
								<http:param	name="id"	value="123456789"/>
				</http:params>
				<http:headers>
								<http:header	name="Host"	value="localhost:8080"/>
								<http:header	name="Content-Type"	value="text/html"/>
								<http:header	name="Accept"	value="text/xml,*/*"/>
				</http:headers>
				<http:body>
								<http:data></http:data>
				</http:body>
		</http:GET>
</http:receive-request>

Tip	Be	aware	of	the	slight	differences	in	request	URI	and	context	path.	The	context	path
gives	you	the	web	application	context	path	within	the	servlet	container	for	your	web
application.	The	request	URI	always	gives	you	the	complete	path	that	was	called	for	this
request.

As	you	can	see	we	are	able	to	validate	all	parts	of	the	initial	request	endpoint	URI	the
client	was	calling.	This	completes	the	HTTP	header	processing	within	Citrus.	On	both
client	and	server	side	Citrus	is	able	to	set	and	validate	HTTP	specific	header	entries
which	is	essential	for	simulating	HTTP	communication.

HTTP	form	urlencoded	data

HTML	form	data	can	be	sent	to	the	server	using	different	methods	and	content	types.
One	of	them	is	a	POST	method	with	x-www-form-urlencoded	body	content.	The	form
data	elements	are	sent	to	the	server	using	key-value	pairs	POST	data	where	the	form
control	name	is	the	key	and	the	control	data	is	the	url	encoded	value.

Form	urlencoded	form	data	content	could	look	like	this:

password=s%21cr%21t&username=foo

A	you	can	see	the	form	data	is	automatically	encoded.	In	the	example	above	we	transmit
two	form	controls	password	and	username	with	respective	values	scrt	and	foo	.	In
case	we	would	validate	this	form	data	in	Citrus	we	are	able	to	do	this	with	plaintext

Citrus	Reference	Guide

247Http

http://localhost:8080/app/users?id=123456789

message	validation.

<receive	endpoint="httpServer">
		<message	type="plaintext">
				<data>
						<![CDATA[
								password=s%21cr%21t&username=${username}
]]>
				</data>
		</message>
		<header>
				<element	name="citrus_http_method"	value="POST"/>
				<element	name="citrus_http_request_uri"	value="/form-test"/>
				<element	name="Content-Type"	value="application/x-www-form-urlencoded"/>
		</header>
</receive>

Obviously	validating	these	key-value	pair	character	sequences	can	be	hard	especially
when	having	HTML	forms	with	lots	of	form	controls.	This	is	why	Citrus	provides	a	special
message	validator	for	x-www-form-urlencoded	contents.	First	of	all	we	have	to	add
citrus-http	module	as	dependency	to	our	project	if	not	done	so	yet.	After	that	we	can
add	the	validator	implementation	to	the	list	of	message	validators	used	in	Citrus.

<citrus:message-validators>
		<citrus:validator	class="com.consol.citrus.http.validation.FormUrlEncodedMessageValidator"/>
</citrus:message-validators>

Now	we	are	able	to	receive	the	urlencoded	form	data	message	in	a	test.

Citrus	Reference	Guide

248Http

<receive	endpoint="httpServer">
		<message	type="x-www-form-urlencoded">
				<payload>
						<form-data	xmlns="http://www.citrusframework.org/schema/http/message">
								<content-type>application/x-www-form-urlencoded</content-type>
								<action>/form-test</action>
								<controls>
										<control	name="password">
												<value>${password}</value>
										</control>
										<control	name="username">
												<value>${username}</value>
										</control>
								</controls>
						</form-data>
				</payload>
		</message>
		<header>
				<element	name="citrus_http_method"	value="POST"/>
				<element	name="citrus_http_request_uri"	value="/form-test"/>
				<element	name="Content-Type"	value="application/x-www-form-urlencoded"/>
		</header>
</receive>

We	use	a	special	message	type	x-www-form-urlencoded	so	the	new	message
validator	will	take	action.	The	form	url	encoded	message	validator	is	able	to	handle	a
special	XML	representation	of	the	form	data.	This	enables	the	very	powerful	XML
message	validation	capabilities	of	Citrus	such	as	ignoring	elements	and	usage	of	test
variables	inline.

Each	form	control	is	translated	to	a	control	element	with	respective	name	and	value
properties.	The	form	data	is	validated	in	a	more	comfortable	way	as	the	plaintext
message	validator	would	be	able	to	offer.

HTTP	error	handling

So	far	we	have	received	response	messages	with	HTTP	status	code	200	OK	.	How	to
deal	with	server	errors	like	404	Not	Found	or	500	Internal	server	error	?	The	default
HTTP	message	client	error	strategy	is	to	propagate	server	error	response	messages	to
the	receive	action	for	validation.	We	simply	check	on	HTTP	status	code	and	status	text
for	error	validation.

Citrus	Reference	Guide

249Http

<http:send-request	client="httpClient">
				<http:body>
								<http:payload>
												<testRequestMessage>
																<text>Hello	HttpServer</text>
												</testRequestMessage>
								</http:payload>
				</http:body>
</http:send-request>

<http:receive-request	client="httpClient">
				<http:body>
								<http:data><![CDATA[]]></http:data>
				</http:body>
				<http:headers	status="403"	reason-phrase="FORBIDDEN"/>
</http:receive>

The	message	data	can	be	empty	depending	on	the	server	logic	for	these	error
situations.	If	we	receive	additional	error	information	as	message	payload	just	add
validation	assertions	as	usual.

Instead	of	receiving	such	empty	messages	with	checks	on	HTTP	status	header
information	we	can	change	the	error	strategy	in	the	message	sender	component	in	order
to	automatically	raise	exceptions	on	response	messages	other	than	200	OK	.	Therefore
we	go	back	to	the	HTTP	message	sender	configuration	for	changing	the	error	strategy.

<citrus-http:client	id="httpClient"
																														request-url="http://localhost:8080/test"
																														error-strategy="throwsException"/>

Now	we	expect	an	exception	to	be	thrown	because	of	the	error	response.	Following	from
that	we	have	to	change	our	test	case.	Instead	of	receiving	the	error	message	with
receive	action	we	assert	the	client	exception	and	check	on	the	HTTP	status	code	and
status	text.

Citrus	Reference	Guide

250Http

<assert	exception="org.springframework.web.client.HttpClientErrorException"
											message="403	Forbidden">
				<when>
								<http:send-request	client="httpClient">
												<http:body>
																<http:payload>
																				<testRequestMessage>
																								<text>Hello	HttpServer</text>
																				</testRequestMessage>
																</http:payload>
												</http:body>
								</http:send-request>
				</when>
</assert>

Both	ways	of	handling	HTTP	error	messages	on	client	side	are	valid	for	expecting	the
server	to	raise	HTTP	error	codes.	Choose	the	preferred	way	according	to	your	test
project	requirements.

HTTP	client	basic	authentication

As	client	you	may	have	to	use	basic	authentication	in	order	to	access	a	resource	on	the
server.	In	most	cases	this	will	be	username/password	authentication	where	the
credentials	are	transmitted	in	the	request	header	section	as	base64	encoding.

The	easiest	approach	to	set	the	Authorization	header	for	a	basic	authentication	HTTP
request	would	be	to	set	it	on	your	own	in	the	send	action	definition.	Of	course	you	have
to	use	the	correct	basic	authentication	header	syntax	with	base64	encoding	for	the
username:password	phrase.	See	this	simple	example.

<http:headers>
				<http:header	name="Authorization"	value="Basic	c29tZVVzZXJuYW1lOnNvbWVQYXNzd29yZA=="/>
</http:headers>

Citrus	will	add	this	header	to	the	HTTP	requests	and	the	server	will	read	the
Authorization	username	and	password.	For	more	convenient	base64	encoding	you	can
also	use	a	Citrus	function,	seefunctions-encode-base64

Now	there	is	a	more	comfortable	way	to	set	the	basic	authentication	header	in	all	the
Citrus	requests.	As	Citrus	uses	Spring's	REST	support	with	the	RestTemplate	and
ClientHttpRequestFactory	the	basic	authentication	is	already	covered	there	in	a	more

Citrus	Reference	Guide

251Http

generic	way.	You	simply	have	to	configure	the	basic	authentication	credentials	on	the
RestTemplate's	ClientHttpRequestFactory.	Just	see	the	following	example	and	learn
how	to	do	that.

<citrus-http:client	id="httpClient"
																				request-method="POST"
																				request-url="http://localhost:8080/test"
																				request-factory="basicAuthFactory"/>

<bean	id="basicAuthFactory"
				class="com.consol.citrus.http.client.BasicAuthClientHttpRequestFactory">
		<property	name="authScope">
						<bean	class="org.apache.http.auth.AuthScope">
								<constructor-arg	value="localhost"/>
								<constructor-arg	value="8072"/>
								<constructor-arg	value=""/>
								<constructor-arg	value="basic"/>
						</bean>
		</property>
		<property	name="credentials">
				<bean	class="org.apache.http.auth.UsernamePasswordCredentials">
								<constructor-arg	value="someUsername"/>
								<constructor-arg	value="somePassword"/>
				</bean>
		</property>
</bean>

The	advantages	of	this	method	is	obvious.	Now	all	sending	test	actions	that	reference
the	client	component	will	automatically	add	the	basic	authentication	header.

Important	Since	Citrus	has	upgraded	to	Spring	3.1.x	the	Jakarta	commons	HTTP	client
is	deprecated	with	Citrus	version	1.2.	The	formerly	used
UserCredentialsClientHttpRequestFactory	is	therefore	also	deprecated	and	will	not
continue	with	next	versions.	Please	update	your	configuration	if	you	are	coming	from
Citrus	1.1	or	earlier	versions.

The	above	configuration	results	in	HTTP	client	requests	with	authentication	headers
properly	set	for	basic	authentication.	The	client	request	factory	takes	care	on	adding	the
proper	basic	authentication	header	to	each	request	that	is	sent	with	this	Citrus	message
sender.	Citrus	uses	preemtive	authentication.	The	message	sender	only	sends	a	single
request	to	the	server	with	all	authentication	information	set	in	the	message	header.	The
request	which	determines	the	authentication	scheme	on	the	server	is	skipped.	This	is

Citrus	Reference	Guide

252Http

why	you	have	to	add	some	auth	scope	in	the	client	request	factory	so	Citrus	can	setup
an	authentication	cache	within	the	HTTP	context	in	order	to	have	preemtive
authentication.

As	a	result	of	the	basic	auth	client	request	factory	the	following	example	request	that	is
created	by	the	Citrus	HTTP	client	has	the	Authorization	header	set.	This	is	done	now
automatically	for	all	requests	with	this	HTTP	client.

POST	/test	HTTP/1.1
Accept:	text/xml,	*/*
Content-Type:	text/xml
Accept-Charset:	iso-8859-1,	us-ascii,	utf-8
Authorization:	Basic	c29tZVVzZXJuYW1lOnNvbWVQYXNzd29yZA==
User-Agent:	Jakarta	Commons-HttpClient/3.1
Host:	localhost:8080
Content-Length:	175
<testRequestMessage>
		<text>Hello	HttpServer</text>
</testRequestMessage>

HTTP	server	basic	authentication

Citrus	as	a	server	can	also	set	basic	authentication	so	clients	need	to	authenticate
properly	when	accessing	server	resources.

Citrus	Reference	Guide

253Http

<citrus-http:server	id="basicAuthHttpServer"
																port="8090"
																auto-start="true"
																resource-base="src/it/resources"
																security-handler="basicSecurityHandler"/>

<bean	id="securityHandler"	class="com.consol.citrus.http.security.SecurityHandlerFactory">
				<property	name="users">
								<list>
												<bean	class="com.consol.citrus.http.security.User">
																<property	name="name"	value="citrus"/>
																<property	name="password"	value="secret"/>
																<property	name="roles"	value="CitrusRole"/>
												</bean>
								</list>
				</property>
				<property	name="constraints">
								<map>
												<entry	key="/foo/*">
																<bean	class="com.consol.citrus.http.security.BasicAuthConstraint">
																				<constructor-arg	value="CitrusRole"/>
																</bean>
												</entry>
								</map>
				</property>
</bean>

We	have	set	a	security	handler	on	the	server	web	container	with	a	constraint	on	all
resources	with	/foo/*	.	Following	from	that	the	server	requires	basic	authentication	for
these	resources.	The	granted	users	and	roles	are	specified	within	the	security	handler
bean	definition.	Connecting	clients	have	to	set	the	basic	auth	HTTP	header	properly
using	the	correct	user	and	role	for	accessing	the	Citrus	server	now.

You	can	customize	the	security	handler	for	your	very	specific	needs	(e.g.	load	users	and
roles	with	JDBC	from	a	database).	Just	have	a	look	at	the	code	base	and	inspect	the
settings	and	properties	offered	by	the	security	handler	interface.

Tip	This	mechanism	is	not	restricted	to	basic	authentication	only.	With	other	settings	you
can	also	set	up	digest	or	form-based	authentication	constraints	very	easy.

HTTP	servlet	context	customization

The	Citrus	HTTP	server	uses	Spring	application	context	loading	on	startup.	For	high
customizations	you	can	provide	a	custom	servlet	context	file	which	holds	all	custom
configurations	as	Spring	beans	for	the	server.	Here	is	a	sample	servlet	context	with

Citrus	Reference	Guide

254Http

some	basic	Spring	MVC	components	and	the	central	HttpMessageController	which	is
responsible	for	handling	incoming	requests	(GET,	PUT,	DELETE,	POST,	etc.).

<bean	id="citrusHandlerMapping"	class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping"

<bean	id="citrusMethodHandlerAdapter"	class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter"
		<property	name="messageConverters">
				<util:list	id="converters">
						<bean	class="org.springframework.http.converter.StringHttpMessageConverter">
								<property	name="supportedMediaTypes">
										<util:list>
												<value>text/xml</value>
										</util:list>
								</property>
						</bean>
				</util:list>
		</property>
</bean>

<bean	id="citrusHttpMessageController"	class="com.consol.citrus.http.controller.HttpMessageController"
		<property	name="endpointAdapter">
						<bean
							class="com.consol.citrus.endpoint.adapter.EmptyResponseEndpointAdapter"/>
		</property>
</bean>

The	beans	above	are	responsible	for	proper	HTTP	server	configuration.	In	general	you
do	not	need	to	adjust	those	beans,	but	we	have	the	possibility	to	do	so	which	gives	us	a
great	customization	and	extension	points.	The	important	part	is	the	endpoint	adapter
definition	inside	the	HttpMessageController.	Once	a	client	request	was	accepted	the
adapter	is	responsible	for	generating	a	proper	response	to	the	client.

You	can	add	the	custom	servlet	context	as	file	resource	to	the	Citrus	HTTP	server
component.	Just	use	the	context-config-location	attribute	as	follows:

<citrus-http:server	id="helloHttpServer"
						port="8080"
						auto-start="true"
						context-config-location="classpath:com/consol/citrus/http/custom-servlet-context.xml"
						resource-base="src/it/resources"/>

Citrus	Reference	Guide

255Http

Citrus	Reference	Guide

256Http

WebSocket	support
The	WebSocket	message	protocol	builds	on	top	of	Http	standard	and	brings	bidirectional
communication	to	the	Http	client-server	world.	Citrus	is	able	to	send	and	receive
messages	with	WebSocket	connections	as	client	and	server.	The	Http	server
implementation	is	now	able	to	define	multiple	WebSocket	endpoints.	The	new	Citrus
WebSocket	client	is	able	to	publish	and	consumer	messages	via	bidirectional
WebSocket	protocol.

The	new	WebSocket	support	is	located	in	the	module	citrus-websocket	.	Therefore	we
need	to	add	this	module	to	our	project	as	dependency	when	we	are	about	to	use	the
WebSocket	features	in	Citrus.

<dependency>
				<groupId>com.consol.citrus</groupId>
				<artifactId>citrus-websocket</artifactId>
				<version>2.6.1</version>
</dependency>

As	Citrus	provides	a	customized	WebSocket	configuration	schema	for	the	Spring
application	context	configuration	files	we	have	to	add	name	to	the	top	level	beans
element.	Simply	include	the	websocket-config	namespace	in	the	configuration	XML	files
as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
						xmlns:citrus="http://www.citrusframework.org/schema/config"
						xmlns:citrus-websocket="http://www.citrusframework.org/schema/websocket/config"
						xsi:schemaLocation="
												http://www.springframework.org/schema/beans
												http://www.springframework.org/schema/beans/spring-beans.xsd
												http://www.citrusframework.org/schema/config
												http://www.citrusframework.org/schema/config/citrus-config.xsd
												http://www.citrusframework.org/schema/websocket/config
												http://www.citrusframework.org/schema/websocket/config/citrus-websocket-config.xsd"

				[...]

</beans>

Citrus	Reference	Guide

257Http-websocket

Now	our	project	is	ready	to	use	the	Citrus	WebSocket	support.	First	of	all	let	us	send	a
message	via	WebSocket	connection	to	some	server.

WebSocket	client

On	the	client	side	Citrus	offers	a	client	component	that	goes	directly	to	the	Spring	bean
application	context.	The	client	needs	a	server	endpoint	uri.	This	is	a	WebSocket	protocol
endpoint	uri.

<citrus-websocket:client	id="helloWebSocketClient"
				url="http://localhost:8080/hello"
				timeout="5000"/>

The	url	defines	the	endpoint	to	send	messages	to.	The	server	has	to	be	a	WebSocket
ready	web	server	that	supports	Http	connection	upgrade	for	WebSocket	protocols.
WebSocket	by	its	nature	is	an	asynchronous	bidirectional	protocol.	This	means	that	the
connection	between	client	and	server	remains	open	and	both	server	and	client	can	send
and	receive	messages.	So	when	the	Citrus	client	is	waiting	for	a	message	we	need	a
timeout	that	stops	the	asynchronous	waiting.	The	receiving	test	action	and	the	test	case
will	fail	when	such	a	timeout	is	raised.

The	WebSocket	client	will	automatically	open	a	connection	to	the	server	and	ask	for	a
connection	upgrade	to	WebSocket	protocol.	This	handshake	is	done	once	when	the
connection	to	the	server	is	established.	After	that	the	client	can	push	messages	to	the
server	and	on	the	other	side	the	server	can	push	messages	to	the	client.	Now	lets	first
push	some	messages	to	the	server:

<send	endpoint="helloWebSocketClient">
		<message>
						<payload>
										<TestMessage>
														<Text>Hello	WebSocketServer</Text>
										</TestMessage>
						</payload>
		</message>
</send>

The	connection	handshake	and	the	connection	upgrade	is	done	automatically	by	the
client.	After	that	the	message	is	pushed	to	the	server.	As	WebSocket	is	a	bidirectional
protocol	we	can	also	receive	messages	on	the	WebSocket	client.	These	messages	are
pushed	from	server	to	all	connected	clients.

Citrus	Reference	Guide

258Http-websocket

<receive	endpoint="helloWebSocketClient">
		<message>
						<payload>
										<TestMessage>
														<Text>Hello	WebSocketClient</Text>
										</TestMessage>
						</payload>
		</message>
</receive>

We	just	use	the	very	same	client	endpoint	component	in	a	message	receive	action.	The
client	will	wait	for	messages	from	the	server	and	once	received	perform	the	well	known
message	validation.	Here	we	expect	some	XML	message	payload.	This	completes	the
client	side	as	we	are	able	to	push	and	consumer	messages	via	WebSocket	connections.

Tip	Up	to	now	we	have	used	static	WebSocket	endpoint	URIs	in	our	client	component
configurations.	This	can	be	done	with	a	more	powerful	dynamic	endpoint	URI	in
WebSocket	client.	Similar	to	the	endpoint	resolving	mechanism	in	SOAP	you	can
dynamically	set	the	called	endpoint	uri	at	test	runtime	through	message	header	values.
By	default	Citrus	will	check	a	specific	header	entry	for	dynamic	endpoint	URI	which	is
simply	defined	for	each	message	sending	action	inside	the	test.

The	dynamicEndpointResolver	bean	must	implement	the	EndpointUriResolver
interface	in	order	to	resolve	dynamic	endpoint	uri	values.	Citrus	offers	a	default
implementation,	the	DynamicEndpointUriResolver,	which	uses	a	specific	message
header	for	setting	dynamic	endpoint	uri.	The	message	header	needs	to	specify	the
header	citrus_endpoint_uri	with	a	valid	request	uri.

<header>
										<element	name="citrus_endpoint_uri"	value="ws://localhost:8080/customers/${customerId}"
										</header>

The	specific	send	action	above	will	send	its	message	to	the	dynamic	endpoint
(ws://localhost:8080/customers/${customerId})	which	is	set	in	the	header
citrus_endpoint_uri	.

WebSocket	server	endpoints

Citrus	Reference	Guide

259Http-websocket

On	the	server	side	Citrus	has	a	Http	server	implementation	that	we	can	easily	start
during	test	runtime.	The	Http	server	accepts	connections	from	clients	and	also	supports
WebSocket	upgrade	strategies.	This	means	clients	can	ask	for	a	upgrade	to	the
WebSocket	standard.	In	this	handshake	the	server	will	upgrade	the	connection	to
WebSocket	and	afterwards	client	and	server	can	exchange	messages	over	this
connection.	This	means	the	connection	is	kept	alive	and	multiple	messages	can	be
exchanged.	Lets	see	how	WebSocket	endpoints	are	added	to	a	Http	server	component
in	Citrus.

<citrus-websocket:server	id="helloHttpServer"
								port="8080"
								auto-start="true"
								resource-base="src/it/resources">
				<citrus-websocket:endpoints>
								<citrus-websocket:endpoint	ref="websocket1"/>
								<citrus-websocket:endpoint	ref="websocket2"/>
				</citrus-websocket:endpoints>
</citrus-websocket:server>

<citrus-websocket:endpoint	id="websocket1"	path="/test1"/>
<citrus-websocket:endpoint	id="websocket2"	path="/test2"	timeout="10000"/>

The	embedded	Jetty	WebSocket	server	component	in	Citrus	now	is	able	to	define
multiple	WebSocket	endpoints.	The	WebSocket	endpoints	match	to	a	request	path	on
the	server	and	are	referenced	by	a	unique	id.	Each	WebSocket	endpoint	can	follow
individual	timeout	settings.	In	a	test	we	can	use	these	endpoints	directly	to	receive
messages.

Citrus	Reference	Guide

260Http-websocket

<testcase	name="httpWebSocketServerTest">
				<actions>
								<receive	endpoint="websocket1">
												<message>
																<data>
																		[...]
																</data>
												</message>
								</receive>

								<send	endpoint="websocket1">
												<message>
																<data>
																		[...]
																</data>
												</message>
								</send>
				</actions>
</testcase>

As	you	can	see	we	reference	the	endpoint	id	in	both	receive	and	send	actions.	Each
WebSocket	endpoint	holds	one	or	more	open	connections	to	its	clients.	Each	message
that	is	sent	is	pushed	to	all	connected	clients.	Each	client	can	send	messages	to	the
WebSocket	endpoint.

The	WebSocket	endpoint	component	handles	connection	handshakes	automatically	and
caches	all	open	sessions	in	memory.	By	default	all	connected	clients	will	receive	the
messages	pushed	from	server.	This	is	done	completely	behind	the	scenes.	The	Citrus
server	is	able	to	handle	multiple	WebSocket	endpoints	with	different	clients	connected	to
it	at	the	same	time.	This	is	why	we	have	to	choose	the	WebSocket	endpoint	on	the
server	by	its	identifier	when	sending	and	receiving	messages.

With	this	WebSocket	endpoints	we	change	the	Citrus	server	behavior	so	that	clients	can
upgrade	to	WebSocket	connection.	Now	we	have	a	bidirectional	connection	where	the
server	can	push	messages	to	the	client	and	vice	versa.

WebSocket	headers

The	WebSocket	standard	defines	some	default	headers	to	use	during	connection
upgrade.	These	headers	are	made	available	to	the	test	case	in	both	directions.	Citrus
will	handle	these	header	values	with	special	care	when	WebSocket	support	is	activated
on	a	server	or	client.	Now	WebSocket	messages	can	also	be	split	into	multiple	pieces.

Citrus	Reference	Guide

261Http-websocket

Each	message	part	is	pushed	separately	to	the	server	but	still	is	considered	to	be	a
single	message	payload.	The	server	has	to	collect	and	aggregate	all	messages	until	a
special	message	header	isLast	is	set	in	one	of	the	message	parts.

The	Citrus	WebSocket	client	can	slice	messages	into	several	parts.

<send	endpoint="webSocketClient">
				<message	type="json">
								<data>
								[
												{
																"event"	:	"client_message_1",
																"timestamp"	:	"citrus:currentDate()"
												},
								</data>
				</message>
				<header>
								<element	name="citrus_websocket_is_last"	value="false"/>
				</header>
</send>

<sleep	milliseconds="500"/>

<send	endpoint="webSocketClient">
				<message	type="json">
								<data>
												{
																"event"	:	"client_message_2",
																"timestamp"	:	"citrus:currentDate()"
												}
]
								</data>
				</message>
				<header>
								<element	name="citrus_websocket_is_last"	value="true"/>
				</header>
</send>

The	test	above	has	two	separate	send	operations	both	sending	to	a	WebSocket
endpoint.	The	first	sending	action	sets	the	header	citrus_websocket_is_last	to	false
which	indicates	that	the	message	is	not	complete	yet.	The	2nd	send	action	pushes	the
rest	of	the	message	to	the	server	and	set	the	citrus_websocket_is_last	header	to	true
.	Now	the	server	is	able	to	aggregate	the	message	pieces	to	a	single	message	payload.
The	result	is	a	valida	JSON	array	with	both	events	in	it.

Citrus	Reference	Guide

262Http-websocket

[
		{
				"event"	:	"client_message_1",
				"timestamp"	:	"2015-01-01"
		},
		{
				"event"	:	"client_message_2",
				"timestamp"	:	"2015-01-01"
		}
]

Now	the	server	part	in	Citrus	is	able	to	handle	these	sliced	messages,	too.	The	server
will	automatically	aggregate	those	message	parts	before	passing	it	to	the	test	case	for
validation.

Citrus	Reference	Guide

263Http-websocket

SOAP	WebServices
SOAP	Web	Services	over	HTTP	is	a	widely	used	communication	scenario	in	modern
enterprise	applications.	A	SOAP	Web	Service	client	is	posting	a	SOAP	request	via
HTTP	to	a	server.	SOAP	via	HTTP	is	a	synchronous	message	protocol	by	default	so	the
client	is	waiting	synchronously	for	the	response	message.	Citrus	provides	both	SOAP
client	and	server	components	in	order	to	meet	both	directions	of	this	scenario.	The
components	used	are	very	similar	to	the	HTTP	components	that	were	have	discussed	in
the	sections	before.

Note	The	SOAP	WebService	components	in	Citrus	are	kept	in	a	separate	Maven
module.	So	you	should	add	the	module	as	Maven	dependency	to	your	project
accordingly.

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-ws</artifactId>
		<version>2.6.1</version>
</dependency>

In	order	to	use	the	SOAP	WebService	support	you	need	to	include	the	specific	XML
configuration	schema	provided	by	Citrus.	See	following	XML	definition	to	find	out	how	to
include	the	citrus-ws	namespace.

<beans	xmlns="http://www.springframework.org/schema/beans"
							xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
							xmlns:citrus="http://www.citrusframework.org/schema/config"
							xmlns:citrus-ws="http://www.citrusframework.org/schema/ws/config"
							xsi:schemaLocation="
							http://www.springframework.org/schema/beans	
							http://www.springframework.org/schema/beans/spring-beans.xsd
							http://www.citrusframework.org/schema/config	
							http://www.citrusframework.org/schema/config/citrus-config.xsd
							http://www.citrusframework.org/schema/ws/config	
							http://www.citrusframework.org/schema/ws/config/citrus-ws-config.xsd">

				[...]

</beans>

Citrus	Reference	Guide

264Soap

Now	you	are	ready	to	use	the	customized	soap	configuration	elements	-	all	using	the
citrus-ws	prefix	-	in	your	Spring	configuration.

SOAP	client

Citrus	is	able	to	form	a	proper	SOAP	request	in	order	to	pass	it	to	the	server	via	HTTP
and	validate	the	respective	SOAP	response	message.	Let	us	see	how	a	message	client
for	SOAP	looks	like	in	the	Spring	configuration:

<citrus-ws:client	id="soapClient"
																							request-url="http://localhost:8090/test"
																							timeout="60000"/>

The	client	component	uses	the	request-url	in	order	to	access	the	server	resource.	The
client	will	automatically	build	a	proper	SOAP	request	message	including	the	SOAP
envelope,	SOAP	header	and	the	message	payload	as	SOAP	body.	This	means	that	you
as	a	tester	do	not	care	about	SOAP	envelope	specific	logic	in	the	test	case.	The	client
endpoint	component	saves	the	synchronous	SOAP	response	so	the	test	case	can
receive	this	message	with	a	normal	receive	test	action.

In	detail	you	as	a	tester	just	send	and	receive	using	the	same	client	endpoint	reference
just	as	you	would	do	with	a	synchronous	JMS	or	channel	communication.	In	case	no
response	message	is	available	in	time	according	to	the	timeout	settings	Citrus	raises	a
timeout	error	and	the	test	will	fail.

Important	The	SOAP	client	component	uses	a	SoapMessageFactory	implementation	in
order	to	create	the	SOAP	messages.	This	is	a	Spring	bean	added	to	the	Citrus	Spring
application	context.	Spring	offers	several	reference	implementations	as	message
factories	so	you	can	choose	one	of	them	(e.g.	for	SOAP	1.1	or	1.2	implementations).

<!--	Default	SOAP	Message	Factory	(SOAP	1.1)	-->
<bean	id="messageFactory"	class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<!--	SOAP	1.2	Message	Factory	-->
<bean	id="soap12MessageFactory"	class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"
		<property	name="soapVersion">
				<util:constant	static-field="org.springframework.ws.soap.SoapVersion.SOAP_12"/>
		</property>
</bean>

Citrus	Reference	Guide

265Soap

By	default	Citrus	will	search	for	a	bean	with	id	'messageFactory'	.	In	case	you	intend	to
use	different	identifiers	you	need	to	tell	the	SOAP	client	component	which	message
factory	to	use:

<citrus-ws:client	id="soapClient"
									request-url="http://localhost:8090/test"
									message-factory="soap12MessageFactory"/>

Tip	Up	to	now	we	have	used	a	static	endpoint	request	url	for	the	SOAP	message
sender.	Besides	that	we	can	use	dynamic	endpoint	uri	in	configuration.	We	just	use	an
endpoint	uri	resolver	instead	of	the	static	request	url	like	this:

<citrus-ws:client	id="soapClient"
													endpoint-resolver="dynamicEndpointResolver"	
													message-factory="soap12MessageFactory"/>

<bean	id="dynamicEndpointResolver"	
							class="com.consol.citrus.endpoint.resolver.DynamicEndpointUriResolver"/>

The	dynamicEndpointResolver	bean	must	implement	the	EndpointUriResolver
interface	in	order	to	resolve	dynamic	endpoint	uri	values.	Citrus	offers	a	default
implementation,	the	DynamicEndpointUriResolver,	which	uses	a	specific	message
header	for	setting	the	dynamic	endpoint	uri	for	each	message.	The	message	header
needs	to	specify	the	header	citrus_endpoint_uri	with	a	valid	request	uri.	Just	like	this:

<header>
		<element	name="citrus_endpoint_uri"	
											value="http://localhost:${port}/${context}"	/>
</header>

As	you	can	see	you	can	use	dynamic	test	variables	then	in	order	to	build	the	request	uri
to	use.	The	SOAP	client	evaluates	the	endpoint	uri	header	and	sends	the	message	to
this	server	resource.	You	can	use	a	different	uri	value	then	in	different	test	cases	and
send	actions.

SOAP	server

Every	client	need	a	server	to	talk	to.	When	receiving	SOAP	messages	we	require	a	web
server	instance	listening	on	a	port.	Citrus	is	using	an	embedded	Jetty	server	instance	in
combination	with	the	Spring	Web	Service	API	in	order	to	accept	SOAP	request	calls	asa

Citrus	Reference	Guide

266Soap

server.	See	how	the	Citrus	SOAP	server	is	configured	in	the	Spring	configuration.

<citrus-ws:server	id="helloSoapServer"
													port="8080"
													auto-start="true"
													resource-base="src/it/resources"/>

The	server	component	is	able	to	start	automatically	when	application	starts	up.	In	the
example	above	the	server	is	listening	for	requests	on	port	8080	.	This	setup	uses	the
standard	connector	configuration	for	the	Jetty	server.	For	detailed	customization	the
Citrus	Jetty	server	configuration	also	supports	explicit	connector	configurations
(@connector	and	@connectors	attributes).	For	more	information	please	see	the	Jetty
connector	documentation.

Test	cases	interact	with	this	server	instance	via	message	channels	by	default.	The
server	component	provides	an	inbound	channel	that	holds	incoming	request	messages.
The	test	case	can	receive	those	requests	from	the	channel	with	a	normal	receive	test
action.	In	a	second	step	the	test	case	can	provide	a	synchronous	response	message	as
reply	which	will	be	automatically	sent	back	to	the	calling	SOAP	client	as	response.

The	figure	above	shows	the	basic	setup	with	inbound	channel	and	reply	channel.	You	as
a	tester	should	not	worry	about	this	to	much.	By	default	you	as	a	tester	just	use	the
server	as	synchronous	endpoint	in	your	test	case.	This	means	that	you	simply	receive	a
message	from	the	server	and	send	a	response	back.

Citrus	Reference	Guide

267Soap

<testcase	name="soapServerTest">
				<actions>
								<receive	endpoint="helloSoapServer">
												<message>
																<data>
																		[...]
																</data>
												</message>
								</receive>

								<send	endpoint="helloSoapServer">
												<message>
																<data>
																		[...]
																</data>
												</message>
								</send>
				</actions>
</testcase>

As	you	can	see	we	reference	the	server	id	in	both	receive	and	send	actions.	The	Citrus
server	instance	will	automatically	send	the	response	back	to	the	calling	client.	In	most
cases	this	is	what	you	need	to	simulate	a	SOAP	server	instance	in	Citrus.	Of	course	we
have	some	more	customization	possibilities	that	we	will	go	over	later	on.	This
customizations	are	optional	so	you	can	also	skip	the	next	description	on	endpoint
adapters	if	you	are	happy	with	just	what	you	have	learned	about	the	SOAP	server
component	in	Citrus.

Just	like	the	HTTP	server	component	the	SOAP	server	component	by	default	uses	the
channel	endpoint	adapter	in	order	to	forward	all	incoming	requests	to	an	in	memory
message	channel.	This	is	done	completely	behind	the	scenes.	The	Citrus	configuration
has	become	a	lot	easier	here	so	you	do	not	have	to	configure	this	by	default.	When
nothing	else	is	set	the	test	case	does	not	worry	about	that	settings	on	the	server	and	just
uses	the	server	id	reference	as	synchronous	endpoint.

Tip	The	default	channel	endpoint	adapter	automatically	creates	an	inbound	message
channel	where	incoming	messages	are	stored	to	internally.	So	if	you	need	to	clean	up	a
server	that	has	already	stored	some	incoming	messages	you	can	do	this	easily	by
purging	the	internal	message	channel.	The	message	channel	follows	a	naming
convention	{serverName}.inbound	where	{serverName}	is	the	Spring	bean	name	of
the	Citrus	server	endpoint	component.	If	you	purge	this	internal	channel	in	a	before	test
nature	you	are	sure	that	obsolete	messages	on	a	server	instance	get	purged	before
each	test	is	executed.

Citrus	Reference	Guide

268Soap

However	we	do	not	want	to	loose	the	great	extendability	and	customizing	capabilities	of
the	Citrus	server	component.	This	is	why	you	can	optionally	define	the	endpoint	adapter
implementation	used	by	the	Citrus	SOAP	server.	We	provide	several	message	endpoint
adapter	implementations	for	different	simulation	strategies.	With	these	endpoint	adapters
you	should	be	able	to	generate	proper	SOAP	response	messages	for	the	client	in
various	ways.	Before	we	have	a	closer	look	at	the	different	adapter	implementations	we
want	to	show	how	you	can	set	a	custom	endpoint	adapter	on	the	server	component.

<citrus-ws:server	id="helloSoapServer"
								port="8080"
								auto-start="true"
								endpoint-adapter="emptyResponseEndpointAdapter"
								resource-base="src/it/resources"/>

								<citrus:empty-response-adapter	id="emptyResponseEndpointAdapter"/>

With	this	endpoint	adapter	configuration	above	we	change	the	Citrus	server	behavior
from	scratch.	Now	the	server	automatically	sends	back	an	empty	SOAP	response
message	every	time.	Setting	a	custom	endpoint	adapter	implementation	with	custom
logic	is	easy	as	defining	a	custom	endpoint	adapter	Spring	bean	and	reference	it	in	the
server	attribute.	You	can	read	more	about	endpoint	adapters	inendpoint-adapter.

SOAP	send	and	receive

Citrus	provides	test	actions	for	sending	and	receiving	messages	of	all	kind.	Different
message	content	and	different	message	transports	are	available	to	these	send	and
receive	actions.	When	using	SOAP	message	transport	we	might	need	to	set	special
information	on	that	messages.	These	are	special	SOAP	headers,	SOAP	faults	and	so
on.	So	we	have	created	a	special	SOAP	namespace	for	all	your	SOAP	related	send	and
receive	operations	in	a	XML	DSL	test:

<spring:beans	xmlns="http://www.citrusframework.org/schema/testcase"
										xmlns:spring="http://www.springframework.org/schema/beans"
										xmlns:ws="http://www.citrusframework.org/schema/ws/testcase"
										xsi:schemaLocation="http://www.springframework.org/schema/beans
										http://www.springframework.org/schema/beans/spring-beans.xsd
										http://www.citrusframework.org/schema/testcase
										http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd
										http://www.citrusframework.org/schema/ws/testcase
										http://www.citrusframework.org/schema/ws/testcase/citrus-ws-testcase.xsd">

Citrus	Reference	Guide

269Soap

Once	you	have	added	the	ws	namespace	from	above	to	your	test	case	you	are	ready	to
use	special	send	and	receive	operations	in	the	test.

XML	DSL

<ws:send	endpoint="soapClient"	soap-action="MySoapService/sayHello">
				<message>
								[...]
				</message>
</ws:send>

										<ws:receive	endpoint="soapServer"	soap-action="MySoapService/sayHello">
				<message>
								[...]
				</message>
</ws:receive>

The	special	namespace	contains	following	elements:

send:	Special	send	operation	for	sending	out	SOAP	message	content.
receive:	Special	receive	operation	for	validating	SOAP	message	content.
send-fault:	Special	send	operation	for	sending	out	SOAP	fault	message	content.
assert-fault:	Special	assertion	operation	for	expecting	a	SOAP	fault	message	as
response.

The	special	SOAP	related	send	and	receive	actions	can	coexist	with	normal	Citrus
actions.	In	fact	you	can	mix	those	action	types	as	you	want	inside	of	a	test	case.	All	test
actions	that	work	with	SOAP	message	content	on	client	and	server	side	should	use	this
special	namespace.

In	Java	DSL	we	have	something	similar	to	that.	The	Java	DSL	provides	special	SOAP
related	features	when	calling	the	soap()	method.	With	a	fluent	API	you	are	able	to	then
send	and	receive	SOAP	message	content	as	client	and	server.

Java	DSL

Citrus	Reference	Guide

270Soap

@CitrusTest
public	void	soapTest()	{

				soap().client("soapClient")
								.send()
								.soapAction("MySoapService/sayHello")
								.payload("...");

				soap().client("soapClient")
								.receive()
								.payload("...");
}

In	the	following	sections	the	SOAP	related	capabilities	are	discussed	in	more	detail.

SOAP	headers

SOAP	defines	several	header	variations	that	we	discuss	in	the	following	sections.	First
of	all	we	deal	with	the	special	SOAP	action	header.	In	case	we	need	to	set	this	SOAP
action	header	we	simply	need	to	use	the	special	soap-action	attribute	in	our	test.	The
special	header	key	in	combination	with	a	underlying	SOAP	client	endpoint	component
constructs	the	SOAP	action	in	the	SOAP	message.

XML	DSL

<ws:send	endpoint="soapClient"	soap-action="MySoapService/sayHello">
				<message>
								[...]
				</message>
</ws:send>

										<ws:receive	endpoint="soapServer"	soap-action="MySoapService/sayHello">
				<message>
								[...]
				</message>
</ws:receive>

Java	DSL

Citrus	Reference	Guide

271Soap

@CitrusTest
public	void	soapActionTest()	{

				soap().client("soapClient")
								.send()
								.soapAction("MySoapService/sayHello")
								.payload("...");

				soap().server("soapClient")
								.receive()
								.soapAction("MySoapService/sayHello")
								.payload("...");
}

The	SOAP	action	header	is	added	to	the	message	before	sending	and	validated	when
used	in	a	receive	operation.

Note	The	soap-action	attribute	is	defined	in	the	special	SOAP	namespace	in	Citrus.	We
recommend	to	use	this	namespace	for	all	your	send	and	receive	operations	that	deal
with	SOAP	message	content.	However	you	can	also	set	the	special	SOAP	action	header
when	not	using	the	special	SOAP	namespace:	Just	set	this	header	in	your	test	action:

<header>
				<element	name="citrus_soap_action"	value="sayHello"/>
</header>

Secondly	a	SOAP	message	is	able	to	contain	customized	SOAP	headers.	These	are
key-value	pairs	where	the	key	is	a	qualified	name	(QName)	and	the	value	a	normal
String	value.

<header>
				<element	name="{http://www.consol.de/sayHello}h1:Operation"	value="sayHello"/>
				<element	name="{http://www.consol.de/sayHello}h1:Request"	value="HelloRequest"/>
</header>

The	key	is	defined	as	qualified	QName	character	sequence	which	has	a	mandatory	XML
namespace	and	a	prefix	along	with	a	header	name.	Last	not	least	a	SOAP	header	can
contain	whole	XML	fragment	values.	The	next	example	shows	how	to	set	these	XML
fragments	as	SOAP	header	in	Citrus:

Citrus	Reference	Guide

272Soap

<header>
				<data>
						<![CDATA[
										<User	xmlns="http://www.consol.de/schemas/sayHello">
														<UserId>123456789</UserId>
														<Handshake>S123456789</Handshake>
										</User>
]]>
				</data>
</header>

You	can	also	use	external	file	resources	to	set	this	SOAP	header	XML	fragment	as
shown	in	this	last	example	code:

<header>
				<resource	file="classpath:request-soap-header.xml"/>
</header>

This	completes	the	SOAP	header	possibilities	for	sending	SOAP	messages	with	Citrus.
Of	course	you	can	also	use	these	variants	in	SOAP	message	header	validation.	You
define	expected	SOAP	headers,	SOAP	action	and	XML	fragments	and	Citrus	will	match
incoming	request	to	that.	Just	use	citrus_soap_action	header	key	in	your	receiving
message	action	and	you	validate	this	SOAP	header	accordingly.

When	validating	SOAP	header	XML	fragments	you	need	to	define	the	whole	XML
header	fragment	as	expected	header	data	like	this:

Citrus	Reference	Guide

273Soap

<receive	endpoint="soapMessageEndpoint">
				<message>
								<data>
										<![CDATA[
												<ResponseMessage	xmlns="http://citrusframework.org/schema">
														<resultCode>OK</resultCode>
												</ResponseMessage>
]]>
								</data>
				</message>
				<header>
								<data>
												<![CDATA[
																<SOAP-ENV:Header
																				xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
																				<customHeader	xmlns="http://citrusframework.org/headerschema">
																								<correlationId>${correlationId}</correlationId>
																								<applicationId>${applicationId}</applicationId>
																								<trackingId>${trackingId}</trackingId>
																								<serviceId>${serviceId}</serviceId>
																								<interfaceVersion>1.0</interfaceVersion>
																								<timestamp>@ignore@</timestamp>
																				</customHeader>
																</SOAP-ENV:Header>
]]>
								</data>
								<element	name="citrus_soap_action"	value="doResponse"/>
				</header>
</receive>

As	you	can	see	the	SOAP	XML	header	validation	can	combine	header	element	and	XML
fragment	validation.	This	is	also	likely	to	be	used	when	dealing	with	WS-Security
message	headers.

SOAP	HTTP	mime	headers

Besides	the	SOAP	specific	header	elements	the	HTTP	mime	headers	(e.g.	Content-
Type,	Content-Length,	Authorization)	might	be	candidates	for	validation,	too.	When
using	HTTP	as	transport	layer	the	SOAP	message	may	define	those	mime	headers.	The
tester	is	able	to	send	and	validate	these	headers	inside	the	test	case,	although	these
HTTP	headers	are	located	outside	of	the	SOAP	envelope.	Let	us	first	of	all	speak	about
validating	the	HTTP	mime	headers.	This	feature	is	not	enabled	by	default.	We	have
enable	this	in	our	SOAP	server	configuration.

Citrus	Reference	Guide

274Soap

<citrus-ws:server	id="helloSoapServer"
								port="8080"
								auto-start="true"
								handle-mime-headers="true"
								resource-base="src/it/resources"/>

With	this	configuration	Citrus	will	handle	all	available	mime	headers	and	pass	those	to
the	test	case	for	normal	header	validation.

<ws:receive	endpoint="helloSoapServer">
				<message>
								<payload>
												<SoapMessageRequest	xmlns="http://www.consol.de/schemas/sample.xsd">
																<Operation>Validate	mime	headers</Operation>
												</SoapMessageRequest>
								</payload>
				</message>
				<header>
								<element	name="Content-Type"	value="text/xml;	charset=utf-8"/>
				</header>
</ws:receive>

The	validation	of	these	HTTP	mime	headers	is	as	usual	now	that	we	have	enabled	the
mime	header	handling	in	the	SOAP	server.	The	transport	HTTP	headers	are	available	in
the	header	just	like	the	normal	SOAP	header	elements	do.	So	you	can	validate	the
headers	as	usual.

So	much	for	receiving	and	validating	HTTP	mime	message	headers	with	SOAP
communication.	Now	we	want	to	send	special	mime	headers	on	client	side.	We
overwrite	or	add	mime	headers	to	our	sending	action.	We	mark	some	headers	with
following	prefix	"citrushttp"	.	This	tells	the	SOAP	client	to	add	these	headers	to	the
HTTP	header	section	outside	the	SOAP	envelope.	Keep	in	mind	that	header	elements
without	this	prefix	go	right	into	the	SOAP	header	section	by	default.

<ws:send	endpoint="soapClient">
		[...]
		<header>
				<element	name="citrus_http_operation"	value="foo"/>
		</header>
		[...]
</ws:send>

Citrus	Reference	Guide

275Soap

The	listing	above	defines	a	HTTP	mime	header	operation	.	The	header	prefix
citrushttp	is	cut	off	before	the	header	goes	into	the	HTTP	header	section.	With	this
feature	we	can	decide	where	exactly	our	header	information	is	located	in	our	resulting
client	message.

SOAP	Envelope	handling

By	default	Citrus	will	remove	the	SOAP	envelope	in	message	converter.	Following	from
that	the	Citrus	test	case	is	independent	from	SOAP	message	formats	and	is	not
bothered	with	handling	of	SOAP	envelope	at	all.	This	is	great	in	most	cases	but
sometimes	it	might	be	mandatory	to	also	see	the	whole	SOAP	envelope	inside	the	test
case	receive	action.	Therefore	you	can	keep	the	SOAP	envelope	for	incoming
messages	by	configuration	on	the	SOAP	server	side.

<citrus-ws:server	id="helloSoapServer"
								port="8080"
								auto-start="true"
								keep-soap-envelope="true"/>

With	this	configuration	Citrus	will	handle	all	available	mime	headers	and	pass	those	to
the	test	case	for	normal	header	validation.

<ws:receive	endpoint="helloSoapServer">
<message>
		<payload>
				<SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
						<SOAP-ENV:Header/>
						<SOAP-ENV:Body>
								<SoapMessageRequest	xmlns="http://www.consol.de/schemas/sample.xsd">
								<Operation>Validate	mime	headers</Operation>
								</SoapMessageRequest>
						</SOAP-ENV:Body>
				</SOAP-ENV:Envelope>
		</payload>
		</message>
</ws:receive>

So	now	you	are	able	to	validate	the	whole	SOAP	envelope	as	is.	This	might	be	of
interest	in	very	special	cases.	As	mentioned	by	default	the	Citrus	server	will
automatically	remove	the	SOAP	envelope	and	translate	the	SOAP	body	to	the	message
payload	for	straight	forward	validation	inside	the	test	cases.

Citrus	Reference	Guide

276Soap

SOAP	1.2

By	default	Citrus	components	use	SOAP	1.1	version.	Fortunately	SOAP	1.2	is	supported
same	way.	As	we	already	mentioned	before	the	Citrus	SOAP	components	do	use	a
SOAP	message	factory	for	creating	messages	in	SOAP	format.

<!--	SOAP	1.1	Message	Factory	-->
<bean	id="soapMessageFactory"	class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"
		<property	name="soapVersion">
				<util:constant	static-field="org.springframework.ws.soap.SoapVersion.SOAP_11"/>
		</property>
</bean>

<!--	SOAP	1.2	Message	Factory	-->
<bean	id="soap12MessageFactory"	class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"
		<property	name="soapVersion">
				<util:constant	static-field="org.springframework.ws.soap.SoapVersion.SOAP_12"/>
		</property>
</bean>

As	you	can	see	the	SOAP	message	factory	can	either	create	SOAP	1.1	or	SOAP	1.2
messages.	This	is	how	Citrus	can	create	both	SOAP	1.1	and	SOAP	1.2	messages.	Of
course	you	can	have	multiple	message	factories	configured	in	your	project.	Just	set	the
message	factory	on	a	WebService	client	or	server	component	in	order	to	define	which
version	should	be	used.

<citrus-ws:client	id="soap12Client"
												request-url="http://localhost:8080/echo"
												message-factory="soap12MessageFactory"
												timeout="1000"/>

<citrus-ws:server	id="soap12Server"
										port="8080"
										auto-start="true"
										root-parent-context="true"
										message-factory="soap12MessageFactory"/>

By	default	Citrus	components	do	connect	with	a	message	factory	called
messageFactory	no	matter	what	SOAP	version	this	factory	is	using.

SOAP	faults

Citrus	Reference	Guide

277Soap

SOAP	faults	describe	a	failed	communication	in	SOAP	WebServices	world.	Citrus	is
able	to	send	and	receive	SOAP	fault	messages.	On	server	side	Citrus	can	simulate
SOAP	faults	with	fault-code,	fault-reason,	fault-actor	and	fault-detail.	On	client	side
Citrus	is	able	to	handle	and	validate	SOAP	faults	in	response	messages.	The	next
section	describes	how	to	deal	with	SOAP	faults	in	Citrus.

Send	SOAP	faults

As	Citrus	simulates	SOAP	server	endpoints	you	also	need	to	think	about	sending	a
SOAP	fault	to	the	calling	client.	In	case	Citrus	receives	a	SOAP	request	as	a	server	you
can	respond	with	a	proper	SOAP	fault	if	necessary.

Please	keep	in	mind	that	we	use	the	citrus-ws	extension	for	sending	SOAP	faults	in	our
test	case,	as	shown	in	this	very	simple	example:

XML	DSL

<ws:send-fault	endpoint="helloSoapServer">
				<ws:fault>
								<ws:fault-code>{http://www.citrusframework.org/faults}citrus:TEC-1000</ws:fault-code>
								<ws:fault-string>Invalid	request</ws:fault-string>
								<ws:fault-actor>SERVER</ws:fault-actor>
								<ws:fault-detail>
												<![CDATA[
																<FaultDetail	xmlns="http://www.consol.de/schemas/sayHello.xsd">
																				<MessageId>${messageId}</MessageId>
																				<CorrelationId>${correlationId}</CorrelationId>
																				<ErrorCode>TEC-1000</ErrorCode>
																				<Text>Invalid	request</Text>
																</FaultDetail>
]]>
								</ws:fault-detail>
				</ws:fault>
				<ws:header>
								<ws:element	name="citrus_soap_action"	value="sayHello"/>
				</ws:header>
</ws:send-fault>

The	example	generates	a	simple	SOAP	fault	that	is	sent	back	to	the	calling	client.	The
fault-actor	and	the	fault-detail	elements	are	optional.	Same	with	the	soap	action	declared
in	the	special	Citrus	header	citrus_soap_action	.	In	the	sample	above	the	fault-detail

Citrus	Reference	Guide

278Soap

data	is	placed	inline	as	XML	data.	As	an	alternative	to	that	you	can	also	set	the	fault-
detail	via	external	file	resource.	Just	use	the	file	attribute	as	fault	detail	instead	of	the
inline	CDATA	definition.

XML	DSL

<ws:send-fault	endpoint="helloSoapServer">
				<ws:fault>
								<ws:fault-code>{http://www.citrusframework.org/faults}citrus:TEC-1000</ws:fault-code>
								<ws:fault-string>Invalid	request</ws:fault-string>
								<ws:fault-actor>SERVER</ws:fault-actor>
								<ws:fault-detail	file="classpath:myFaultDetail.xml"/>
				</ws:fault>
				<ws:header>
								<ws:element	name="citrus_soap_action"	value="sayHello"/>
				</ws:header>
</ws:send-fault>

The	generated	SOAP	fault	looks	like	follows:

HTTP/1.1	500	Internal	Server	Error
Accept:	text/xml,	text/html,	image/gif,	image/jpeg,	*;	q=.2,	*/*;	q=.2
SOAPAction:	"sayHello"
Content-Type:	text/xml;	charset=utf-8
Content-Length:	680
Server:	Jetty(7.0.0.pre5)

<SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
				<SOAP-ENV:Header/>
				<SOAP-ENV:Body>
								<SOAP-ENV:Fault>
												<faultcode	xmlns:citrus="http://www.citrusframework.org/faults">citrus:TEC-1000</
												<faultstring	xml:lang="en">Invalid	request</faultstring>
												<detail>
																<FaultDetail	xmlns="http://www.consol.de/schemas/sayHello.xsd">
																				<MessageId>9277832563</MessageId>
																				<CorrelationId>4346806225</CorrelationId>
																				<ErrorCode>TEC-1000</ErrorCode>
																				<Text>Invalid	request</Text>
																</FaultDetail>
												</detail>
								</SOAP-ENV:Fault>
				</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Citrus	Reference	Guide

279Soap

Important	Notice	that	the	send	action	uses	a	special	XML	namespace	(ws:send).	This
ws	namespace	belongs	to	the	Citrus	WebService	extension	and	adds	SOAP	specific
features	to	the	normal	send	action.	When	you	use	such	ws	extensions	you	need	to
define	the	additional	namespace	in	your	test	case.	This	is	usually	done	in	the	root
element	where	we	simply	declare	the	citrus-ws	specific	namespace	like	follows.```xml

###	Receive	SOAP	faults

In	case	you	receive	SOAP	response	messages	as	a	client	endpoint	you	may	need	to	handle	and	validate	SOAP	faults	in	error	situations.	Citrus	can	validate	SOAP	faults	with	fault-code,	fault-actor,	fault-string	and	fault-detail	values.

As	a	client	we	send	out	a	request	and	receive	a	SOAP	fault	as	response.	By	default	the	client	sending	action	in	Citrus	throws	a	specific	exception	when	the	SOAP	response	is	a	SOAP	fault	element.	This	exception	is	called	***SoapFaultClientException***	coming	from	the	Spring	API.	You	as	a	tester	can	assert	this	kind	of	exception	in	a	test	case	in	order	to	expect	the	SOAP	error.

XML	DSL	

```xml
<assert	class="org.springframework.ws.soap.client.SoapFaultClientException">
				<send	endpoint="soapClient">
								<message>
												<payload>
																<SoapFaultForcingRequest
																		xmlns="http://www.consol.de/schemas/soap">
																				<Message>This	is	invalid</Message>
																</SoapFaultForcingRequest>
												</payload>
								</message>
				</send>
</assert>

The	SOAP	message	sending	action	is	surrounded	by	a	simple	assert	action.	The
asserted	exception	class	is	the	SoapFaultClientException	that	we	have	mentioned
before.	This	means	that	the	test	expects	the	exception	to	be	thrown	during	the
communication.	In	case	the	exception	is	missing	the	test	is	fails.

So	far	we	have	used	the	Citrus	core	capabilities	of	asserting	an	exception.	This	basic
assertion	test	action	is	not	able	to	offer	direct	access	to	the	SOAP	fault-code	and	fault-
string	values	for	validation.	The	basic	assert	action	simply	has	no	access	to	the	actual
SOAP	fault	elements.	Fortunately	we	can	use	the	citrus-ws	namespace	again	which
offers	a	special	assert	action	implementation	especially	designed	for	SOAP	faults	in	this
case.

XML	DSL

Citrus	Reference	Guide

280Soap



<ws:assert-fault	fault-code="{http://www.citrusframework.org/faults}TEC-1001"
											fault-string="Invalid	request">
											fault-actor="SERVER">
		<ws:when>
				<send	endpoint="soapClient">
								<message>
												<payload>
																<SoapFaultForcingRequest
																		xmlns="http://www.consol.de/schemas/soap">
																				<Message>This	is	invalid</Message>
																</SoapFaultForcingRequest>
												</payload>
								</message>
				</send>
		</ws:when>
</ws:assert-fault>

The	special	assert	action	offers	several	attributes	to	validate	the	expected	SOAP	fault.
Namely	these	are	"fault-code",	"fault-string"	and	"fault-actor"	.	The	fault-code	is
defined	as	a	QName	string	and	is	mandatory	for	the	validation.	The	fault	assertion	also
supports	test	variable	replacement	as	usual	(e.g.	fault-code="
{http://www.citrusframework.org/faults}${myFaultCode}").

The	time	you	use	SOAP	fault	validation	you	need	to	tell	Citrus	how	to	validate	the	SOAP
faults.	Citrus	needs	an	instance	of	a	SoapFaultValitator	that	we	need	to	add	to	the
Spring	application	context.	By	default	Citrus	is	searching	for	a	bean	with	the	id
'soapFaultValidator'	.

<bean	id="soapFaultValidator"	class="com.consol.citrus.ws.validation.SimpleSoapAttachmentValidator"

Citrus	offers	several	reference	implementations	for	these	SOAP	fault	validators.	These
are:

com.consol.citrus.ws.validation.SimpleSoapAttachmentValidator
com.consol.citrus.ws.validation.SimpleSoapFaultValidator
com.consol.citrus.ws.validation.XmlSoapFaultValidator

Please	see	the	API	documentation	for	details	on	the	available	reference
implementations.	Of	course	you	can	also	define	your	own	SOAP	validator	logic	(would
be	great	if	you	could	share	your	ideas!).	In	the	test	case	you	can	explicitly	choose	the
validator	to	use:

Citrus	Reference	Guide

281Soap

http://www.citrusframework.org/faults}${myFaultCode}


XML	DSL

<ws:assert-fault	fault-code="{http://www.citrusframework.org/faults}TEC-1001"
														fault-string="Invalid	request"
														fault-validator="mySpecialSoapFaultValidator">
			[...]
</ws:assert-fault>

Important	Another	important	thing	to	notice	when	asserting	SOAP	faults	is	the	fact,	that
Citrus	needs	to	have	a	SoapMessageFactory	available	in	the	Spring	application
context.	If	you	deal	with	SOAP	messaging	in	general	you	will	already	have	such	a	bean
in	the	context.

<bean	id="messageFactory"	class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

Choose	one	of	Spring's	reference	implementations	or	some	other	implementation	as
SOAP	message	factory.	Citrus	will	search	for	a	bean	with	id	'messageFactory'	by
default.	In	case	you	have	other	beans	with	different	identifiers	please	choose	the
messageFactory	in	the	test	case	assert	action:

XML	DSL

<ws:assert-fault	fault-code="{http://www.citrusframework.org/faults}TEC-1001"
														fault-string="Invalid	request"
														message-factory="mySpecialMessageFactory">
			[...]
</ws:assert-fault>

Important	Notice	the	ws	specific	namespace	that	belongs	to	the	Citrus	WebService
extensions.	As	the	ws:assert	action	uses	SOAP	specific	features	we	need	to	refer	to	the
citrus-ws	namespace.	You	can	find	the	namespace	declaration	in	the	root	element	in
your	test	case.```xml

Citrus	Reference	Guide

282Soap



Citrus	is	also	able	to	validate	SOAP	fault	details.	See	the	following	example	for	understanding	how	to	do	it:

**XML	DSL**	

```xml
<ws:assert-fault	fault-code="{http://www.citrusframework.org/faults}TEC-1001"
											fault-string="Invalid	request">
				<ws:fault-detail>
						<![CDATA[
										<FaultDetail	xmlns="http://www.consol.de/schemas/soap">
														<ErrorCode>TEC-1000</ErrorCode>
														<Text>Invalid	request</Text>
										</FaultDetail>
]]>
				</ws:fault-detail>
				<ws:when>
								<send	endpoint="soapClient">
												<message>
																<payload>
																				<SoapFaultForcingRequest
																						xmlns="http://www.consol.de/schemas/soap">
																								<Message>This	is	invalid</Message>
																				</SoapFaultForcingRequest>
																</payload>
												</message>
								</send>
				</ws:when>
</ws:assert-fault>

The	expected	SOAP	fault	detail	content	is	simply	added	to	the	ws:assert	action.	The
SoapFaultValidator	implementation	defined	in	the	Spring	application	context	is
responsible	for	checking	the	SOAP	fault	detail	with	validation	algorithm.	The	validator
implementation	checks	the	detail	content	to	meet	the	expected	template.	Citrus	provides
some	default	SoapFaultValidator	implementations.	Supported	algorithms	are	pure
String	comparison	(com.consol.citrus.ws.validation.SimpleSoapFaultValidator)	as
well	as	XML	tree	walk-through
(com.consol.citrus.ws.validation.XmlSoapFaultValidator).

When	using	the	XML	validation	algorithm	you	have	the	complete	power	as	known	from
normal	message	validation	in	receive	actions.	This	includes	schema	validation	or
ignoring	elements	for	instance.	On	the	fault-detail	element	you	are	able	to	add	some
validation	settings	such	as	schema-validation=enabled/disabled,	custom	schema-
repository	and	so	on.

Citrus	Reference	Guide

283Soap

XML	DSL

<ws:assert-fault	fault-code="{http://www.citrusframework.org/faults}TEC-1001"
											fault-string="Invalid	request">
				<ws:fault-detail	schema-validation="false">
						<![CDATA[
										<FaultDetail	xmlns="http://www.consol.de/schemas/soap">
														<ErrorCode>TEC-1000</ErrorCode>
														<Text>Invalid	request</Text>
										</FaultDetail>
]]>
				</ws:fault-detail>
				<ws:when>
								<send	endpoint="soapClient">
												[...]
								</send>
				</ws:when>
</ws:assert-fault>

Please	see	also	the	Citrus	API	documentation	for	available	validator	implementations
and	validation	algorithms.

So	far	we	have	used	assert	action	wrapper	in	order	to	catch	SOAP	fault	exceptions	and
validate	the	SOAP	fault	content.	Now	we	have	an	alternative	way	of	handling	SOAP
faults	in	Citrus.	With	exceptions	the	send	action	aborts	and	we	do	not	have	a	receive
action	for	the	SOAP	fault.	This	might	be	inadequate	if	we	need	to	validate	the	SOAP
message	content	(SOAPHeader	and	SOAPBody)	coming	with	the	SOAP	fault.	Therefore
the	web	service	message	sender	component	offers	several	fault	strategy	options.	In	the
following	we	discuss	the	propagation	of	SOAP	fault	as	messages	to	the	receive	action
as	we	would	do	with	normal	SOAP	messages.

<citrus-ws:client	id="soapClient"
																															request-url="http://localhost:8090/test"
																															fault-strategy="propagateError"/>

We	have	configured	a	fault	strategy	propagateError	so	the	message	sender	will	not
raise	client	exceptions	but	inform	the	receive	action	with	SOAP	fault	message	contents.
By	default	the	fault	strategy	raises	client	exceptions	(fault-strategy=	throwsException).

So	now	that	we	do	not	raise	exceptions	we	can	leave	out	the	assert	action	wrapper	in
our	test.	Instead	we	simply	use	a	receive	action	and	validate	the	SOAP	fault	like	this.

Citrus	Reference	Guide

284Soap

<send	endpoint="soapClient">
				<message>
								<payload>
												<SoapFaultForcingRequest	xmlns="http://www.consol.de/schemas/sample.xsd">
																<Message>This	is	invalid</Message>
												</SoapFaultForcingRequest>
								</payload>
				</message>
</send>

<receive	endpoint="soapClient"	timeout="5000">
				<message>
								<payload>
												<SOAP-ENV:Fault	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
																<faultcode	xmlns:CITRUS="http://citrus.org/soap">CITRUS:${soapFaultCode}</faultcode
																<faultstring	xml:lang="en">${soapFaultString}</faultstring>
												</SOAP-ENV:Fault>
								</payload>
				</message>
</receive>

So	choose	the	preferred	way	of	handling	SOAP	faults	either	by	asserting	client
exceptions	or	propagating	fault	messages	to	the	receive	action	on	a	SOAP	client.

Multiple	SOAP	fault	details

SOAP	fault	messages	can	hold	multiple	SOAP	fault	detail	elements.	In	the	previous
sections	we	have	used	SOAP	fault	details	in	sending	and	receiving	actions	as	single
element.	In	order	to	meet	the	SOAP	specification	Citrus	is	also	able	to	handle	multiple
SOAP	fault	detail	elements	in	a	message.	You	just	use	multiple	fault-detail	elements	in
your	test	action	like	this:

Citrus	Reference	Guide

285Soap

<ws:send-fault	endpoint="helloSoapServer">
				<ws:fault>
								<ws:fault-code>{http://www.citrusframework.org/faults}citrus:TEC-1000</ws:fault-code>
								<ws:fault-string>Invalid	request</ws:fault-string>
								<ws:fault-actor>SERVER</ws:fault-actor>
								<ws:fault-detail>
												<![CDATA[
																<FaultDetail	xmlns="http://www.consol.de/schemas/sayHello.xsd">
																				<MessageId>${messageId}</MessageId>
																				<CorrelationId>${correlationId}</CorrelationId>
																				<ErrorCode>TEC-1000</ErrorCode>
																				<Text>Invalid	request</Text>
																</FaultDetail>
]]>
								</ws:fault-detail>
								<ws:fault-detail>
												<![CDATA[
																<ErrorDetail	xmlns="http://www.consol.de/schemas/sayHello.xsd">
																				<ErrorCode>TEC-1000</ErrorCode>
																</ErrorDetail>
]]>
								</ws:fault-detail>
				</ws:fault>
				<ws:header>
								<ws:element	name="citrus_soap_action"	value="sayHello"/>
				</ws:header>
</ws:send-fault>

This	will	result	in	following	SOAP	envelope	message:

Citrus	Reference	Guide

286Soap

HTTP/1.1	500	Internal	Server	Error
Accept:	text/xml,	text/html,	image/gif,	image/jpeg,	*;	q=.2,	*/*;	q=.2
SOAPAction:	"sayHello"
Content-Type:	text/xml;	charset=utf-8
Content-Length:	680
Server:	Jetty(7.0.0.pre5)

<SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
				<SOAP-ENV:Header/>
				<SOAP-ENV:Body>
								<SOAP-ENV:Fault>
												<faultcode	xmlns:citrus="http://www.citrusframework.org/faults">citrus:TEC-1000</
												<faultstring	xml:lang="en">Invalid	request</faultstring>
												<detail>
																<FaultDetail	xmlns="http://www.consol.de/schemas/sayHello.xsd">
																				<MessageId>9277832563</MessageId>
																				<CorrelationId>4346806225</CorrelationId>
																				<ErrorCode>TEC-1000</ErrorCode>
																				<Text>Invalid	request</Text>
																</FaultDetail>
																<ErrorDetail	xmlns="http://www.consol.de/schemas/sayHello.xsd">
																				<ErrorCode>TEC-1000</ErrorCode>
																</ErrorDetail>
												</detail>
								</SOAP-ENV:Fault>
				</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Of	course	we	can	also	expect	several	fault	detail	elements	when	receiving	a	SOAP	fault.

XML	DSL

Citrus	Reference	Guide

287Soap

<ws:assert-fault	fault-code="{http://www.citrusframework.org/faults}TEC-1001"
											fault-string="Invalid	request">
				<ws:fault-detail	schema-validation="false">
						<![CDATA[
										<FaultDetail	xmlns="http://www.consol.de/schemas/soap">
														<ErrorCode>TEC-1000</ErrorCode>
														<Text>Invalid	request</Text>
										</FaultDetail>
]]>
				</ws:fault-detail>
				<ws:fault-detail>
						<![CDATA[
										<ErrorDetail	xmlns="http://www.consol.de/schemas/soap">
														<ErrorCode>TEC-1000</ErrorCode>
										</ErrorDetail>
]]>
				</ws:fault-detail>
				<ws:when>
								<send	endpoint="soapClient">
												[...]
								</send>
				</ws:when>
</ws:assert-fault>

As	you	can	see	we	can	individually	use	validation	settings	for	each	fault	detail.	In	the
example	above	we	disabled	schema	validation	for	the	first	fault	detail	element.

Send	HTTP	error	codes	with	SOAP

The	SOAP	server	logic	in	Citrus	is	able	to	simulate	pure	HTTP	error	codes	such	as	404
"Not	found"	or	500	"Internal	server	error".	The	good	thing	is	that	the	Citrus	server	is	able
to	receive	a	request	for	proper	validation	in	a	receive	action	and	then	simulate	HTTP
errors	on	demand.

The	mechanism	on	HTTP	error	code	simulation	is	not	different	to	the	usual	SOAP
request/response	handling	in	Citrus.	We	receive	the	request	as	usual	and	we	provide	a
response.	The	HTTP	error	situation	is	simulated	according	to	the	special	HTTP	header
citrus_http_status	in	the	Citrus	SOAP	response	definition.	In	case	this	header	is	set	to
a	value	other	than	200	OK	the	Citrus	SOAP	server	sends	an	empty	SOAP	response	with
HTTP	error	status	code	set	accordingly.

Citrus	Reference	Guide

288Soap

<receive	endpoint="helloSoapServer">
		<message>
						<payload>
										<Message	xmlns="http://consol.de/schemas/sample.xsd">
														<Text>Hello	SOAP	server</Text>
										</Message>
						</payload>
		</message>
</receive>

<send	endpoint="helloSoapServer">
				<message>
								<data></data>
				</message>
				<header>
								<element	name="citrus_http_status_code"	value="500"/>
				</header>
</send>

The	SOAP	response	must	be	empty	and	the	HTTP	status	code	is	set	to	a	value	other
than	200,	like	500.	This	results	in	a	HTTP	error	sent	to	the	calling	client	with	error	500
"Internal	server	error".

SOAP	attachment	support

Citrus	is	able	to	add	attachments	to	a	SOAP	request	on	client	and	server	side.	As	usual
you	can	validate	the	SOAP	attachment	content	on	a	received	SOAP	message.	The	next
chapters	describe	how	to	handle	SOAP	attachments	in	Citrus.

Send	SOAP	attachments

As	client	Citrus	is	able	to	add	attachments	to	the	SOAP	message.	I	think	it	is	best	to	go
straight	into	an	example	in	order	to	understand	how	it	works.

Citrus	Reference	Guide

289Soap

<ws:send	endpoint="soapClient">
				<message>
								<payload>
												<SoapMessageWithAttachment	xmlns="http://consol.de/schemas/sample.xsd">
																<Operation>Read	the	attachment</Operation>
												</SoapMessageWithAttachment>
								</payload>
				</message>
				<ws:attachment	content-id="MySoapAttachment"	content-type="text/plain">
								<ws:resource	file="classpath:com/consol/citrus/ws/soapAttachment.txt"/>
				</ws:attachment>
</ws:send>

Note	In	the	previous	chapters	you	may	have	already	noticed	the	citrus-ws	namespace
that	stands	for	the	SOAP	extensions	in	Citrus.	Please	include	the	citrus-ws	namespace
in	your	test	case	as	described	earlier	in	this	chapter	so	you	can	use	the	attachment
support.

The	special	send	action	of	the	SOAP	extension	namespace	is	aware	of	SOAP
attachments.	The	attachment	content	usually	consists	of	a	content-id	a	content-type
and	the	actual	content	as	plain	text	or	binary	content.	Inside	the	test	case	you	can	use
external	file	resources	or	inline	CDATA	sections	for	the	attachment	content.	As	you	are
familiar	with	Citrus	you	may	know	this	already	from	other	actions.

Citrus	will	construct	a	SOAP	message	with	the	SOAP	attachment.	Currently	only	one
attachment	per	message	is	supported.

Receive	SOAP	attachments

When	Citrus	calls	SOAP	WebServices	as	a	client	we	may	receive	SOAP	responses	with
attachments.	The	tester	can	validate	those	received	SOAP	messages	with	attachment
content	quite	easy.	As	usual	let	us	have	a	look	at	an	example	first.

Citrus	Reference	Guide

290Soap

<ws:receive	endpoint="soapClient">
				<message>
								<payload>
												<SoapMessageWithAttachmentRequest	xmlns="http://consol.de/schemas/sample.xsd">
																<Operation>Read	the	attachment</Operation>
												</SoapMessageWithAttachmentRequest>
								</payload>
				</message>
				<ws:attachment	content-id="MySoapAttachment"
																						content-type="text/plain"
																						validator="mySoapAttachmentValidator">
								<ws:resource	file="classpath:com/consol/citrus/ws/soapAttachment.txt"/>
				</ws:attachment>
</ws:receive>

Again	we	use	the	Citrus	SOAP	extension	namespace	with	the	specific	receive	action
that	is	aware	of	SOAP	attachment	validation.	The	tester	can	validate	the	content-id,	the
content-type	and	the	attachment	content.	Instead	of	using	the	external	file	resource	you
could	also	define	an	expected	attachment	template	directly	in	the	test	case	as	inline
CDATA	section.

Note	The	ws:attachment	element	specifies	a	validator	instance.	This	validator
determines	how	to	validate	the	attachment	content.	SOAP	attachments	are	not	limited	to
XML	content.	Plain	text	content	and	binary	content	is	possible,	too.	So	each	SOAP
attachment	validating	action	can	use	a	different	SoapAttachmentValidator	instance
which	is	responsible	for	validating	and	comparing	received	attachments	to	expected
template	attachments.	In	the	Citrus	configuration	the	validator	is	set	as	normal	Spring
bean	with	the	respective	identifier.

<bean	id="soapAttachmentValidator"	class="com.consol.citrus.ws.validation.SimpleSoapAttachmentValidator"
<bean	id="mySoapAttachmentValidator"	class="com.company.ws.validation.MySoapAttachmentValidator"

You	can	define	several	validator	instances	in	the	Citrus	configuration.	The	validator	with
the	general	id	"soapAttachmentValidator"	is	the	default	validator	for	all	actions	that	do
not	explicitly	set	a	validator	instance.	Citrus	offers	a	set	of	reference	validator
implementations.	The	SimpleSoapAttachmentValidator	will	use	a	simple	plain	text
comparison.	Of	course	you	are	able	to	add	individual	validator	implementations,	too.

SOAP	MTOM	support

Citrus	Reference	Guide

291Soap

MTOM	(Message	Transmission	Optimization	Mechanism)	enables	you	to	send	and
receive	large	SOAP	message	content	using	streamed	data	handlers.	This	optimizes	the
resource	allocation	on	server	and	client	side	where	not	all	data	is	loaded	into	memory
when	marshalling/unmarshalling	the	message	payload	data.	In	detail	MTOM	enabled
messages	do	have	a	XOP	package	inside	the	message	payload	replacing	the	actual
large	content	data.	The	content	is	then	streamed	aas	separate	attachment.	Server	and
client	can	operate	with	a	data	handler	providing	access	to	the	streamed	content.	This	is
very	helpful	when	using	large	binary	content	inside	a	SOAP	message	for	instance.

Citrus	is	able	to	both	send	and	receive	MTOM	enabled	SOAP	messages	on	client	and
server.	Just	use	the	mtom-enabled	flag	when	sending	a	SOAP	message:

<ws:send	endpoint="soapMtomClient"	mtom-enabled="true">
		<message>
				<data>
						<![CDATA[
								<image:addImage	xmlns:image="http://www.citrusframework.org/imageService/">
										
								</image:addImage>
]]>
				</data>
		</message>
		<ws:attachment	content-id="IMAGE"	content-type="application/octet-stream">
				<ws:resource	file="classpath:com/consol/citrus/hugeImageData.png"/>
		</ws:attachment>
</ws:send>

As	you	can	see	the	example	above	sends	a	SOAP	message	that	contains	a	large	binary
image	content.	The	actual	binary	image	data	is	referenced	with	a	content	id	marker
cid:IMAGE	inside	the	message	payload.	The	actual	image	content	is	added	as
attachment	with	a	separate	file	resource.	Important	is	here	the	content-id	which
matches	the	id	marker	in	the	SOAP	message	payload	(IMAGE).

Citrus	builds	a	proper	SOAP	MTOM	enabled	message	automatically	adding	the	XOP
package	inside	the	message.	The	binary	data	is	sent	as	separate	SOAP	attachment
accordingly.	The	resulting	SOAP	message	looks	like	this:

Citrus	Reference	Guide

292Soap

<SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header></SOAP-ENV:Header>
		<SOAP-ENV:Body>
				<image:addImage	xmlns:image="http://www.citrusframework.org/imageService/">
						
								</image:addImage>
]]>
				</data>
		</message>
		<ws:attachment	content-id="IMAGE"	content-type="application/octet-stream">
				<ws:resource	file="classpath:com/consol/citrus/hugeImageData.png"/>
		</ws:attachment>
</ws:receive>

We	define	the	MTOM	attachment	content	as	separate	SOAP	attachment.	The	content-
id	is	referenced	somewhere	in	the	SOAP	message	payload	data.	At	runtime	Citrus	will
add	the	XOP	package	definition	automatically	and	perform	validation	on	the	message
and	its	streamed	MTOM	attachment	data.

Next	thing	that	we	have	to	talk	about	is	inline	MTOM	data.	This	means	that	the	content
should	be	added	as	either	base64Binary	or	hexBinary	encoded	String	data	directly	to
the	message	content.	See	the	following	example	that	uses	the	mtom-inline	setting:

Citrus	Reference	Guide

293Soap

<ws:send	endpoint="soapMtomClient"	mtom-enabled="true">
		<message>
				<data>
						<![CDATA[
								<image:addImage	xmlns:image="http://www.citrusframework.org/imageService/">
										
										<icon>cid:ICON</icon>
								</image:addImage>
]]>
				</data>
		</message>
		<ws:attachment	content-id="IMAGE"	content-type="application/octet-stream"
												mtom-inline="true"	encoding-type="base64Binary">
				<ws:resource	file="classpath:com/consol/citrus/image.png"/>
		</ws:attachment>
		<ws:attachment	content-id="ICON"	content-type="application/octet-stream"
												mtom-inline="true"	encoding-type="hexBinary">
				<ws:resource	file="classpath:com/consol/citrus/icon.ico"/>
		</ws:attachment>
</ws:send>

The	listing	above	defines	two	inline	MTOM	attachments.	The	first	attachment
cid:IMAGE	uses	the	encoding	type	base64Binary	which	is	the	default.	The	second
attachment	cid:ICON	uses	hexBinary	encoding.	Both	attachments	are	added	as	inline
data	before	the	message	is	sent.	The	final	SOAP	message	looks	like	follows:

<SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header></SOAP-ENV:Header>
		<SOAP-ENV:Body>
				<image:addImage	xmlns:image="http://www.citrusframework.org/imageService/">
						<image>VGhpcyBpcyBhIGJpbmFyeSBpbWFnZSBhdHRhY2htZW50IQpWYXJpYWJsZXMgJXt0ZXN0fSBzaG91bGQgbm90IGJlIHJlcGxhY2VkIQ==
						<icon>5468697320697320612062696E6172792069636F6E206174746163686D656E74210A5661726961626C657320257B746573747D2073686F756C64206E6F74206265207265706C6163656421
				</image:addImage>
		</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The	image	content	is	a	base64Binary	String	and	the	icon	a	heyBinary	String.	Of	course
this	mechanism	also	is	supported	in	receive	actions	on	the	server	side	where	the
expected	message	content	is	added	als	inline	MTOM	data	before	validation	takes	place.

SOAP	client	basic	authentication

Citrus	Reference	Guide

294Soap

As	a	SOAP	client	you	may	have	to	use	basic	authentication	in	order	to	access	a	server
resource.	Basic	authentication	via	HTTP	stands	for	username/password	authentication
where	the	credentials	are	transmitted	in	the	HTTP	request	header	section	as	base64
encoded	entry.	As	Citrus	uses	the	Spring	WebService	stack	we	can	use	the	basic
authentication	support	there.	We	set	the	user	credentials	on	the	HttpClient	message
sender	which	is	used	inside	the	Spring	WebServiceTemplate	.

Citrus	provides	a	comfortable	way	to	set	the	HTTP	message	sender	with	basic
authentication	credentials	on	the	WebServiceTemplate	.	Just	see	the	following	example
and	learn	how	to	do	that.

<citrus-ws:client	id="soapClient"
																														request-url="http://localhost:8090/test"
																														message-sender="basicAuthClient"/>

<bean	id="basicAuthClient"	class="org.springframework.ws.transport.http.HttpComponentsMessageSender"
		<property	name="authScope">
						<bean	class="org.apache.http.auth.AuthScope">
								<constructor-arg	value="localhost"/>
								<constructor-arg	value="8090"/>
								<constructor-arg	value=""/>
								<constructor-arg	value="basic"/>
						</bean>
		</property>
		<property	name="credentials">
				<bean	class="org.apache.http.auth.UsernamePasswordCredentials">
								<constructor-arg	value="someUsername"/>
								<constructor-arg	value="somePassword"/>
				</bean>
		</property>
</bean>

The	above	configuration	results	in	SOAP	requests	with	authentication	headers	properly
set	for	basic	authentication.	The	special	message	sender	takes	care	on	adding	the
proper	basic	authentication	header	to	each	request	that	is	sent	with	this	Citrus	message
sender.	By	default	preemtive	authentication	is	used.	The	message	sender	only	sends	a
single	request	to	the	server	with	all	authentication	information	set	in	the	message
header.	The	request	which	determines	the	authentication	scheme	on	the	server	is
skipped.	This	is	why	you	have	to	add	some	auth	scope	so	Citrus	can	setup	an
authentication	cache	within	the	HTTP	context	in	order	to	have	preemtive	authentication.

Citrus	Reference	Guide

295Soap

Tip	You	can	also	skip	the	message	sender	configuration	and	set	the	Authorization
header	on	each	request	in	your	send	action	definition	on	your	own.	Be	aware	of	setting
the	header	as	HTTP	mime	header	using	the	correct	prefix	and	take	care	on	using	the
correct	basic	authentication	with	base64	encoding	for	the	username:password	phrase.

<header>
				<element	name="citrus_http_Authorization"	value="Basic	c29tZVVzZXJuYW1lOnNvbWVQYXNzd29yZA=="
</header>

For	base64	encoding	you	can	also	use	a	Citrus	function,	seefunctions-encode-base64

SOAP	server	basic	authentication

When	providing	SOAP	WebService	server	functionality	Citrus	can	also	set	basic
authentication	so	all	clients	need	to	authenticate	properly	when	accessing	the	server
resource.

<citrus-ws:server	id="simpleSoapServer"
													port="8080"
													auto-start="true"
													resource-base="src/it/resources"
													security-handler="basicSecurityHandler"/>

<bean	id="securityHandler"	class="com.consol.citrus.ws.security.SecurityHandlerFactory">
				<property	name="users">
								<list>
												<bean	class="com.consol.citrus.ws.security.User">
																<property	name="name"	value="citrus"/>
																<property	name="password"	value="secret"/>
																<property	name="roles"	value="CitrusRole"/>
												</bean>
								</list>
				</property>
				<property	name="constraints">
								<map>
												<entry	key="/foo/*">
																<bean	class="com.consol.citrus.ws.security.BasicAuthConstraint">
																				<constructor-arg	value="CitrusRole"/>
																</bean>
												</entry>
								</map>
				</property>
</bean>

Citrus	Reference	Guide

296Soap

We	have	set	a	security	handler	on	the	server	web	container	with	a	constraint	on	all
resources	with	/foo/*	.	Following	from	that	the	server	requires	basic	authentication	for
these	resources.	The	granted	users	and	roles	are	specified	within	the	security	handler
bean	definition.	Connecting	clients	have	to	set	the	basic	auth	HTTP	header	properly
using	the	correct	user	and	role	for	accessing	the	Citrus	server	now.

You	can	customize	the	security	handler	for	your	very	specific	needs	(e.g.	load	users	and
roles	with	JDBC	from	a	database).	Just	have	a	look	at	the	code	base	and	inspect	the
settings	and	properties	offered	by	the	security	handler	interface.

Tip	This	mechanism	is	not	restricted	to	basic	authentication	only.	With	other	settings	you
can	also	set	up	digest	or	form-based	authentication	constraints	very	easy.

WS-Addressing	support

The	web	service	stack	offers	a	lot	of	different	technologies	and	standards	within	the
context	of	SOAP	WebServices.	We	speak	of	WS-*	specifications	in	particular.	One	of
these	specifications	deals	with	addressing.	On	client	side	you	may	add	wsa	header
information	to	the	request	in	order	to	give	the	server	instructions	how	to	deal	with	SOAP
faults	for	instance.

In	Citrus	WebService	client	you	can	add	those	header	information	using	the	common
configuration	like	this:

Citrus	Reference	Guide

297Soap

<citrus-ws:client	id="soapClient"
																									request-url="http://localhost:8090/test"
																									message-converter="wsAddressingMessageConverter"/>

<bean	id="wsAddressingMessageConverter"	class="com.consol.citrus.ws.message.converter.WsAddressingMessageConverter"
		<constructor-arg>
				<bean	id="wsAddressing200408"	class="com.consol.citrus.ws.addressing.WsAddressingHeaders"
								<property	name="version"	value="VERSION200408"/>
								<property	name="action"
																					value="http://citrus.sample/sayHello"/>
								<property	name="to"
																					value="http://citrus.sample/server"/>
								<property	name="from">
												<bean	class="org.springframework.ws.soap.addressing.core.EndpointReference">
																<constructor-arg	value="http://citrus.sample/client"/>
												</bean>
								</property>
								<property	name="replyTo">
												<bean	class="org.springframework.ws.soap.addressing.core.EndpointReference">
																<constructor-arg	value="http://citrus.sample/client"/>
												</bean>
								</property>
								<property	name="faultTo">
												<bean	class="org.springframework.ws.soap.addressing.core.EndpointReference">
																<constructor-arg	value="http://citrus.sample/fault/resolver"/>
												</bean>
								</property>
				</bean>
		</constructor-arg>
</bean>

Note	The	WS-Addressing	specification	knows	several	versions.	Supported	version	are
VERSION10	(WS-Addressing	1.0	May	2006)	and	VERSION200408	(August	2004
edition	of	the	WS-Addressing	specification)	.

The	addressing	headers	find	a	place	in	the	SOAP	message	header	with	respective
namespaces	and	values.	A	possible	SOAP	request	with	WS	addressing	headers	looks
like	follows:

Citrus	Reference	Guide

298Soap

<SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
				<SOAP-ENV:Header	xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
								<wsa:To	SOAP-ENV:mustUnderstand="1">http://citrus.sample/server</wsa:To>
								<wsa:From>
												<wsa:Address>http://citrus.sample/client</wsa:Address>
								</wsa:From>
								<wsa:ReplyTo>
												<wsa:Address>http://citrus.sample/client</wsa:Address>
								</wsa:ReplyTo>
								<wsa:FaultTo>
												<wsa:Address>http://citrus.sample/fault/resolver</wsa:Address>
								</wsa:FaultTo>
								<wsa:Action>http://citrus.sample/sayHello</wsa:Action>
								<wsa:MessageID>urn:uuid:4c4d8af2-b402-4bc0-a2e3-ad33b910e394</wsa:MessageID>
				</SOAP-ENV:Header>
				<SOAP-ENV:Body>
								<cit:HelloRequest	xmlns:cit="http://citrus/sample/sayHello">
												<cit:Text>Hello	Citrus!</cit:Text>
								</cit:HelloRequest>
				</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Important	The	message	id	property	is	automatically	generated	for	each	request.	If	you
need	to	set	a	static	message	id	you	can	do	so	in	Spring	application	context	message
sender	configuration.

SOAP	client	fork	mode

SOAP	over	HTTP	uses	synchronous	communication	by	nature.	This	means	that	sending
a	SOAP	message	in	Citrus	over	HTTP	will	automatically	block	further	test	actions	until
the	synchronous	HTTP	response	has	been	received.	In	test	cases	this	synchronous
blocking	might	cause	problems	for	several	reasons.	A	simple	reason	would	be	that	you
need	to	do	further	test	actions	in	parallel	to	the	synchronous	HTTP	SOAP
communication	(e.g.	simulate	another	backend	system	in	the	test	case).

You	can	separate	the	SOAP	send	action	from	the	rest	of	the	test	case	by	using	the
"fork"	mode.	The	SOAP	client	will	automatically	open	a	new	Java	Thread	for	the
synchronous	communication	and	the	test	is	able	to	continue	with	execution	although	the
synchronous	HTTP	SOAP	response	has	not	arrived	yet.

Citrus	Reference	Guide

299Soap

<ws:send	endpoint="soapClient"	fork="true">
		<message>
				<payload>
								<SoapRequest	xmlns="http://www.consol.de/schemas/sample.xsd">
										<Operation>Read	the	attachment</Operation>
								</SoapRequest>
				</payload>
		</message>
</ws:send>

With	the	"fork"	mode	enabled	the	test	continues	with	execution	while	the	sending	action
waits	for	the	synchronous	response	in	a	separate	Java	Thread.	You	could	reach	the
same	behaviour	with	a	complex	/	container	construct,	but	forking	the	send	action	is
much	more	straight	forward.

Important	It	is	highly	recommended	to	use	a	proper	"timeout"	setting	on	the	SOAP
receive	action	when	using	fork	mode.	The	forked	send	operation	might	take	some	time
and	the	corresponding	receive	action	might	run	into	failure	as	the	response	was	has	not
been	received	yet.	The	result	would	be	a	broken	test	because	of	the	missing	response
message.	A	proper	"timeout"	setting	for	the	receive	action	solves	this	problem	as	the
action	waits	for	this	time	period	and	occasionally	repeatedly	asks	for	the	SOAP	response
message.	The	following	listing	sets	the	receive	timeout	to	10	seconds,	so	the	action
waits	for	the	forked	send	action	to	deliver	the	SOAP	response	in	time.```xml

Did	something	true	</ws:receive>

###	SOAP	servlet	context	customization

For	highly	customized	SOAP	server	components	in	Citrus	you	can	define	a	full	servlet	context	configuration	file.	Here	you	have	the	full	power	to	add	Spring	endpoint	mappings	and	custom	endpoint	implementations.	You	can	set	the	custom	servlet	context	as	external	file	resource	on	the	server	component:

```xml
<citrus-ws:client	id="soapClient"
										context-config-location="classpath:citrus-ws-servlet.xml"
										message-factory="soap11MessageFactory"/>

Now	let	us	have	a	closer	look	at	the	context-config-location	attribute.	This	configuration
defines	the	Spring	application	context	file	for	endpoints,	request	mappings	and	other
SpringWS	specific	information.	Please	see	the	official	SpringWS	documentation	for
details	on	this	Spring	based	configuration.	You	can	also	just	copy	the	following	example
application	context	which	should	work	for	you	in	general.

Citrus	Reference	Guide

300Soap



<beans	xmlns="http://www.springframework.org/schema/beans"
							xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
							xsi:schemaLocation="
							http://www.springframework.org/schema/beans
							http://www.springframework.org/schema/beans/spring-beans.xsd">

		<bean	id="loggingInterceptor"
				class="org.springframework.ws.server.endpoint.interceptor.PayloadLoggingInterceptor">
						<description>
										This	interceptor	logs	the	message	payload.
						</description>
		</bean>

		<bean	id="helloServicePayloadMapping"
				class="org.springframework.ws.server.endpoint.mapping.PayloadRootQNameEndpointMapping">
						<property	name="mappings">
										<props>
														<prop
																		key="{http://www.consol.de/schemas/sayHello}HelloRequest">
																		helloServiceEndpoint
														</prop>
										</props>
						</property>
						<property	name="interceptors">
										<list>
														<ref	bean="loggingInterceptor"/>
										</list>
						</property>
		</bean>

		<bean	id="helloServiceEndpoint"	class="com.consol.citrus.ws.server.WebServiceEndpoint">
						<property	name="endpointAdapter"	ref="staticResponseEndpointAdapter"/>
		</bean>

		<citrus:static-response-adapter	id="staticResponseEndpointAdapter">
						<citrus:payload>
										<![CDATA[
														<HelloResponse	xmlns="http://www.consol.de/schemas/sayHello">
																		<MessageId>123456789</MessageId>
																		<CorrelationId>CORR123456789</CorrelationId>
																		<User>WebServer</User>
																		<Text>Hello	User</Text>
														</HelloResponse>
										]]>
						</citrus:payload>
						<citrus:header>
										<citrus:element	name="{http://www.consol.de/schemas/samples/sayHello.xsd}ns0:Operation"
																		value="sayHelloResponse"/>
										<citrus:element	name="{http://www.consol.de/schemas/samples/sayHello.xsd}ns0:Request"
																		value="HelloRequest"/>
										<citrus:element	name="citrus_soap_action"

Citrus	Reference	Guide

301Soap



																		value="sayHello"/>
						</citrus:header>
		</citrus:static-response-adapter>
</beans>

The	program	listing	above	describes	a	normal	SpringWS	request	mapping	with	endpoint
configurations.	The	mapping	is	responsible	to	forward	incoming	requests	to	the	endpoint
which	will	handle	the	request	and	provide	a	proper	response	message.	First	of	all	we
add	a	logging	interceptor	to	the	context	so	all	incoming	requests	get	logged	to	the
console	first.	Then	we	use	a	payload	mapping	(PayloadRootQNameEndpointMapping)
in	order	to	map	all	incoming	'HelloRequest'	SOAP	messages	to	the
'helloServiceEndpoint'	.	Endpoints	are	of	essential	nature	in	Citrus	SOAP
WebServices	implementation.	They	are	responsible	for	processing	a	request	in	order	to
provide	a	proper	response	message	that	is	sent	back	to	the	calling	client.	Citrus	uses	the
endpoint	in	combination	with	a	message	endpoint	adapter	implementation.

The	endpoint	works	together	with	the	message	endpoint	adapter	that	is	responsible	for
providing	a	response	message	for	the	client.	The	various	message	endpoint	adapter
implementations	in	Citrus	were	already	discussed	inendpoint-adapter.

In	this	example	the	'helloServiceEndpoint'	uses	the	'static-response-adapter'	which
is	always	returning	a	static	response	message.	In	most	cases	static	responses	will	not	fit
the	test	scenario	and	you	will	have	to	respond	more	dynamically.

Regardless	of	which	message	endpoint	adapter	setup	you	are	using	in	your	test	case
the	endpoint	transforms	the	response	into	a	proper	SOAP	message.	You	can	add	as
many	request	mappings	and	endpoints	as	you	want	to	the	server	context	configuration.
So	you	are	able	to	handle	different	request	types	with	one	single	Jetty	server	instance.

That's	it	for	connecting	with	SOAP	WebServices!	We	saw	how	to	send	and	receive
SOAP	messages	with	Jetty	and	Spring	WebServices.	Have	a	look	at	the	samples
coming	with	your	Citrus	archive	in	order	to	learn	more	about	the	SOAP	message
handling.

Citrus	Reference	Guide

302Soap



FTP	support
Citrus	is	able	to	start	a	little	ftp	server	accepting	incoming	client	requests.	Also	Citrus	is
able	to	call	FTP	commands	as	a	client.	The	next	sections	deal	with	FTP	connectivity.

Note	The	FTP	components	in	Citrus	are	kept	in	a	separate	Maven	module.	So	you
should	add	the	module	as	Maven	dependency	to	your	project	accordingly.

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-ftp</artifactId>
		<version>2.6.1</version>
</dependency>

As	Citrus	provides	a	customized	FTP	configuration	schema	for	the	Spring	application
context	configuration	files	we	have	to	add	name	to	the	top	level	beans	element.	Simply
include	the	ftp-config	namespace	in	the	configuration	XML	files	as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
				xmlns:citrus="http://www.citrusframework.org/schema/config"
				xmlns:citrus-ftp="http://www.citrusframework.org/schema/ftp/config"
				xsi:schemaLocation="
				http://www.springframework.org/schema/beans
				http://www.springframework.org/schema/beans/spring-beans.xsd
				http://www.citrusframework.org/schema/config
				http://www.citrusframework.org/schema/config/citrus-config.xsd
				http://www.citrusframework.org/schema/http/config
				http://www.citrusframework.org/schema/ftp/config/citrus-ftp-config.xsd">

						[...]

						</beans>

Now	we	are	ready	to	use	the	customized	Citrus	FTP	configuration	elements	with	the
citrus-ftp	namespace	prefix.

FTP	client

Citrus	Reference	Guide

303Ftp



We	want	to	use	Citrus	fo	connect	to	dome	FTP	server	as	a	client	sending	commands
such	as	creating	a	directory	or	listing	all	files.	Citrus	offers	a	client	component	doing
exactly	this	FTP	client	connection.

<citrus-ftp:client	id="ftpClient"
						host="localhost"
						port="22222"
						username="admin"
						password="admin"
						timeout="10000"/>

The	configuration	above	describes	a	Citrus	ftp	client	connected	to	a	ftp	server	with
ftp://localhost:22222	.	For	authentication	username	and	password	are	defined	as	well
as	the	global	connection	timeout.	The	client	will	automatically	send	username	and
password	for	proper	authentication	to	the	server	when	opening	a	new	connection.

In	a	test	case	you	are	now	able	to	use	the	client	to	push	commands	to	the	server.

<send	endpoint="ftpClient"	fork="true">
		<message>
				<data></data>
		</message>
		<header>
				<element	name="citrus_ftp_command"	value="PWD"/>
				<element	name="citrus_ftp_arguments"	value="test"/>
		</header>
</send>

<receive	endpoint="ftpClient">
		<message	type="plaintext">
				<data>PWD</data>
		</message>
		<header>
				<element	name="citrus_ftp_command"	value="PWD"/>
				<element	name="citrus_ftp_arguments"	value="test"/>
				<element	name="citrus_ftp_reply_code"	value="257"/>
				<element	name="citrus_ftp_reply_string"	value="@contains('is	current	directory')@"/>
		</header>
</receive>

As	you	can	see	most	of	the	ftp	communication	parameters	are	specified	as	special
header	elements	in	the	message.	Citrus	automatically	converts	those	information	to
proper	FTP	commands	and	response	messages.

FTP	server

Citrus	Reference	Guide

304Ftp



Now	that	we	are	able	to	access	FTP	as	a	client	we	might	also	want	to	simulate	the
server	side.	Therefore	Citrus	offers	a	server	component	that	is	listening	on	a	port	for
incoming	FTP	connections.	The	server	has	a	default	home	directory	on	the	local	file
system	specified.	But	you	can	also	define	home	directories	per	user.	For	now	let	us	have
a	look	at	the	server	configuration	component:

<citrus-ftp:server	id="ftpServer">
						port="22222"
						auto-start="true"
						user-manager-properties="classpath:ftp.server.properties"/>

The	ftp	server	configuration	is	quite	simple.	The	server	starts	automatically	and	binds	to
a	port.	The	user	configuration	is	read	from	a	user-manager-property	file.	Let	us	have	a
look	at	the	content	of	this	user	management	file:

#	Password	is	"admin"
ftpserver.user.admin.userpassword=21232F297A57A5A743894A0E4A801FC3
ftpserver.user.admin.homedirectory=target/ftp/user/admin
ftpserver.user.admin.enableflag=true
ftpserver.user.admin.writepermission=true
ftpserver.user.admin.maxloginnumber=0
ftpserver.user.admin.maxloginperip=0
ftpserver.user.admin.idletime=0
ftpserver.user.admin.uploadrate=0
ftpserver.user.admin.downloadrate=0

ftpserver.user.anonymous.userpassword=
ftpserver.user.anonymous.homedirectory=target/ftp/user/anonymous
ftpserver.user.anonymous.enableflag=true
ftpserver.user.anonymous.writepermission=false
ftpserver.user.anonymous.maxloginnumber=20
ftpserver.user.anonymous.maxloginperip=2
ftpserver.user.anonymous.idletime=300
ftpserver.user.anonymous.uploadrate=4800
ftpserver.user.anonymous.downloadrate=4800

As	you	can	see	you	are	able	to	define	as	many	user	for	the	ftp	server	as	you	like.
Username	and	password	define	the	authentication	on	the	server.	In	addition	to	that	you
have	plenty	of	configuration	possibilities	per	user.	Citrus	uses	the	Apache	ftp	server
implementation.	So	for	more	details	on	configuration	capabilities	please	consult	the
official	Apache	ftp	server	documentation.

Citrus	Reference	Guide

305Ftp



Now	we	would	like	to	use	the	server	in	a	test	case.	Very	easy	you	just	have	to	define	a
receive	message	action	within	your	test	case	that	uses	the	server	id	as	endpoint
reference:

<echo>
		<message>Receive	user	login	on	FTP	server</message>
</echo>

<receive	endpoint="ftpServer">
		<message	type="plaintext">
				<data>USER</data>
		</message>
		<header>
				<element	name="citrus_ftp_command"	value="USER"/>
				<element	name="citrus_ftp_arguments"	value="admin"/>
		</header>
</receive>

<send	endpoint="ftpServer">
		<message	type="plaintext">
				<data>OK</data>
		</message>
</send>

<echo>
		<message>Receive	user	password	on	FTP	server</message>
</echo>

<receive	endpoint="ftpServer">
		<message	type="plaintext">
				<data>PASS</data>
		</message>
		<header>
				<element	name="citrus_ftp_command"	value="PASS"/>
				<element	name="citrus_ftp_arguments"	value="admin"/>
		</header>
</receive>

<send	endpoint="ftpServer">
		<message	type="plaintext"">
				<data>OK</data>
		</message>
</send>

The	listing	above	shows	two	incoming	commands	representing	a	user	login.	We	indicate
with	re	send	actions	that	we	would	link	the	server	to	respond	with	positive	feedback	and
to	accept	the	login.	As	we	have	a	fully	qualified	ftp	server	running	the	client	can	also

Citrus	Reference	Guide

306Ftp



push	files	read	directories	and	more.	All	incoming	commands	can	be	validated	inside	a
test	case.

Citrus	Reference	Guide

307Ftp



Message	channel	support
Message	channels	represent	the	in	memory	messaging	solution	in	Citrus.	Producer	and
consumer	components	are	linked	via	channels	exchanging	messages	in	memory.	As
this	transport	mechanism	comes	from	Spring	Integration	API
(http://www.springsource.org/spring-integration)	and	Citrus	itself	uses	a	lot	of	Spring
APIs,	especially	those	from	Spring	Integration	you	are	able	to	connect	to	all	Spring
messaging	adapters	via	these	in	memory	channels.

Citrus	offers	a	channel	components	that	can	be	used	both	by	Citrus	and	Spring
Integration.	The	conclusion	is	that	Citrus	supports	the	sending	and	receiving	of
messages	both	to	and	from	Spring	Integration	message	channel	components.	This
opens	up	a	lot	of	great	possibilities	to	interact	with	the	Spring	Integration	transport
adapters	for	FTP,	TCP/IP	and	so	on.	In	addition	to	that	the	message	channel	support
provides	us	a	good	way	to	exchange	messages	in	memory.

Citrus	provides	support	for	sending	and	receiving	JMS	messages.	We	have	to	separate
between	synchronous	and	asynchronous	communication.	So	in	this	chapter	we	explain
how	to	setup	JMS	message	endpoints	for	synchronous	and	asynchronous	outbound	and
inbound	communication

Note	The	message	channel	configuration	components	use	the	default	"citrus"
configuration	namespace	and	schema	definition.	Include	this	namespace	into	your
Spring	configuration	in	order	to	use	the	Citrus	configuration	elements.	The	namespace
URI	and	schema	location	are	added	to	the	Spring	configuration	XML	file	as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
								xmlns:citrus-jms="http://www.citrusframework.org/schema/config"
								xsi:schemaLocation="
								http://www.springframework.org/schema/beans
								http://www.springframework.org/schema/beans/spring-beans.xsd
								http://www.citrusframework.org/schema/config
								http://www.citrusframework.org/schema/config/citrus-config.xsd">

				[...]

</beans>

After	that	you	are	able	to	use	customized	Citrus	XML	elements	in	order	to	define	the
Spring	beans.

Citrus	Reference	Guide

308Message-channel

http://www.springsource.org/spring-integration


Channel	endpoint

Citrus	offers	a	channel	endpoint	component	that	is	able	to	create	producer	and
consumer	components.	Producer	and	consumer	send	and	receive	messages	both	to
and	from	a	channel	endpoint.	By	default	the	endpoint	is	asynchronous	when	configured
in	the	Citrus	application	context.	With	this	component	you	are	able	to	access	message
channels	directly:

<citrus:channel-endpoint	id="helloEndpoint"	channel="helloChannel"/>

<si:channel	id="helloChannel"/>

The	Citrus	channel	endpoint	references	a	Spring	Integration	channel	directly.	Inside	your
test	case	you	can	reference	the	Citrus	endpoint	as	usual	to	send	and	receive	messages.
We	will	see	this	later	in	some	example	code	listings.

Note	The	Spring	Integration	configuration	components	use	a	specific	namespace	that
has	to	be	included	into	your	Spring	application	context.	You	can	use	the	following
template	which	holds	all	necessary	namespaces	and	schema	locations:

<?xml	version="1.0"	encoding="UTF-8"?>
<beans	xmlns="http://www.springframework.org/schema/beans"
				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
				xmlns:citrus="http://www.citrusframework.org/schema/config"
				xmlns:si="http://www.springframework.org/schema/integration"
				xsi:schemaLocation="http://www.springframework.org/schema/beans
												http://www.springframework.org/schema/beans/spring-beans.xsd
												http://www.citrusframework.org/schema/config	
												http://www.citrusframework.org/schema/config/citrus-config.xsd
												http://www.springframework.org/schema/integration
												http://www.springframework.org/schema/integration/spring-integration.xsd">
</beans>

The	Citrus	channel	endpoint	also	supports	a	customized	message	channel	template	that
will	actually	send	the	messages.	The	customized	template	might	give	you	access	to
special	configuration	possibilities.	However	it	is	optional,	so	if	no	message	channel
template	is	defined	in	the	configuration	Citrus	will	create	a	default	template.

<citrus:channel-endpoint	id="helloEndpoint"
																												channel="helloChannel"
																												message-channel-template="myMessageChannelTemplate"/>

Citrus	Reference	Guide

309Message-channel



The	message	sender	is	now	ready	to	publish	messages	to	the	defined	channel.	The
communication	is	supposed	to	be	asynchronous,	so	the	producer	is	not	able	to	process
a	reply	message.	We	will	deal	with	synchronous	communication	and	reply	messages
later	in	this	chapter.	The	message	producer	just	publishes	messages	to	the	channel	and
is	done.	Interacting	with	the	endpoints	in	a	test	case	is	quite	easy.	Just	reference	the	id
of	the	endpoint	in	your	send	and	receive	test	actions

<send	endpoint="helloEndpoint">
				<message>
								<payload>
												<v1:HelloRequest	xmlns:v1="http://citrusframework.org/schemas/HelloService.xsd">
																<v1:Text>Hello	World!</v1:Text>
												</v1:HelloRequest>
								</payload>
				</message>
</send>

<receive	endpoint="helloEndpoint">
				<message>
								<payload>
												<v1:HelloResponse	xmlns:v1="http://citrusframework.org/schemas/HelloService.xsd">
																<v1:Text>Hello	Citrus!</v1:Text>
												</v1:HelloResponse>
								</payload>
				</message>
</receive>

As	you	can	see	Citrus	is	also	able	to	receive	messages	from	the	same	Spring
Integration	message	channel	destination.	We	just	references	the	same	channel-endpoint
in	the	receive	action.

As	usual	the	receiver	connects	to	the	message	destination	and	waits	for	messages	to
arrive.	The	user	can	set	a	receive	timeout	which	is	set	to	5000	milliseconds	by	default.	In
case	no	message	was	received	in	this	time	frame	the	receiver	raises	timeout	errors	and
the	test	fails.

Synchronous	channel	endpoints

The	synchronous	channel	producer	publishes	messages	and	waits	synchronously	for
the	response	to	arrive	on	some	reply	channel	destination.	The	reply	channel	name	is	set
in	the	message's	header	attributes	so	the	counterpart	in	this	communication	can	send	its

Citrus	Reference	Guide

310Message-channel



reply	to	that	channel.	The	basic	configuration	for	a	synchronous	channel	endpoint
component	looks	like	follows:

<citrus:channel-sync-endpoint	id="helloSyncEndpoint"
																												channel="helloChannel"
																												reply-timeout="1000"
																												polling-interval="1000"/>

Synchronous	message	channel	endpoints	usually	do	poll	for	synchronous	reply
messages	for	processing	the	reply	messages.	The	poll	interval	is	an	optional	setting	in
order	to	manage	the	amount	of	reply	message	handshake	attempts.	Once	the	endpoint
was	able	to	receive	the	reply	message	synchronously	the	test	case	can	receive	the
reply.	In	case	all	message	handshake	attempts	do	fail	because	the	reply	message	is	not
available	in	time	we	raise	some	timeout	error	and	the	test	will	fail.

Note	By	default	the	channel	endpoint	uses	temporary	reply	channel	destinations.	The
temporary	reply	channels	are	only	used	once	for	a	single	communication	handshake.
After	that	the	reply	channel	is	deleted	again.	Static	reply	channels	are	not	supported	as	it
has	not	been	in	scope	yet.

When	sending	a	message	to	this	endpoint	in	the	first	place	the	producer	will	wait
synchronously	for	the	response	message	to	arrive	on	the	reply	destination.	You	can
receive	the	reply	message	in	your	test	case	using	the	same	endpoint	component.	So	we
have	two	actions	on	the	same	endpoint,	first	send	then	receive.

Citrus	Reference	Guide

311Message-channel



<send	endpoint="helloSyncEndpoint">
				<message>
								<payload>
												<v1:HelloRequest	xmlns:v1="http://citrusframework.org/schemas/HelloService.xsd">
																<v1:Text>Hello	World!</v1:Text>
												</v1:HelloRequest>
								</payload>
				</message>
</send>

<receive	endpoint="helloSyncEndpoint">
				<message>
								<payload>
												<v1:HelloResponse	xmlns:v1="http://citrusframework.org/schemas/HelloService.xsd">
																<v1:Text>Hello	Citrus!</v1:Text>
												</v1:HelloResponse>
								</payload>
				</message>
</receive>

In	the	last	section	we	saw	that	synchronous	communication	is	based	on	reply	messages
on	temporary	reply	channels.	We	saw	that	Citrus	is	able	to	publish	messages	to
channels	and	wait	for	reply	messages	to	arrive	on	temporary	reply	channels.	This
section	deals	with	the	same	synchronous	communication	over	reply	messages,	but	now
Citrus	has	to	send	dynamic	reply	messages	to	temporary	channels.

The	scenario	we	are	talking	about	is	that	Citrus	receives	a	message	and	we	need	to
reply	to	a	temporary	reply	channel	that	is	stored	in	the	message	header	attributes.	We
handle	this	synchronous	communication	with	the	same	synchronous	channel	endpoint
component.	When	initiating	the	communication	by	receiving	a	message	from	a
synchronous	channel	endpoint	you	are	able	to	send	a	synchronous	response	back.
Again	just	use	the	same	endpoint	reference	in	your	test	case.	The	handling	of	temporary
reply	destinations	is	done	automatically	behind	the	scenes.	So	we	have	again	two
actions	in	our	test	case,	but	this	time	first	receive	then	send.

Citrus	Reference	Guide

312Message-channel



<receive	endpoint="helloSyncEndpoint">
				<message>
								<payload>
												<v1:HelloRequest	xmlns:v1="http://citrusframework.org/schemas/HelloService.xsd">
																<v1:Text>Hello	World!</v1:Text>
												</v1:HelloRequest>
								</payload>
				</message>
</receive>

<send	endpoint="helloSyncEndpoint">
				<message>
								<payload>
												<v1:HelloResponse	xmlns:v1="http://citrusframework.org/schemas/HelloService.xsd">
																<v1:Text>Hello	Citrus!</v1:Text>
												</v1:HelloResponse>
								</payload>
				</message>
</send>

The	synchronous	message	channel	endpoint	will	handle	all	reply	channel	destinations
and	provide	those	behind	the	scenes.

Message	selectors	on	channels

Unfortunately	Spring	Integration	message	channels	do	not	support	message	selectors
on	header	values	as	described	inmessage-selector.	With	Citrus	version	1.2	we	found	a
way	to	also	add	message	selector	support	on	message	channels.	We	had	to	introduce	a
special	queue	message	channel	implementation.	So	first	of	all	we	use	this	new	message
channel	implementation	in	our	configuration.

<citrus:channel	id="orderChannel"	capacity="5"/>

The	Citrus	message	channel	implementation	extends	the	queue	channel	implementation
from	Spring	Integration.	So	we	can	add	a	capacity	attribute	for	this	channel.	That's	it!
Now	we	use	the	message	channel	that	supports	message	selection.	In	our	test	we
define	message	selectors	on	header	values	as	described	inmessage-selectorand	you
will	see	that	it	works.

In	addition	to	that	we	have	implemented	other	message	filter	possibilities	on	message
channels	that	we	discuss	in	the	next	sections.

Citrus	Reference	Guide

313Message-channel



Root	QName	Message	Selector

You	can	use	the	XML	root	QName	of	your	message	as	selection	criteria.	Let's	see	how
this	works	in	a	small	example:

We	have	two	different	XML	messages	on	a	message	channel	waiting	to	be	picked	up	by
a	consumer.

<HelloMessage	xmlns="http://citrusframework.org/schema">Hello	Citrus</HelloMessage>
<GoodbyeMessage	xmlns="http://citrusframework.org/schema">Goodbye	Citrus</GoodbyeMessage>

We	would	like	to	pick	up	the	GoodbyeMessage	in	our	test	case.	The	HelloMessage
should	be	left	on	the	message	channel	as	we	are	not	interested	in	it	right	now.	We	can
define	a	root	qname	message	selector	in	the	receive	action	like	this:

<receive	endpoint="orderChannelEndpoint">
				<selector>
								<element	name="root-qname"	value="GoodbyeMessage"/>
				</selector>
				<message>
								<payload>
												<GoodbyeMessage	xmlns="http://citrusframework.org/schema">Goodbye	Citrus</GoodbyeMessage
								</payload>
				</message>
</receive>

The	Citrus	receiver	picks	up	the	GoodbyeMessage	from	the	channel	selected	via	the
root	qname	of	the	XML	message	payload.	Of	course	you	can	also	combine	message
header	selectors	and	root	qname	selectors	as	shown	in	this	example	below	where	a
message	header	sequenceId	is	added	to	the	selection	logic.

<selector>
				<element	name="root-qname"	value="GoodbyeMessage"/>
				<element	name="sequenceId"	value="1234"/>
</selector>

As	we	deal	with	XML	qname	values,	we	can	also	use	namespaces	in	our	selector	root
qname	selection.

Citrus	Reference	Guide

314Message-channel



<selector>
				<element	name="root-qname"	value="{http://citrusframework.org/schema}GoodbyeMessage"/>
</selector>

XPath	Evaluating	Message	Selector

It	is	also	possible	to	evaluate	some	XPath	expression	on	the	message	payload	in	order
to	select	a	message	from	a	message	channel.	The	XPath	expression	outcome	must
match	an	expected	value	and	only	then	the	message	is	consumed	form	the	channel.

The	syntax	for	the	XPath	expression	is	to	be	defined	as	the	element	name	like	this:

<selector>
				<element	name="xpath://Order/status"	value="pending"/>
</selector>

The	message	selector	looks	for	order	messages	with	status="pending"	in	the	message
payload.	This	means	that	following	messages	would	get	accepted/declined	by	the
message	selector.

<Order><status>pending</status></Order>	=	ACCEPTED
<Order><status>finished</status></Order>	=	NOT	ACCEPTED

Of	course	you	can	also	use	XML	namespaces	in	your	XPath	expressions	when	selecting
messages	from	channels.

<selector>
				<element	name="xpath://ns1:Order/ns1:status"	value="pending"/>
</selector>

Namespace	prefixes	must	match	the	incoming	message	-	otherwise	the	XPath
expression	will	not	work	as	expected.	In	our	example	the	message	should	look	like	this:

<ns1:Order	xmlns:ns1="http://citrus.org/schema"><ns1:status>pending</ns1:status></ns1:Order>

Knowing	the	correct	XML	namespace	prefix	is	not	always	easy.	If	you	are	not	sure	which
namespace	prefix	to	choose	Citrus	ships	with	a	dynamic	namespace	replacement	for
XPath	expressions.	The	XPath	expression	looks	like	this	and	is	most	flexible:

Citrus	Reference	Guide

315Message-channel



<selector>
				<element	name="xpath://{http://citrus.org/schema}:Order/{http://citrus.org/schema}:status"
																value="pending"/>
</selector>

This	will	match	all	incoming	messages	regardless	the	XML	namespace	prefix	that	is
used.

Citrus	Reference	Guide

316Message-channel



File	support
In	chaptermessage-channelwe	discussed	the	native	Spring	Integration	channel	support
which	enables	Citrus	to	interact	with	all	Spring	Integration	messaging	adapter
implementations.	This	is	a	fantastic	way	to	extend	Citrus	for	additional	transports.	This
interaction	now	comes	handy	when	writing	and	reading	files	from	the	file	system	in
Citrus.

Write	files

We	want	to	use	the	Spring	Integration	file	adapter	for	both	reading	and	writing	files	with
a	local	directory.	Citrus	can	easily	connect	to	this	file	adapter	implementation	with	its
message	channel	support.	Citrus	message	sender	and	receiver	speak	to	message
channels	that	are	connected	to	the	Spring	Integration	file	adapters.

<citrus:channel-endpoint	id="fileEndpoint"	channel="fileChannel"/>

<file:outbound-channel-adapter	id="fileOutboundAdapter"
						channel="fileChannel"
						directory="file:${some.directory.property}"/>

<si:channel	id="fileChannel"/>

The	configuration	above	describes	a	Citrus	message	channel	endpoint	connected	to	a
Spring	Integration	outbound	file	adapter	that	writes	messages	to	a	storage	directory.
With	this	combination	you	are	able	to	write	files	to	a	directory	in	your	Citrus	test	case.
The	test	case	uses	the	channel	endpoint	in	its	send	action	and	the	endpoint	interacts
with	the	Spring	Integration	file	adapter	so	sending	out	the	file.

Note	The	Spring	Integration	file	adapter	configuration	components	add	a	new
namespace	to	our	Spring	application	context.	See	this	template	which	holds	all
necessary	namespaces	and	schema	locations:

Citrus	Reference	Guide

317File



<?xml	version="1.0"	encoding="UTF-8"?>
								<beans	xmlns="http://www.springframework.org/schema/beans"
								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
								xmlns:citrus="http://www.citrusframework.org/schema/config"
								xmlns:si="http://www.springframework.org/schema/integration"
								xmlns:file="http://www.springframework.org/schema/integration/file"
								xsi:schemaLocation="http://www.springframework.org/schema/beans
								http://www.springframework.org/schema/beans/spring-beans.xsd
								http://www.citrusframework.org/schema/config
								http://www.citrusframework.org/schema/config/citrus-config.xsd
								http://www.springframework.org/schema/integration
								http://www.springframework.org/schema/integration/spring-integration.xsd
								http://www.springframework.org/schema/integration/file
								http://www.springframework.org/schema/integration/file/spring-integration-file.xsd">
								</beans>

Read	files

The	next	program	listing	shows	a	possible	inbound	file	communication.	So	the	Spring
Integration	file	inbound	adapter	will	read	files	from	a	storage	directory	and	publish	the	file
contents	to	a	message	channel.	Citrus	can	then	receive	those	files	as	messages	in	a
test	case	via	the	channel	endpoint	and	validate	the	file	contents	for	instance.

<file:inbound-channel-adapter		id="fileInboundAdapter"
								channel="fileChannel"
								directory="file:${some.directory.property}">
				<si:poller	fixed-rate="100"/>
</file:inbound-channel-adapter>

<si:channel	id="fileChannel">
				<si:queue	capacity="25"/>
				<si:interceptors>
								<bean	class="org.springframework.integration.transformer.MessageTransformingChannelInterceptor"
												<constructor-arg>
																<bean	class="org.springframework.integration.file.transformer.FileToStringTransformer"
												</constructor-arg>
								</bean>
				</si:interceptors>
</si:channel>

<citrus:channel-endpoint	id="fileEndpoint"	channel="fileChannel"/>

Citrus	Reference	Guide

318File



Important	The	file	inbound	adapter	constructs	Java	file	objects	as	the	message	payload
by	default.	Citrus	can	only	work	on	String	message	payloads.	So	we	need	a	file
transformer	that	converts	the	file	objects	to	String	payloads	representing	the	file's
content.

This	file	adapter	example	shows	how	easy	Citrus	can	work	hand	in	hand	with	Spring
Integration	adapter	implementations.	The	message	channel	support	is	a	fantastic	way	to
extend	the	transport	and	protocol	support	in	Citrus	by	connecting	with	the	very	good
Spring	Integration	adapter	implementations.	Have	a	closer	look	at	the	Spring	Integration
project	for	more	details	and	other	adapter	implementations	that	you	can	use	with	Citrus
integration	testing.

Citrus	Reference	Guide

319File



Apache	Camel	support
Apache	Camel	project	implements	the	enterprise	integration	patterns	for	building
mediation	and	routing	rules	in	your	enterprise	application.	With	the	Citrus	Camel	support
you	are	able	to	directly	interact	with	the	Apache	Camel	components	and	route
definitions.	You	can	call	Camel	routes	and	receive	synchronous	response	messages.
You	can	also	simulate	the	Camel	route	endpoint	with	receiving	messages	and	providing
simulated	response	messages.

Note	The	camel	components	in	Citrus	are	kept	in	a	separate	Maven	module.	So	you
should	add	the	module	as	Maven	dependency	to	your	project	accordingly.

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-camel</artifactId>
		<version>2.6.1</version>
</dependency>

Citrus	provides	a	special	Apache	Camel	configuration	schema	that	is	used	in	our	Spring
configuration	files.	You	have	to	include	the	citrus-camel	namespace	in	your	Spring
configuration	XML	files	as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
						xmlns:citrus="http://www.citrusframework.org/schema/config"
						xmlns:citrus-camel="http://www.citrusframework.org/schema/camel/config"
						xsi:schemaLocation="
						http://www.springframework.org/schema/beans
						http://www.springframework.org/schema/beans/spring-beans.xsd
						http://www.citrusframework.org/schema/config
						http://www.citrusframework.org/schema/config/citrus-config.xsd
						http://www.citrusframework.org/schema/camel/config
						http://www.citrusframework.org/schema/camel/config/citrus-camel-config.xsd">

						[...]

						</beans>

Now	you	are	ready	to	use	the	Citrus	Apache	Camel	configuration	elements	using	the
citrus-camel	namespace	prefix.

The	next	sections	explain	the	Citrus	capabilities	while	working	with	Apache	Camel.

Citrus	Reference	Guide

320Camel



Camel	endpoint

Camel	and	Citrus	both	use	the	endpoint	pattern	in	order	to	define	message	destinations.
Users	can	interact	with	these	endpoints	when	creating	the	mediation	and	routing	logic.
The	Citrus	endpoint	component	for	Camel	interaction	is	defined	as	follows	in	your	Citrus
Spring	configuration.

<citrus-camel:endpoint	id="directCamelEndpoint"
						endpoint-uri="direct:news"/>

Right	next	to	that	Citrus	endpoint	we	need	the	Apache	Camel	route	that	is	located	inside
a	camel	context	component.

<camelContext	id="camelContext"	xmlns="http://camel.apache.org/schema/spring">
		<route	id="newsRoute">
				<from	uri="direct:news"/>
				<to	uri="log:com.consol.citrus.camel?level=INFO"/>
				<to	uri="seda:news-feed"/>
		</route>
</camelContext>

As	you	can	see	the	Citrus	camel	endpoint	is	able	to	interact	with	the	Camel	route.	In	the
example	above	the	Camel	context	is	placed	as	Spring	bean	Camel	context.	This	would
be	the	easiest	setup	to	use	Camel	with	Citrus	as	you	can	add	the	Camel	context	straight
to	the	Spring	bean	application	context.	Of	course	you	can	also	import	your	Camel
context	and	routes	from	other	Spring	bean	context	files	or	you	can	start	the	Camel
context	routes	with	Java	code.

In	the	example	the	Apache	Camel	route	is	listening	on	the	route	endpoint	uri
direct:news	.	Incoming	messages	will	be	logged	to	the	console	using	a	log	Camel
component.	After	that	the	message	is	forwarded	to	a	seda	Camel	component	which	is	a
simple	queue	in	memory.	So	we	have	a	small	Camel	routing	logic	with	two	different
message	transports.

The	Citrus	endpoint	can	interact	with	this	sample	route	definition.	The	endpoint
configuration	holds	the	endpoint	uri	information	that	tells	Citrus	how	to	access	the
Apache	Camel	route	destination.	This	endpoint	uri	can	be	any	Camel	endpoint	uri	that	is
used	in	a	Camel	route.	Here	we	just	use	the	direct	endpoint	uri	direct:news	so	the
sample	Camel	route	gets	called	directly.	In	your	test	case	you	can	use	this	endpoint

Citrus	Reference	Guide

321Camel



component	referenced	by	its	id	or	name	in	order	to	send	and	receive	messages	on	the
route	address	direct:news	.	The	Camel	route	listening	on	this	direct	address	will	be
invoked	accordingly.

The	Apache	Camel	routes	support	asynchronous	and	synchronous	message
communication	patterns.	By	default	Citrus	uses	asynchronous	communication	with
Camel	routes.	This	means	that	the	Citrus	producer	sends	the	exchange	message	to	the
route	endpoint	uri	and	is	finished	immediately.	There	is	no	synchronous	response	to
await.	In	contrary	to	that	the	synchronous	endpoint	will	send	and	receive	a	synchronous
message	on	the	Camel	destination	route.	We	will	discuss	this	later	on	in	this	chapter.
For	now	we	have	a	look	on	how	to	use	the	Citrus	camel	endpoint	in	a	test	case	in	order
to	send	a	message	to	the	Camel	route:

<send	endpoint="directCamelEndpoint">
		<message	type="plaintext">
				<payload>Hello	from	Citrus!</payload>
		</message>
</send>

The	Citrus	camel	endpoint	component	can	also	be	used	in	a	receive	message	action	in
your	test	case.	In	this	situation	you	would	receive	a	message	from	the	route	endpoint.
This	is	especially	designed	for	queueing	endpoint	routes	such	as	the	Camel	seda
component.	In	our	example	Camel	route	above	the	seda	Camel	component	is	called
with	the	endpoint	uri	seda:news-feed	.	This	means	that	the	Camel	route	is	sending	a
message	to	the	seda	component.	Citrus	is	able	to	receive	this	route	message	with	a
endpoint	component	like	this:

<citrus-camel:endpoint	id="sedaCamelEndpoint"
				endpoint-uri="seda:news-feed"/>

You	can	use	the	Citrus	camel	endpoint	in	your	test	case	receive	action	in	order	to
consume	the	message	on	the	seda	component.

<receive	endpoint="sedaCamelEndpoint">
		<message	type="plaintext">
				<payload>Hello	from	Citrus!</payload>
		</message>
</receive>

Citrus	Reference	Guide

322Camel



Tip	Instead	of	defining	a	static	Citrus	camel	component	you	could	also	use	the	dynamic
endpoint	components	in	Citrus.	This	would	enable	you	to	send	your	message	directly
using	the	endpoint	uri	direct:news	in	your	test	case.	Read	more	about	this	inendpoint-
components.

Citrus	is	able	to	send	and	receive	messages	with	Camel	route	endpoint	uri.	This	enables
you	to	invoke	a	Camel	route.	The	Camel	components	used	is	defined	by	the	endpoint	uri
as	usual.	When	interacting	with	Camel	routes	you	might	need	to	send	back	some
response	messages	in	order	to	simulate	boundary	applications.	We	will	discuss	the
synchronous	communication	in	the	next	section.

Synchronous	Camel	endpoint

The	synchronous	Apache	Camel	producer	sends	a	message	to	some	route	and	waits
synchronously	for	the	response	to	arrive.	In	Camel	this	communication	is	represented
with	the	exchange	pattern	InOut	.	The	basic	configuration	for	a	synchronous	Apache
Camel	endpoint	component	looks	like	follows:

<citrus-camel:sync-endpoint	id="camelSyncEndpoint"
						endpoint-uri="direct:hello"
						timeout="1000"
						polling-interval="300"/>

Synchronous	endpoints	poll	for	synchronous	reply	messages	to	arrive.	The	poll	interval
is	an	optional	setting	in	order	to	manage	the	amount	of	reply	message	handshake
attempts.	Once	the	endpoint	was	able	to	receive	the	reply	message	synchronously	the
test	case	can	receive	the	reply.	In	case	the	reply	message	is	not	available	in	time	we
raise	some	timeout	error	and	the	test	will	fail.

In	a	first	test	scenario	we	write	a	test	case	the	sends	a	message	to	the	synchronous
endpoint	and	waits	for	the	synchronous	reply	message	to	arrive.	So	we	have	two	actions
on	the	same	Citrus	endpoint,	first	send	then	receive.

Citrus	Reference	Guide

323Camel



<send	endpoint="camelSyncEndpoint">
		<message	type="plaintext">
				<payload>Hello	from	Citrus!</payload>
		</message>
</send>

<receive	endpoint="camelSyncEndpoint">
		<message	type="plaintext">
				<payload>This	is	the	reply	from	Apache	Camel!</payload>
		</message>
</receive>

The	next	variation	deals	with	the	same	synchronous	communication,	but	send	and
receive	roles	are	switched.	Now	Citrus	receives	a	message	from	a	Camel	route	and	has
to	provide	a	reply	message.	We	handle	this	synchronous	communication	with	the	same
synchronous	Apache	Camel	endpoint	component.	Only	difference	is	that	we	initially	start
the	communication	by	receiving	a	message	from	the	endpoint.	Knowing	this	Citrus	is
able	to	send	a	synchronous	response	back.	Again	just	use	the	same	endpoint	reference
in	your	test	case.	So	we	have	again	two	actions	in	our	test	case,	but	this	time	first
receive	then	send.

<receive	endpoint="camelSyncEndpoint">
		<message	type="plaintext">
				<payload>Hello	from	Apache	Camel!</payload>
		</message>
</receive>

<send	endpoint="camelSyncEndpoint">
		<message	type="plaintext">
				<payload>This	is	the	reply	from	Citrus!</payload>
		</message>
</send>

This	is	pretty	simple.	Citrus	takes	care	on	setting	the	Apache	Camel	exchange	pattern
InOut	while	using	synchronous	communications.	The	Camel	routes	do	respond	and
Citrus	is	able	to	receive	the	synchronous	messages	accordingly.	With	this	pattern	you
can	interact	with	Apache	Camel	routes	where	Citrus	simulates	synchronous	clients	and
consumers.

Camel	exchange	headers

Citrus	Reference	Guide

324Camel



Apache	Camel	uses	exchanges	when	sending	and	receiving	messages	to	and	from
routes.	These	exchanges	hold	specific	information	on	the	communication	outcome.
Citrus	automatically	converts	these	exchange	information	to	special	message	header
entries.	You	can	validate	those	exchange	headers	then	easily	in	your	test	case:

<receive	endpoint="sedaCamelEndpoint">
		<message	type="plaintext">
				<payload>Hello	from	Camel!</payload>
		</message>
		<header>
				<element	name="citrus_camel_route_id"	value="newsRoute"/>
				<element	name="citrus_camel_exchange_id"	value="ID-local-50532-1402653725341-0-3"/>
				<element	name="citrus_camel_exchange_failed"	value="false"/>
				<element	name="citrus_camel_exchange_pattern"	value="InOnly"/>
				<element	name="CamelCorrelationId"	value="ID-local-50532-1402653725341-0-1"/>
				<element	name="CamelToEndpoint"	value="seda://news-feed"/>
		</header>
</receive>

Besides	the	Camel	specific	exchange	information	the	Camel	exchange	does	also	hold
some	custom	properties.	These	properties	such	as	CamelToEndpoint	or
CamelCorrelationId	are	also	added	automatically	to	the	Citrus	message	header	so	can
expect	them	in	a	receive	message	action.

Camel	exception	handling

Let	us	suppose	following	route	definition:

<camelContext	id="camelContext"	xmlns="http://camel.apache.org/schema/spring">
		<route	id="newsRoute">
				<from	uri="direct:news"/>
				<to	uri="log:com.consol.citrus.camel?level=INFO"/>
				<to	uri="seda:news-feed"/>
				<onException>
						<exception>com.consol.citrus.exceptions.CitrusRuntimeException</exception>
						<to	uri="seda:exceptions"/>
				</onException>
		</route>
</camelContext>

The	route	has	an	exception	handling	block	defined	that	is	called	as	soon	as	the
exchange	processing	ends	up	in	some	error	or	exception.	With	Citrus	you	can	also
simulate	a	exchange	exception	when	sending	back	a	synchronous	response	to	a	calling
route.

Citrus	Reference	Guide

325Camel



<send	endpoint="sedaCamelEndpoint">
		<message	type="plaintext">
				<payload>Something	went	wrong!</payload>
		</message>
		<header>
				<element	name="citrus_camel_exchange_exception"
																value="com.consol.citrus.exceptions.CitrusRuntimeException"/>
				<element	name="citrus_camel_exchange_exception_message"	value="Something	went	wrong!"/>
				<element	name="citrus_camel_exchange_failed"	value="true"/>
		</header>
</send>

This	message	as	response	to	the	seda:news-feed	route	would	cause	Camel	to	enter
the	exception	handling	in	the	route	definition.	The	exception	handling	is	activated	and
calls	the	error	handling	route	endpoint	seda:exceptions	.	Of	course	Citrus	would	be
able	to	receive	such	an	exception	exchange	validating	the	exception	handling	outcome.

In	such	failure	scenarios	the	Apache	Camel	exchange	holds	the	exception	information
(CamelExceptionCaught)	such	as	causing	exception	class	and	error	message.	These
headers	are	present	in	an	error	scenario	and	can	be	validated	in	Citrus	when	receiving
error	messages	as	follows:

<receive	endpoint="errorCamelEndpoint">
		<message	type="plaintext">
				<payload>Something	went	wrong!</payload>
		</message>
		<header>
				<element	name="citrus_camel_route_id"	value="newsRoute"/>
				<element	name="citrus_camel_exchange_failed"	value="true"/>
				<element	name="CamelExceptionCaught"
								value="com.consol.citrus.exceptions.CitrusRuntimeException:	Something	went	wrong!"/>
		</header>
</receive>

This	completes	the	basic	exception	handling	in	Citrus	when	using	the	Apache	Camel
endpoints.

Camel	context	handling

In	the	previous	samples	we	have	used	the	Apache	Camel	context	as	Spring	bean
context	that	is	automatically	loaded	when	Citrus	starts	up.	Now	when	using	a	single
Camel	context	instance	Citrus	is	able	to	automatically	pick	this	Camel	context	for	route

Citrus	Reference	Guide

326Camel



interaction.	If	you	use	more	that	one	Camel	context	you	have	to	tell	the	Citrus	endpoint
component	which	context	to	use.	The	endpoint	offers	an	optional	attribute	called	camel-
context	.

<citrus-camel:endpoint	id="directCamelEndpoint"
				camel-context="newsContext"
				endpoint-uri="direct:news"/>

<camelContext	id="newsContext"	xmlns="http://camel.apache.org/schema/spring">
				<route	id="newsRoute">
						<from	uri="direct:news"/>
						<to	uri="log:com.consol.citrus.camel?level=INFO"/>
						<to	uri="seda:news-feed"/>
				</route>
</camelContext>

<camelContext	id="helloContext"	xmlns="http://camel.apache.org/schema/spring">
		<route	id="helloRoute">
				<from	uri="direct:hello"/>
				<to	uri="log:com.consol.citrus.camel?level=INFO"/>
				<to	uri="seda:hello"/>
		</route>
</camelContext>

In	the	example	abpove	we	have	two	Camel	context	instances	loaded.	The	endpoint	has
to	pick	the	context	to	use	with	the	attribute	camel-context	which	resides	to	the	Spring
bean	id	of	the	Camel	context.

Camel	route	actions

Since	Citrus	2.4	we	introduced	some	Camel	specific	test	actions	that	enable	easy
interaction	with	Camel	routes	and	the	Camel	context.	The	test	actions	do	follow	a
specific	XML	namespace	so	we	have	to	add	this	namespace	to	the	test	case	when	using
the	actions.

Citrus	Reference	Guide

327Camel



<beans	xmlns="http://www.springframework.org/schema/beans"
						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
						xmlns:camel="http://www.citrusframework.org/schema/camel/testcase"
						xsi:schemaLocation="
						http://www.springframework.org/schema/beans
						http://www.springframework.org/schema/beans/spring-beans.xsd
						http://www.citrusframework.org/schema/camel/testcase
						http://www.citrusframework.org/schema/camel/testcase/citrus-camel-testcase.xsd">

		[...]

</beans>

We	added	a	special	camel	namespace	with	prefix	camel:	so	now	we	can	start	to	add
Camel	test	actions	to	the	test	case:

XML	DSL

<testcase	name="CamelRouteIT">
		<actions>
						<camel:create-routes>
								<routeContext	xmlns="http://camel.apache.org/schema/spring">
										<route	id="route_1">
												<from	uri="direct:test1"/>
												<to	uri="mock:test1"/>
										</route>

										<route	id="route_2">
														<from	uri="direct:test2"/>
														<to	uri="mock:test2"/>
										</route>
								</routeContext>
						</camel:create-routes>

						<camel:create-routes	camel-context="camelContext">
								<routeContext	xmlns="http://camel.apache.org/schema/spring">
										<route>
												<from	uri="direct:test3"/>
												<to	uri="mock:test3"/>
										</route>
								</routeContext>
						</camel:create-routes>
		</actions>
</testcase>

Citrus	Reference	Guide

328Camel



In	the	example	above	we	have	used	the	camel:create-route	test	action	that	will	create
new	Camel	routes	at	runtime	in	the	Camel	context.	The	target	Camel	context	is	specified
with	the	optional	camel-context	attribute.	By	default	Citrus	will	search	for	a	Camel
context	available	in	the	Spring	bean	application	context.	Removing	routes	at	runtime	is
also	supported.

XML	DSL

<testcase	name="CamelRouteIT">
		<actions>
						<camel:remove-routes	camel-context="camelContext">
								<route	id="route_1"/>
								<route	id="route_2"/>
								<route	id="route_3"/>
						</camel:remove-routes>
		</actions>
</testcase>

Next	operation	we	will	discuss	is	the	start	and	stop	of	existing	Camel	routes:

XML	DSL

<testcase	name="CamelRouteIT">
		<actions>
						<camel:start-routes	camel-context="camelContext">
								<route	id="route_1"/>
						</camel:start-routes>

						<camel:stop-routes	camel-context="camelContext">
						<route	id="route_2"/>
						<route	id="route_3"/>
						</camel:stop-routes>
		</actions>
</testcase>

Starting	and	stopping	Camel	routes	at	runtime	is	important	when	temporarily	Citrus	need
to	receive	a	message	on	a	Camel	endpoint	URI.	We	can	stop	a	route,	use	a	Citrus
camel	endpoint	instead	for	validation	and	start	the	route	after	the	test	is	done.	This	way
wen	can	also	simulate	errors	and	failure	scenarios	in	a	Camel	route	interaction.

Of	course	all	Camel	route	actions	are	also	available	in	Java	DSL.

Java	DSL

Citrus	Reference	Guide

329Camel



@Autowired
private	CamelContext	camelContext;

@CitrusTest
public	void	camelRouteTest()	{
				camel().context(camelContext).create(new	RouteBuilder(camelContext)	{
										@Override
										public	void	configure()	throws	Exception	{
														from("direct:news")
																		.routeId("route_1")
																		.autoStartup(false)
																		.setHeader("headline",	simple("This	is	BIG	news!"))
																		.to("mock:news");

														from("direct:rumors")
																		.routeId("route_2")
																		.autoStartup(false)
																		.setHeader("headline",	simple("This	is	just	a	rumor!"))
																		.to("mock:rumors");
										}
						});

				camel().context(camelContext).start("route_1",	"route_2");

				camel().context(camelContext).stop("route_2");

				camel().context(camelContext).remove("route_2");
}

As	you	can	see	we	have	access	to	the	Camel	route	builder	that	adds	1-n	new	Camel
routes	to	the	context.	After	that	we	can	start,	stop	and	remove	the	routes	within	the	test
case.

Camel	controlbus	actions

The	Camel	controlbus	component	is	a	good	way	to	access	route	statistics	and	route
status	information	within	a	Camel	context.	Citrus	provides	controlbus	test	actions	to
easily	access	the	controlbus	operations	at	runtime.

XML	DSL

Citrus	Reference	Guide

330Camel



<testcase	name="CamelControlBusIT">
		<actions>
				<camel:control-bus>
						<camel:route	id="route_1"	action="start"/>
				</camel:control-bus>

				<camel:control-bus	camel-context="camelContext">
						<camel:route	id="route_2"	action="status"/>
						<camel:result>Stopped</camel:result>
				</camel:control-bus>

				<camel:control-bus>
						<camel:language	type="simple">${camelContext.stop()}</camel:language>
				</camel:control-bus>

				<camel:control-bus	camel-context="camelContext">
						<camel:language	type="simple">${camelContext.getRouteStatus('route_3')}</camel:language
						<camel:result>Started</camel:result>
				</camel:control-bus>
		</actions>
</testcase>

The	example	test	case	shows	the	controlbus	access.	Camel	provides	two	different	ways
to	specify	operations	and	parameters.	The	first	option	is	the	use	of	an	action	attribute.
The	Camel	route	id	has	to	be	specified	as	mandatory	attribute.	As	a	result	the	controlbus
action	will	be	executed	on	the	target	route	during	test	runtime.	This	way	we	can	also
start	and	stop	Camel	routes	in	a	Camel	context.

In	case	an	controlbus	operation	has	a	result	such	as	the	status	action	we	can	specify	a
control	result	that	is	compared.	Citrus	will	raise	validation	exceptions	when	the	results
differ.	The	second	option	for	executing	a	controlbus	action	is	the	language	expression.
We	can	use	Camel	language	expressions	on	the	Camel	context	for	accessing	a
controlbus	operation.	Also	here	we	can	define	an	optional	outcome	as	expected	result.

The	Java	DSL	also	supports	these	controlbus	operations	as	the	next	example	shows:

Java	DSL

Citrus	Reference	Guide

331Camel



@Autowired
private	CamelContext	camelContext;

@CitrusTest
public	void	camelRouteTest()	{
						camel().controlBus()
														.route("my_route",	"start");

						camel().controlBus()
														.language(SimpleBuilder.simple("${camelContext.getRouteStatus('my_route')}"))
														.result(ServiceStatus.Started);
}

The	Java	DSL	works	with	Camel	language	expression	builders	as	well	as
ServiceStatus	enum	values	as	expected	result.

Citrus	Reference	Guide

332Camel



Vert.x	event	bus	support
Vert.x	is	an	application	platform	for	the	JVM	that	provides	a	network	event	bus	for
lightweight	scalable	messaging	solutions.	The	Citrus	Vert.x	components	do	participate
on	that	event	bus	messaging	as	producer	or	consumer.	With	these	components	you	can
access	Vert.x	instances	available	in	your	network	in	order	to	test	those	Vert.x
applications	in	some	integration	test	scenario.

Note	The	Vert.x	components	in	Citrus	are	kept	in	a	separate	Maven	module.	So	you
should	add	the	module	as	Maven	dependency	to	your	project	accordingly.

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-vertx</artifactId>
		<version>2.6.1</version>
</dependency>

Citrus	provides	a	special	Vert.x	configuration	schema	that	is	used	in	our	Spring
configuration	files.	You	have	to	include	the	citrus-vertx	namespace	in	your	Spring
configuration	XML	files	as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
						xmlns:citrus="http://www.citrusframework.org/schema/config"
						xmlns:citrus-vertx="http://www.citrusframework.org/schema/vertx/config"
						xsi:schemaLocation="
						http://www.springframework.org/schema/beans
						http://www.springframework.org/schema/beans/spring-beans.xsd
						http://www.citrusframework.org/schema/config
						http://www.citrusframework.org/schema/config/citrus-config.xsd
						http://www.citrusframework.org/schema/vertx/config
						http://www.citrusframework.org/schema/vertx/config/citrus-vertx-config.xsd">

						[...]

						</beans>

Now	you	are	ready	to	use	the	Citrus	Vert.x	configuration	elements	using	the	citrus-vertx
namespace	prefix.

The	next	sections	discuss	sending	and	receiving	operations	on	the	Vert.x	event	bus	with
Citrus.

Citrus	Reference	Guide

333Vertx



Vert.x	endpoint

As	usual	Citrus	uses	an	endpoint	component	in	order	to	specify	some	message
destination	to	send	and	receive	messages	to	and	from.	The	Vert.x	endpoint	component
is	defined	as	follows	in	your	Citrus	Spring	configuration.

<citrus-vertx:endpoint	id="simpleVertxEndpoint"
						host="localhost"
						port="5001"
						pubSubDomain="false"
						address="news-feed"/>

<bean	id="vertxInstanceFactory"	class="com.consol.citrus.vertx.factory.CachingVertxInstanceFactory"

The	endpoint	holds	some	general	information	how	to	access	the	Vert.x	event	bus.	Host
and	port	values	define	the	Vert.x	Hazelcast	cluster	hostname	and	port.	Citrus	starts	a
new	Vert.x	instance	using	this	cluster.	So	all	other	Vert.x	instances	connected	to	this
cluster	host	will	receive	the	event	bus	messages	from	Citrus	during	the	test.	In	your	test
case	you	can	use	this	endpoint	component	referenced	by	its	id	or	name	in	order	to	send
and	receive	messages	on	the	event	bus	address	news-feed	.	In	Vert.x	the	event	bus
address	defines	the	destination	for	event	consumers	to	listen	on.	As	already	mentioned
cluster	hostname	and	port	are	optional,	so	Citrus	will	use	localhost	and	a	new	random
port	on	the	cluster	host	if	nothing	is	specified.

The	Vert.x	event	bus	supports	publish-subscribe	and	point-to-point	message
communication	patterns.	By	default	the	pubSubDomain	in	Citrus	is	false	so	the	event
bus	sender	will	initiate	a	point-to-point	communication	on	the	event	bus	address.	This
means	that	only	one	single	consumer	on	the	event	bus	address	will	receive	the
message.	If	there	are	more	consumers	on	the	address	the	first	to	come	wins	and
receives	the	message.	In	contrary	to	that	the	publish-subscribe	scenario	would	deliver
the	message	to	all	available	consumers	on	the	event	bus	address	simultaneously.	You
can	enable	the	pubSubDomain	on	the	Vert.x	endpoint	component	for	this
communication	pattern.

The	Vert.x	endpoint	needs	a	instance	factory	implementation	in	order	to	create	the
embedded	Vert.x	instance.	By	default	the	bean	name	vertxInstanceFactory	is
recognized	by	all	Vert.x	endpoint	components.	We	will	talk	about	Vert.x	instance
factories	in	more	detail	later	on	in	this	chapter.

Citrus	Reference	Guide

334Vertx



As	message	content	you	can	send	and	receive	JSON	objects	or	simple	character
sequences	to	the	event	bus.	Let	us	have	a	look	at	a	simple	sample	sending	action	that
uses	the	new	Vert.x	endpoint	component:

<send	endpoint="simpleVertxEndpoint">
		<message	type="plaintext">
				<payload>Hello	from	Citrus!</payload>
		</message>
</send>

As	the	Vert.x	Citrus	endpoint	is	bidirectional	you	can	also	receive	messages	from	the
event	bus.

<receive	endpoint="simpleVertxEndpoint">
		<message	type="plaintext">
				<payload>Hello	from	Vert.x!</payload>
		</message>
		<header>
				<element	name="citrus_vertx_address"	value="news-feed"/>
		</header>
</receive>

Citrus	automatically	adds	some	special	message	headers	to	the	message,	so	you	can
validate	the	Vert.x	event	bus	address.	This	completes	the	simple	send	and	receive
operations	on	a	Vert.x	event	bus.	Now	lets	move	on	to	synchronous	endpoints	where
Citrus	waits	for	a	reply	on	the	event	bus.

Synchronous	Vert.x	endpoint

The	synchronous	Vert.x	event	bus	producer	sends	a	message	and	waits	synchronously
for	the	response	to	arrive	on	some	reply	address	destination.	The	reply	address	name	is
generated	automatically	and	set	in	the	request	message	header	attributes	so	the
receiving	counterpart	in	this	communication	can	send	its	reply	to	that	event	bus	address.
The	basic	configuration	for	a	synchronous	Vert.x	endpoint	component	looks	like	follows:

<citrus-vertx:sync-endpoint	id="vertxSyncEndpoint"
						address="hello"
						timeout="1000"
						polling-interval="300"/>

Citrus	Reference	Guide

335Vertx



Synchronous	endpoints	poll	for	synchronous	reply	messages	to	arrive	on	the	event	bus
reply	address.	The	poll	interval	is	an	optional	setting	in	order	to	manage	the	amount	of
reply	message	handshake	attempts.	Once	the	endpoint	was	able	to	receive	the	reply
message	synchronously	the	test	case	can	receive	the	reply.	In	case	all	message
handshake	attempts	do	fail	because	the	reply	message	is	not	available	in	time	we	raise
some	timeout	error	and	the	test	will	fail.

Note	The	Vert.x	endpoint	uses	temporary	reply	address	destinations.	The	temporary
reply	address	in	generated	and	is	only	used	once	for	a	single	communication
handshake.	After	that	the	reply	address	is	dismissed	again.

When	sending	a	message	to	the	synchronous	Vert.x	endpoint	the	producer	will	wait
synchronously	for	the	response	message	to	arrive	on	the	reply	address.	You	can	receive
the	reply	message	in	your	test	case	using	the	same	endpoint	component.	So	we	have
two	actions	on	the	same	endpoint,	first	send	then	receive.

<send	endpoint="vertxSyncEndpoint">
		<message	type="plaintext">
				<payload>Hello	from	Citrus!</payload>
		</message>
</send>

<receive	endpoint="vertxSyncEndpoint">
		<message	type="plaintext">
				<payload>This	is	the	reply	from	Vert.x!</payload>
		</message>
</receive>

In	the	last	section	we	saw	that	synchronous	communication	is	based	on	reply	messages
on	temporary	reply	event	bus	address.	We	saw	that	Citrus	is	able	to	send	messages	to
event	bus	address	and	wait	for	reply	messages	to	arrive.	This	next	section	deals	with	the
same	synchronous	communication,	but	send	and	receive	roles	are	switched.	Now	Citrus
receives	a	message	and	has	to	send	a	reply	message	to	a	temporary	reply	address.

We	handle	this	synchronous	communication	with	the	same	synchronous	Vert.x	endpoint
component.	Only	difference	is	that	we	initially	start	the	communication	by	receiving	a
message	from	the	endpoint.	Knowing	this	Citrus	is	able	to	send	a	synchronous	response
back.	Again	just	use	the	same	endpoint	reference	in	your	test	case.	The	handling	of	the
temporary	reply	address	is	done	automatically	behind	the	scenes.	So	we	have	again	two
actions	in	our	test	case,	but	this	time	first	receive	then	send.

Citrus	Reference	Guide

336Vertx



<receive	endpoint="vertxSyncEndpoint">
		<message	type="plaintext">
				<payload>Hello	from	Vert.x!</payload>
		</message>
</receive>

<send	endpoint="vertxSyncEndpoint">
		<message	type="plaintext">
				<payload>This	is	the	reply	from	Citrus!</payload>
		</message>
</send>

The	synchronous	message	endpoint	for	Vert.x	event	bus	communication	will	handle	all
reply	address	destinations	and	provide	those	behind	the	scenes.

Vert.x	instance	factory

Citrus	starts	an	embedded	Vert.x	instance	at	runtime	in	order	to	participate	in	the	Vert.x
cluster.	Within	this	cluster	multiple	Vert.x	instances	are	connected	via	the	event	bus.	For
starting	the	Vert.x	event	bus	Citrus	uses	a	cluster	hostname	and	port	definition.	You	can
customize	this	cluster	host	in	order	to	connect	to	a	very	special	cluster	in	your	network.

Now	Citrus	needs	to	manage	the	Vert.x	instances	created	during	the	test	run.	By	default
Citrus	will	look	for	a	instance	factory	bean	named	vertxInstanceFactory	.	You	can
choose	the	factory	implementation	to	use	in	your	project.	By	default	you	can	use	the
caching	factory	implementation	that	caches	the	Vert.x	instances	so	we	do	not	connect
more	than	one	Vert.x	instance	to	the	same	cluster	host.	Citrus	offers	following	instance
factory	implementations:

com.consol.citrus.vertx.factory.CachingVertxInstanceFactory	-	default
implementation	that	reuses	the	Vert.x	instance	based	on	given	cluster	host	and	port.
With	this	implementation	we	ensure	to

connect	a	single	Citrus	Vert.x	instance	to	a	cluster	host.

com.consol.citrus.vertx.factory.SingleVertxInstanceFactory	-	creates	a	single	Vert.x
instance	and	reuses	this	instance	for	all	endpoints.	You	can	also	set	your	very
custom	Vert.x	instance	via	configuration

for	custom	Vert.x	instantiation.

Citrus	Reference	Guide

337Vertx



The	instance	factory	implementations	do	implement	the	VertxInstanceFactory
interface.	So	you	can	also	provide	your	very	special	implementation.	By	default	Citrus
looks	for	a	bean	named	vertxInstanceFactory	but	you	can	also	define	your	very	special
factory	implementation	onm	an	endpoint	component.	The	Vert.x	instance	factory	is	set
on	the	Vert.x	endpoint	as	follows:

<citrus-vertx:endpoint	id="vertxHelloEndpoint"
						address="hello"
						vertx-factory="singleVertxInstanceFactory"/>

<bean	id="singleVertxInstanceFactory"
						class="com.consol.citrus.vertx.factory.SingleVertxInstanceFactory"/>

Citrus	Reference	Guide

338Vertx



Mail	support
Sending	and	receiving	mails	is	the	next	interest	we	are	going	to	talk	about.	When
dealing	with	mail	communication	you	most	certainly	need	to	interact	with	some	sort	of
IMAP	or	POP	mail	server.	But	in	Citrus	we	do	not	want	to	manage	mails	in	a	personal
inbox.	We	just	need	to	be	able	to	exchange	mail	messages	the	persisting	in	a	user	inbox
is	not	part	of	our	business.

This	is	why	Citrus	provides	just	a	SMTP	mail	server	which	accepts	mail	messages	from
clients.	Once	the	SMTP	server	has	accepted	an	incoming	mail	it	forwards	those	data	to
the	running	test	case.	In	the	test	case	you	can	receive	the	incoming	mail	message	and
perform	message	validation	as	usual.	The	mail	sending	part	is	easy	as	Citrus	offers	a
mail	client	that	connects	to	some	SMTP	server	for	sending	mails	to	the	outside	world.

Note	The	mail	components	in	Citrus	are	kept	in	a	separate	Maven	module.	So	you
should	check	that	the	module	is	available	as	Maven	dependency	in	your	project

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-mail</artifactId>
		<version>2.6.1</version>
</dependency>

As	usual	Citrus	provides	a	customized	mail	configuration	schema	that	is	used	in	Spring
configuration	files.	Simply	include	the	citrus-mail	namespace	in	the	configuration	XML
files	as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
						xmlns:citrus="http://www.citrusframework.org/schema/config"
						xmlns:citrus-mail="http://www.citrusframework.org/schema/mail/config"
						xsi:schemaLocation="
						http://www.springframework.org/schema/beans
						http://www.springframework.org/schema/beans/spring-beans.xsd
						http://www.citrusframework.org/schema/config
						http://www.citrusframework.org/schema/config/citrus-config.xsd
						http://www.citrusframework.org/schema/mail/config
						http://www.citrusframework.org/schema/mail/config/citrus-mail-config.xsd">

						[...]

						</beans>

Citrus	Reference	Guide

339Mail



Now	you	are	ready	to	use	the	customized	Http	configuration	elements	with	the	citrus-
mail	namespace	prefix.

Read	the	next	section	in	order	to	find	out	more	about	the	mail	message	support	in
Citrus.

Mail	client

The	mail	sending	part	is	quite	easy	and	straight	forward.	We	just	need	to	send	a	mail
message	to	some	SMTP	server.	So	Citrus	provides	a	mail	client	that	sends	out	mail
messages.

<citrus-mail:client	id="simpleMailClient"
						host="localhost"
						port="25025"/>

This	is	how	a	Citrus	mail	client	component	is	defined	in	the	Spring	application	context.
You	can	use	this	client	referenced	by	its	id	or	name	in	your	test	case	in	a	message
sending	action.	The	client	defines	a	host	and	port	attribute	which	should	connect	the
client	to	some	SMTP	server	instance.

We	all	know	mail	message	contents.	The	mail	message	has	some	general	properties	set
by	the	user:

from:	The	message	sender	mail	address
to:	The	message	recipient	mail	address.	You	can	add	multiple	recipients	by	using	a
comma	separated	list.
cc:	Copy	recipient	mail	address.	You	can	add	multiple	recipients	by	using	a	comma
separated	list.
bcc:	Blind	copy	recipient	mail	address.	You	can	add	multiple	recipients	by	using	a
comma	separated	list.
subject:	Some	subject	used	as	mail	head	line.

As	a	tester	you	are	able	to	set	these	properties	in	your	test	case.	Citrus	defines	a	XML
mail	message	representation	that	you	can	use	inside	your	send	action.	Let	us	have	a
look	at	this:

Citrus	Reference	Guide

340Mail



<send	endpoint="simpleMailClient">
				<message>
								<payload>
												<mail-message	xmlns="http://www.citrusframework.org/schema/mail/message">
																<from>christoph@citrusframework.com</from>
																<to>dev@citrusframework.com</to>
																<cc></cc>
																<bcc></bcc>
																<subject>This	is	a	test	mail	message</subject>
																<body>
																				<contentType>text/plain;	charset=utf-8</contentType>
																				<content>Hello	Citrus	mail	server!</content>
																</body>
												</mail-message>
								</payload>
				</message>
</send>

The	basic	XML	mail	message	representation	defines	a	list	of	basic	mail	properties	such
as	from,	to	or	subject	.	In	addition	to	that	we	define	a	text	body	which	is	either	plain	text
or	HTML.	You	can	specify	the	content	type	of	the	mail	body	very	easy	(e.g.	text/plain	or
text/html).	By	default	Citrus	uses	text/plain	content	type.

Now	when	dealing	with	mail	messages	you	often	come	to	use	multipart	structures	for
attachments.	In	Citrus	you	can	define	attachment	content	as	base64	character
sequence.	The	Citrus	mail	client	will	automatically	create	a	proper	multipart	mail	mime
message	using	the	content	types	and	body	parts	specified.

Citrus	Reference	Guide

341Mail



<send	endpoint="simpleMailClient">
				<message>
								<payload>
												<mail-message	xmlns="http://www.citrusframework.org/schema/mail/message">
																<from>christoph@citrusframework.com</from>
																<to>dev@citrusframework.com</to>
																<cc></cc>
																<bcc></bcc>
																<subject>This	is	a	test	mail	message</subject>
																<body>
																				<contentType>text/plain;	charset=utf-8</contentType>
																				<content>Hello	Citrus	mail	server!</content>
																				<attachments>
																								<attachment>
																												<contentType>text/plain;	charset=utf-8</contentType>
																												<content>This	is	attachment	data</content>
																												<fileName>attachment.txt</fileName>
																								</attachment>
																				</attachments>
																</body>
												</mail-message>
								</payload>
				</message>
</send>

That	completes	the	basic	mail	client	capabilities.	But	wait	we	have	not	talked	about	error
scenarios	where	mail	communication	results	in	error.	When	running	into	mail	error
scenarios	we	have	to	handle	the	error	respectively	with	exception	handling.	When	the
mail	server	responded	with	errors	Citrus	will	raise	mail	exceptions	automatically	and
your	test	case	fails	accordingly.

As	a	tester	you	can	catch	and	assert	these	mail	exceptions	verifying	your	error	scenario.

<assert	exception="org.springframework.mail.MailSendException">
				<when>
								<send	endpoint="simpleMailClient">
												<message>
																<payload>
																				<mail-message	xmlns="http://www.citrusframework.org/schema/mail/message">
																								[...]
																				</mail-message>
																</payload>
												</message>
								</send>
				</when>
<assert/>

Citrus	Reference	Guide

342Mail



We	assert	the	MailSendException	from	Spring	to	be	thrown	while	sending	the	mail
message	to	the	SMTP	server.	With	exception	message	validation	you	are	able	to	expect
very	specific	mail	send	errors	on	the	client	side.	This	is	how	you	can	handle	some	sort	of
error	situation	returned	by	the	mail	server.	Speaking	of	mail	servers	we	need	to	also	talk
about	providing	a	mail	server	endpoint	in	Citrus	for	clients.	This	is	part	of	our	next
section.

Mail	server

Consuming	mail	messages	is	a	more	complicated	task	as	we	need	to	have	some	sort	of
server	that	clients	can	connect	to.	In	your	mail	client	software	you	typically	point	to	some
IMAP	or	POP	inbox	and	receive	mails	from	that	endpoint.	In	Citrus	we	do	not	want	to
manage	a	whole	personal	mail	inbox	such	as	IMAP	or	POP	would	provide.	We	just	need
a	SMTP	server	endpoint	for	clients	to	send	mails	to.	The	SMTP	server	accepts	mail
messages	and	forwards	those	to	a	running	test	case	for	further	validation.

Note	We	have	no	user	inbox	where	incoming	mails	are	stored.	The	mail	server	just
forwards	incoming	mails	to	the	running	test	for	validation.	After	the	test	the	incoming	mail
message	is	gone.

And	this	is	exactly	what	the	Citrus	mail	server	is	capable	of.	The	server	is	a	very
lightweight	SMTP	server.	All	incoming	mail	client	connections	are	accepted	by	default
and	the	mail	data	is	converted	into	a	Citrus	XML	mail	interface	representation.	The	XML
mail	message	is	then	passed	to	the	running	test	for	validation.

Let	us	have	a	look	at	the	Citrus	mail	server	component	and	how	you	can	add	it	to	the
Spring	application	context.

<citrus-mail:server	id="simpleMailServer"
						port="25025"
						auto-start="true"/>

The	mail	server	component	receives	several	properties	such	as	port	or	auto-start	.
Citrus	starts	a	in	memory	SMTP	server	that	clients	can	connect	to.

In	your	test	case	you	can	then	receive	the	incoming	mail	messages	on	the	server	in
order	to	perform	the	well	known	XML	validation	mechanisms	within	Citrus.	The	message
header	and	the	payload	contain	all	mail	information	so	you	can	verify	the	content	with
expected	templates	as	usual:

Citrus	Reference	Guide

343Mail



<receive	endpoint="simpleMailServer">
				<message>
								<payload>
												<mail-message	xmlns="http://www.citrusframework.org/schema/mail/message">
																<from>christoph@citrusframework.com</from>
																<to>dev@citrusframework.com</to>
																<cc></cc>
																<bcc></bcc>
																<subject>This	is	a	test	mail	message</subject>
																<body>
																				<contentType>text/plain;	charset=utf-8</contentType>
																				<content>Hello	Citrus	mail	server!</content>
																</body>
												</mail-message>
								</payload>
								<header>
												<element	name="citrus_mail_from"	value="christoph@citrusframework.com"/>
												<element	name="citrus_mail_to"	value="dev@citrusframework.com"/>
												<element	name="citrus_mail_subject"	value="This	is	a	test	mail	message"/>
												<element	name="citrus_mail_content_type"	value="text/plain;	charset=utf-8"/>
								</header>
				</message>
</receive>

The	general	mail	properties	such	as	from,	to,	subject	are	available	as	elements	in	the
mail	payload	and	in	the	message	header	information.	The	message	header	names	do
start	with	a	common	Citrus	mail	prefix	citrus_mail	.	Following	from	that	you	can	verify
these	special	mail	message	headers	in	your	test	as	shown	above.	Citrus	offers	following
mail	headers:

citrus_mail_from
citrus_mail_to
citrus_mail_cc
citrus_mail_bcc
citrus_mail_subject
citrus_mail_replyTo
citrus_mail_date

In	addition	to	that	Citrus	converts	the	incoming	mail	data	to	a	special	XML	mail
representation	which	is	passed	as	message	payload	to	the	test.	The	mail	body	parts	are
represented	as	body	and	optional	attachment	elements.	As	this	is	plain	XML	you	can
verify	the	mail	message	content	as	usual	using	Citrus	variables,	functions	and	validation
matchers.

Citrus	Reference	Guide

344Mail



Regardless	of	how	the	mail	message	has	passed	the	validation	the	Citrus	SMTP	mail
server	will	automatically	respond	with	success	codes	(SMTP	250	OK)	to	the	calling
client.	This	is	the	basic	Citrus	mail	server	behavior	where	all	client	connections	are
accepted	an	all	mail	messages	are	responded	with	SMTP	250	OK	response	codes.

Now	in	more	advanced	usage	scenarios	the	tester	may	want	to	control	the	mail
communication	outcome.	User	can	force	some	error	scenarios	where	mail	clients	are	not
accepted	or	mail	communication	should	fail	with	some	SMTP	error	state	for	instance.

By	using	a	more	advanced	mail	server	setup	the	tester	gets	more	power	to	sending	back
mail	server	response	codes	to	the	mail	client.	Just	use	the	advanced	mail	adapter
implementation	in	your	mail	server	component	configuration:

<citrus-mail:server	id="advancedMailServer"
						auto-accept="false"
						split-multipart="true"
						port="25025"
						auto-start="true"/>

We	have	disabled	the	auto-accept	mode	on	the	mail	server.	This	means	that	we	have
to	do	some	additional	steps	in	your	test	case	to	accept	the	incoming	mail	message	first.
So	we	can	decide	in	our	test	case	whether	to	accept	or	decline	the	incoming	mail
message	for	a	more	powerful	test.	You	accept/decline	a	mail	message	with	a	special
XML	accept	request/response	exchange	in	your	test	case:

<receive	endpoint="advancedMailServer">
				<message>
								<payload>
												<accept-request	xmlns="http://www.citrusframework.org/schema/mail/message">
																<from>christoph@citrusframework.com</from>
																<to>dev@citrusframework.com</to>
												</accept-request>
								</payload>
				</message>
</receive>

So	before	receiving	the	actual	mail	message	we	receive	this	simple	accept-request	in
our	test.	The	accept	request	gives	us	the	message	from	and	to	resources	of	the	mail
message.	Now	the	test	decides	to	also	decline	a	mail	client	connection.	You	can
simulate	that	the	server	does	not	accept	the	mail	client	connection	by	sending	back	a
negative	accept	response.

Citrus	Reference	Guide

345Mail



<send	endpoint="advancedMailServer">
				<message>
								<payload>
												<accept-response	xmlns="http://www.citrusframework.org/schema/mail/message">
																<accept>true</accept>
												</accept-response>
								</payload>
				</message>
</send>

Depending	on	the	accept	outcome	the	mail	client	will	receive	an	error	response	with
proper	error	codes.	If	you	accept	the	mail	message	with	a	positive	accept	response	the
next	step	in	your	test	receives	the	actual	mail	message	as	we	have	seen	it	before	in	this
chapter.

Now	besides	not	accepting	a	mail	message	in	the	first	place	you	can	als	simulate
another	error	scenario	with	the	mail	server.	In	this	scenario	the	mail	server	should
respond	with	some	sort	of	SMTP	error	code	after	accepting	the	message.	This	is	done
with	a	special	mail	response	message	like	this:

Citrus	Reference	Guide

346Mail



<receive	endpoint="advancedMailServer">
				<message>
								<payload>
												<mail-message	xmlns="http://www.citrusframework.org/schema/mail/message">
																<from>christoph@citrusframework.com</from>
																<to>dev@citrusframework.com</to>
																<cc></cc>
																<bcc></bcc>
																<subject>This	is	a	test	mail	message</subject>
																<body>
																				<contentType>text/plain;	charset=utf-8</contentType>
																				<content>Hello	Citrus	mail	server!</content>
																</body>
												</mail-message>
								</payload>
				</message>
</receive>

<send	endpoint="advancedMailServer">
				<message>
								<payload>
												<mail-response	xmlns="http://www.citrusframework.org/schema/mail/message">
																<code>443</code>
																<message>Failed!</message>
												</mail-response>
								</payload>
				</message>
</send>

As	you	can	see	from	the	example	above	we	first	accept	the	connection	and	receive	the
mail	content	as	usual.	Now	the	test	returns	a	negative	mail	response	with	some	error
code	reason	set.	The	Citrus	SMTP	communication	will	then	fail	and	the	calling	mail	client
receives	the	respective	error.

If	you	skip	the	negative	mail	response	the	server	will	automatically	response	with
positive	SMTP	response	codes	to	the	calling	client.

Citrus	Reference	Guide

347Mail



Arquillian	support
Arquillian	is	a	well	known	integration	test	framework	that	comes	with	a	great	feature	set
when	it	comes	to	Java	EE	testing	inside	of	a	full	qualified	application	server.	With
Arquiliian	you	can	deploy	your	Java	EE	services	in	a	real	application	server	of	your
choice	and	execute	the	tests	inside	the	application	server	boundaries.	This	makes	it	very
easy	to	test	your	Java	EE	services	in	scope	with	proper	JNDI	resource	allocation	and
other	resources	provided	by	the	application	server.	Citrus	is	able	to	connect	with	the
Arquillian	test	case.	Speaking	in	more	detail	your	Arquillian	test	is	able	to	use	a	Citrus
extension	in	order	to	use	the	Citrus	feature	set	inside	the	Arquillian	boundaries.

Read	the	next	section	in	order	to	find	out	more	about	the	Citrus	Arquillian	extension.

Citrus	Arquillian	extension

Arquillian	offers	a	fine	mechanism	for	extensions	adding	features	to	the	Arquillian	test
setup	and	test	execution.	The	Citrus	extension	respectively	adds	Citrus	framework
instance	creation	and	Citrus	test	execution	to	the	Arquillian	world.	First	of	all	lets	have	a
look	at	the	extension	descriptor	properties	settable	via	arquillian.xml	:

<extension	qualifier="citrus">
				<property	name="citrusVersion">2.6.1</property>
				<property	name="autoPackage">true</property>
				<property	name="suiteName">citrus-arquillian-suite</property>
</extension>

The	Citrus	extension	uses	a	specific	qualifier	citrus	for	defining	properties	inside	the
Arquillian	descriptor.	Following	properties	are	settable	in	current	version:

citrusVersion:	The	explicit	version	of	Citrus	that	should	be	used.	Be	sure	to	have	the
same	library	version	available	in	your	project	(e.g.	as	Maven	dependency).	This
property	is	optional.

		By	default	the	extension	just	uses	the	latest	stable	version.

autoPackage:	When	true	(default	setting)	the	extension	will	automatically	add	Citrus
libraries	and	all	transitive	dependencies	to	the	test	deployment.	This	automatically
enables	you	to	use	the	Citrus	API	inside	the	Arquillian	test

Citrus	Reference	Guide

348Arquillian



		even	when	the	test	is	executed	inside	the	application	container.

suiteName:	This	optional	setting	defines	the	name	of	the	test	suite	that	is	used	for
the	Citrus	test	run.	When	using	before/after	suite	functionality	in	Citrus	this	setting
might	be	of	interest.
configurationClass:	Full	qualified	Java	class	name	of	customized	Citrus	Spring	bean
configuration	to	use	when	loading	the	Citrus	Spring	application	context.	As	a	user
you	can	define	a	custom	configuration	class	that	must

be	a	subclass	of	com.consol.citrus.config.CitrusSpringConfig.	When	specified	the	custom	class	is	loaded	otherwise	the	default	com.consol.citrus.config.CitrusSpringConfig	is	loaded	to	set	up	the
Spring	application	context.

Now	that	we	have	added	the	extension	descriptor	with	all	properties	we	need	to	add	the
respective	Citrus	Arquillian	extension	as	library	to	our	project.	This	is	done	via	Maven	in
your	project's	POM	file	as	normal	dependency:

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-arquillian</artifactId>
		<version>2.6.1</version>
		<scope>test</scope>
</dependency>

Now	everything	is	set	up	to	use	Citrus	within	Arquillian.	Lets	use	Citrus	functionality	in	a
Arquillian	test	case.

Client	side	testing

Arquillian	separates	client	and	container	side	testing.	When	using	client	side	testing	the
test	case	is	executed	outside	of	the	application	container	deployment.	This	means	that
your	test	case	has	no	direct	access	to	container	managed	resources	such	as	JNDI
resources.	On	the	plus	side	it	is	not	necessary	to	include	your	test	in	the	container
deployment.	The	test	case	interacts	with	the	container	deployment	as	a	normal	client
would	do.	Lets	have	a	look	at	a	first	example:

@RunWith(Arquillian.class)
@RunAsClient
public	class	EmployeeResourceTest	{

				@CitrusFramework

Citrus	Reference	Guide

349Arquillian



				private	Citrus	citrusFramework;

				@ArquillianResource
				private	URL	baseUri;

				private	String	serviceUri;

				@Deployment
				public	static	WebArchive	createDeployment()	{
								return	ShrinkWrap.create(WebArchive.class)
												.addClasses(RegistryApplication.class,	EmployeeResource.class,
																Employees.class,	Employee.class,	EmployeeRepository.class);
				}

				@Before
				public	void	setUp()	throws	MalformedURLException	{
								serviceUri	=	new	URL(baseUri,	"registry/employee").toExternalForm();
				}

				@Test
				@CitrusTest
				public	void	testCreateEmployeeAndGet(@CitrusResource	TestDesigner	designer)	{
								designer.send(serviceUri)
												.message(new	HttpMessage("name=Penny&age=20")
																		.method(HttpMethod.POST)
																		.contentType(MediaType.APPLICATION_FORM_URLENCODED));

								designer.receive(serviceUri)
												.message(new	HttpMessage()
																		.statusCode(HttpStatus.NO_CONTENT));

								designer.send(serviceUri)
												.message(new	HttpMessage()
																		.method(HttpMethod.GET)
																		.accept(MediaType.APPLICATION_XML));

								designer.receive(serviceUri)
												.message(new	HttpMessage(""	+
																""	+
																		"20"	+
																		"Penny"	+
																		""	+
																"")
																		.statusCode(HttpStatus.OK));

								citrusFramework.run(designer.build());
				}
}

Citrus	Reference	Guide

350Arquillian



First	of	all	we	use	the	basic	Arquillian	JUnit	test	runner	@RunWith(Arquillian.class)	in
combination	with	the	@RunAsClient	annotation	telling	Arquillian	that	this	is	a	client	side
test	case.	As	this	is	a	usual	Arquillian	test	case	we	have	access	to	Arquillian	resources
that	automatically	get	injected	such	as	the	base	uri	of	the	test	deployment.	The	test
deployment	is	a	web	deployment	created	via	ShrinkWrap.	We	add	the	application
specific	classes	that	build	our	remote	RESTful	service	that	we	would	like	to	test.

The	Citrus	Arquillian	extension	is	able	to	setup	a	proper	Citrus	test	environment	in	the
background.	As	a	result	the	test	case	can	reference	a	Citrus	framework	instance	with	the
@CitrusFramework	annotation.	We	will	use	this	instance	of	Citrus	later	on	when	it
comes	to	execute	the	Citrus	testing	logic.

No	we	can	focus	on	writing	a	test	method	which	is	again	nothing	but	a	normal	JUnit	test
method.	The	Citrus	extension	takes	care	on	injecting	the	@CitrusResource	annotated
method	parameter.	With	this	Citrus	test	designer	instance	we	can	build	a	Citrus	test	logic
for	sending	and	receiving	messages	via	Http	in	order	to	call	the	remote	RESTful
employee	service	of	our	test	deployment.	The	Http	endpoint	uri	is	injected	via	Arquillian
and	we	are	able	to	call	the	remote	service	as	a	client.

The	Citrus	test	designer	provides	Java	DSL	methods	for	building	the	test	logic.	Please
note	that	the	designer	will	aggregate	all	actions	such	as	send	or	receive	until	the
designer	is	called	to	build	the	test	case	with	build()	method	invocation.	The	resulting	test
case	object	can	be	executed	by	the	Citrus	framework	instance	with	run()	method.

When	the	Citrus	test	case	is	executed	the	messages	are	sent	over	the	wire.	The
respective	response	message	is	received	with	well	known	Citrus	receive	message	logic.
We	can	validate	the	response	messages	accordingly	and	make	sure	the	client	call	was
done	right.	In	case	something	goes	wrong	within	Citrus	test	execution	the	framework	will
raise	exceptions	accordingly.	As	a	result	the	JUnit	test	method	is	successful	or	failed
with	errors	coming	from	Citrus	test	execution.

This	is	how	Citrus	and	Arquillian	can	interact	in	a	test	scenario	where	the	test
deployment	is	managed	by	Arquillian	and	the	client	side	actions	take	place	within	Citrus.
This	is	a	great	way	to	combine	both	frameworks	with	Citrus	being	able	to	call	different
service	API	endpoints	in	addition	with	validating	the	outcome.	This	was	a	client	side	test
case	where	the	test	logic	was	executed	outside	of	the	application	container.	Arquillian
also	supports	container	remote	test	cases	where	we	have	direct	access	to	container
managed	resources.	The	following	section	describes	how	this	works	with	Citrus.

Container	side	testing

Citrus	Reference	Guide

351Arquillian



In	previous	sections	we	have	seen	how	to	combine	Citrus	with	Arquillian	in	a	client	side
test	case.	This	is	the	way	to	go	for	all	test	cases	that	do	not	need	to	have	access	on
container	managed	resources.	Lets	have	a	look	at	a	sample	where	we	want	to	gain
access	to	a	JMS	queue	and	connection	managed	by	the	application	container.

@RunWith(Arquillian.class)
public	class	EchoServiceTest	{

						@CitrusFramework
						private	Citrus	citrusFramework;

						@Resource(mappedName	=	"jms/queue/test")
						private	Queue	echoQueue;

						@Resource(mappedName	=	"/ConnectionFactory")
						private	ConnectionFactory	connectionFactory;

						private	JmsSyncEndpoint	jmsSyncEndpoint;

						@Deployment
						@OverProtocol("Servlet	3.0")
						public	static	WebArchive	createDeployment()	throws	MalformedURLException	{
										return	ShrinkWrap.create(WebArchive.class)
																		.addClasses(EchoService.class);
						}

						@Before
						public	void	setUp()	{
										JmsSyncEndpointConfiguration	endpointConfiguration	=	new	JmsSyncEndpointConfiguration();
										endpointConfiguration.setConnectionFactory(new	SingleConnectionFactory(connectionFactory));
										endpointConfiguration.setDestination(echoQueue);
										jmsSyncEndpoint	=	new	JmsSyncEndpoint(endpointConfiguration);
						}

						@After
						public	void	cleanUp()	{
										closeConnections();
						}

						@Test
						@CitrusTest
						public	void	shouldBeAbleToSendMessage(@CitrusResource	TestDesigner	designer)	throws	Exception	
										String	messageBody	=	"ping";

										designer.send(jmsSyncEndpoint)
																.messageType(MessageType.PLAINTEXT)
																.message(new	JmsMessage(messageBody));

										designer.receive(jmsSyncEndpoint)
																.messageType(MessageType.PLAINTEXT)

Citrus	Reference	Guide

352Arquillian



																.message(new	JmsMessage(messageBody));

										citrusFramework.run(designer.build());
						}

						private	void	closeConnections()	{
										((SingleConnectionFactory)jmsSyncEndpoint.getEndpointConfiguration().getConnectionFactory()).destroy();
						}
}

As	you	can	see	the	test	case	accesses	two	container	managed	resources	via	JNDI.	This
is	a	JMS	queue	and	a	JMS	connection	that	get	automatically	injected	as	resources.	In	a
before	test	annotated	method	we	can	use	these	resources	to	build	up	a	proper	Citrus
JMS	endpoint.	Inside	the	test	method	we	can	use	the	JMS	endpoint	for	sending	and
receiving	JMS	messages	via	Citrus.	As	usual	response	messages	received	are	validated
and	compared	to	an	expected	message.	As	usual	we	use	the	Citrus	TestDesigner
method	parameter	that	is	injected	by	the	framework.	The	designer	is	able	to	build	Citrus
test	logic	with	Java	DSL	methods.	Once	the	complete	test	is	designed	we	can	build	the
test	case	and	run	the	test	case	with	the	framework	instance.	After	the	test	we	should
close	the	JMS	connection	in	order	to	avoid	exceptions	when	the	application	container	is
shutting	down	after	the	test.

The	test	is	now	part	of	the	test	deployment	and	is	executed	within	the	application
container	boundaries.	As	usual	we	can	use	the	Citrus	extension	to	automatically	inject
the	Citrus	framework	instance	as	well	as	the	Citrus	test	builder	instance	for	building	the
Citrus	test	logic.

This	is	how	to	combine	Citrus	and	Arquillian	in	order	to	build	integration	tests	on	Java
EE	services	in	a	real	application	container	environment.	With	Citrus	you	are	able	to	set
up	more	complex	test	scenarios	with	simulated	services	such	as	mail	or	ftp	servers.	We
can	build	Citrus	endpoints	with	container	managed	resources.

Test	runners

In	the	previous	sections	we	have	used	the	Citrus	TestDesigner	in	order	to	construct	a
Citrus	test	case	to	execute	within	the	Arquillian	boundaries.	The	nature	of	the	test
designer	is	to	aggregate	all	Java	DSL	method	calls	in	order	to	build	a	complete	Citrus
test	case	before	execution	is	done	via	the	Citrus	framework.	This	approach	can	cause

Citrus	Reference	Guide

353Arquillian



some	unexpected	behavior	when	mixing	the	Citrus	Java	DSL	method	calls	with
Arquillian	test	logic.	Lets	describe	this	by	having	a	look	at	an	example	where	th	mixture
of	test	designer	and	pure	Java	test	logic	causes	unseen	problems.

@Test
@CitrusTest
public	void	testDesignRuntimeMixture(@CitrusResource	TestDesigner	designer)	throws	Exception	{
				designer.send(serviceUri)
								.message(new	HttpMessage("name=Penny&age=20")
												.method(HttpMethod.POST)
												.contentType(MediaType.APPLICATION_FORM_URLENCODED));

				designer.receive(serviceUri)
								.message(new	HttpMessage())
												.statusCode(HttpStatus.NO_CONTENT));

				Employee	testEmployee	=	employeeService.findEmployee("Penny");
				employeeService.addJob(testEmployee,	"waitress");

				designer.send(serviceUri)
								.message(new	HttpMessage()
												.method(HttpMethod.GET)
												.accept(MediaType.APPLICATION_XML));

				designer.receive(serviceUri)
								.message(new	HttpMessage(""	+
										""	+
												"20"	+
												"Penny"	+
												""	+
														"waitress"	+
												""	+
												""	+
										""))
												.statusCode(HttpStatus.OK));

				citrusFramework.run(designer.build());
}

As	you	can	see	in	this	example	we	create	a	new	Employee	named	Penny	via	the	Http
REST	API	on	our	service.	We	do	this	with	Citrus	Http	send	and	receive	message	logic.
Once	this	is	done	we	would	like	to	add	a	job	description	to	the	employee.	We	use	a
service	instance	of	EmployeeService	which	is	a	service	of	our	test	domain	that	is
injected	to	the	Arquillian	test	as	container	JEE	resource.	First	of	all	we	find	the	employee

Citrus	Reference	Guide

354Arquillian



object	and	then	we	add	some	job	description	using	the	service.	Now	as	a	result	we
would	like	to	receive	the	employee	as	XML	representation	via	a	REST	service	call	with
Citrus	and	we	expect	the	job	description	to	be	present.

This	combination	of	Citrus	Java	DSL	methods	and	service	call	logic	will	not	work	with
TestDesigner	.	This	is	because	the	Citrus	test	logic	is	not	executed	immediately	but
aggregated	to	the	very	end	where	the	designer	is	called	to	build	the	test	case.	The
combination	of	Citrus	design	time	and	Java	test	runtime	is	tricky.

Fortunately	we	have	solved	this	issue	with	providing	a	separate	TestRunner
component.	The	test	runner	provides	nearly	the	same	Java	DSL	methods	for
constructing	Citrus	test	logic	as	the	test	designer.	The	difference	though	is	that	the	test
logic	is	executed	immediately	when	calling	the	Java	DSL	methods.	So	following	from
that	we	can	mix	Citrus	Java	DSL	code	with	test	runtime	logic	as	expected.	See	how	this
looks	like	with	our	example:

@Test
@CitrusTest
public	void	testDesignRuntimeMixture(@CitrusResource	TestRunner	runner)	throws	Exception	{
				runner.send(new	BuilderSupport<SendMessageBuilder>()	{
								@Override
								public	void	configure(SendMessageBuilder	builder)	{
												builder.endpoint(serviceUri)
																		.message(new	HttpMessage("name=Penny&age=20")
																						.method(HttpMethod.POST)
																						.contentType(MediaType.APPLICATION_FORM_URLENCODED));
								}
				});

				runner.receive(new	BuilderSupport<ReceiveMessageBuilder>()	{
								@Override
								public	void	configure(ReceiveMessageBuilder	builder)	{
										builder.endpoint(serviceUri)
														.message(new	HttpMessage()
																		.statusCode(HttpStatus.NO_CONTENT));
								}
				});

				Employee	testEmployee	=	employeeService.findEmployee("Penny");
				employeeService.addJob(testEmployee,	"waitress");

				runner.send(new	BuilderSupport<SendMessageBuilder>()	{
								@Override
								public	void	configure(SendMessageBuilder	builder)	{
												builder.endpoint(serviceUri)
																		.message(new	HttpMessage()
																						.method(HttpMethod.GET)

Citrus	Reference	Guide

355Arquillian



																						.accept(MediaType.APPLICATION_XML));
								}
				});

				runner.receive(new	BuilderSupport<ReceiveMessageBuilder>()	{
								@Override
								public	void	configure(ReceiveMessageBuilder	builder)	{
								builder.endpoint(serviceUri)
														.message(new	HttpMessage(""	+
																""	+
																		"20"	+
																		"Penny"	+
																		""	+
																				"waitress"	+
																		""	+
																		""	+
																"")
																						.statusCode(HttpStatus.OK));
								}
				});
}

The	test	logic	has	not	changed	significantly.	We	use	the	Citrus	TestRunner	as	method
injected	parameter	instead	of	the	TestDesigner	.	And	this	is	pretty	much	the	trick.	Now
the	Java	DSL	methods	do	execute	the	Citrus	test	logic	immediately.	This	is	why	the
syntax	of	the	Citrus	Java	DSL	methods	have	changed	a	little	bit.	We	now	use	a
anonymous	interface	implementation	for	constructing	the	send/receive	test	action	logic.
As	a	result	we	can	use	the	Citrus	Java	DSL	as	normal	code	and	we	can	mix	the	runtime
Java	logic	as	each	statement	is	executed	immediately.

With	Java	8	lambda	expressions	our	code	looks	even	more	straight	forward	and	less
verbose	as	we	can	skip	the	anonymous	interface	implementations.	With	Java	8	you	can
write	the	same	test	like	this:

Citrus	Reference	Guide

356Arquillian



@Test
@CitrusTest
public	void	testDesignRuntimeMixture(@CitrusResource	TestRunner	runner)	throws	Exception	{
				runner.send(builder	->	builder.endpoint(serviceUri)
																		.message(new	HttpMessage("name=Penny&age=20")
																						.method(HttpMethod.POST)
																						.contentType(MediaType.APPLICATION_FORM_URLENCODED));

				runner.receive(builder	->	builder.endpoint(serviceUri)
														.message(new	HttpMessage()
																		.statusCode(HttpStatus.NO_CONTENT));

				Employee	testEmployee	=	employeeService.findEmployee("Penny");
				employeeService.addJob(testEmployee,	"waitress");

				runner.send(builder	->	builder.endpoint(serviceUri)
																		.message(new	HttpMessage()
																						.method(HttpMethod.GET)
																						.accept(MediaType.APPLICATION_XML));

				runner.receive(builder	->	builder.endpoint(serviceUri)
														.message(new	HttpMessage(""	+
																""	+
																		"20"	+
																		"Penny"	+
																		""	+
																				"waitress"	+
																		""	+
																		""	+
																"")
																						.statusCode(HttpStatus.OK));
}

Citrus	Reference	Guide

357Arquillian



Docker	support
Citrus	provides	configuration	components	and	test	actions	for	interaction	with	a	Docker
deamon.	The	Citrus	docker	client	component	will	execute	Docker	commands	for
container	management	such	as	start,	stop,	build,	inspect	and	so	on.	The	Docker	client
by	default	uses	the	Docker	remote	REST	API.	As	a	user	you	can	execute	Docker
commands	as	part	of	a	Citrus	test	and	validate	possible	command	results.

Note	The	Docker	test	components	in	Citrus	are	kept	in	a	separate	Maven	module.	If	not
already	done	so	you	have	to	include	the	module	as	Maven	dependency	to	your	project

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-docker</artifactId>
		<version>2.6.1</version>
</dependency>

Citrus	provides	a	"citrus-docker"	configuration	namespace	and	schema	definition	for
Docker	related	components	and	actions.	Include	this	namespace	into	your	Spring
configuration	in	order	to	use	the	Citrus	Docker	configuration	elements.	The	namespace
URI	and	schema	location	are	added	to	the	Spring	configuration	XML	file	as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
							xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
							xmlns:citrus-docker="http://www.citrusframework.org/schema/docker/config"
							xsi:schemaLocation="
							http://www.springframework.org/schema/beans	
							http://www.springframework.org/schema/beans/spring-beans.xsd
							http://www.citrusframework.org/schema/docker/config
							http://www.citrusframework.org/schema/docker/config/citrus-docker-config.xsd">

				[...]

</beans>

After	that	you	are	able	to	use	customized	Citrus	XML	elements	in	order	to	define	the
Spring	beans.

Docker	client

Citrus	Reference	Guide

358Docker



Citrus	operates	with	the	Docker	remote	REST	API	in	order	to	interact	with	the	Docker
deamon.	The	Docker	client	is	defined	as	Spring	bean	component	in	the	configuration	as
follows:

<citrus-docker:client	id="dockerClient"/>

The	Docker	client	component	above	is	using	all	default	configuration	values.	By	default
Citrus	is	searching	the	system	properties	as	well	as	environment	variables	for	default
Docker	settings	such	as:

DOCKER_HOST	="tcp://localhost:2376"

DOCKER_CERT_PATH	="~/.docker/machine/machines/default"

DOCKER_TLS_VERIFY	="1"

DOCKER_MACHINE_NAME	="default"

In	case	these	settings	are	not	settable	in	your	environment	you	can	also	use	explicit
settings	in	the	Docker	client	component:

<citrus-docker:client	id="dockerClient"
												url="http://192.168.2.100:2376"
												version="1.20"
												username="user"
												password="s!cr!t"
												email="user@consol.de"
												server-address="https://index.docker.io/v1/"
												cert-path="/path/to/some/cert/directory"
												config-path="/path/to/some/config/directory"/>

Now	Citrus	is	able	to	access	the	Docker	remote	API	for	executing	commands	such	as
start,	stop,	build,	inspect	and	so	on.

Docker	commands

We	have	several	Citrus	test	actions	each	representing	a	Docker	command.	These
actions	can	be	part	of	a	test	case	where	you	can	manage	Docker	containers	inside	the
test.	As	a	prerequisite	we	have	to	enable	the	Docker	specific	test	actions	in	our	XML	test
as	follows:

Citrus	Reference	Guide

359Docker



<beans	xmlns="http://www.springframework.org/schema/beans"
								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
								xmlns:docker="http://www.citrusframework.org/schema/docker/testcase"
								xsi:schemaLocation="
								http://www.springframework.org/schema/beans
								http://www.springframework.org/schema/beans/spring-beans.xsd
								http://www.citrusframework.org/schema/docker/testcase
								http://www.citrusframework.org/schema/docker/testcase/citrus-docker-testcase.xsd">

				[...]

</beans>

We	added	a	special	docker	namespace	with	prefix	docker:	so	now	we	can	start	to	add
Docker	test	actions	to	the	test	case:

XML	DSL

<testcase	name="DockerCommandIT">
				<actions>
										<docker:ping></docker:ping>

										<docker:version>
												<docker:expect>
														<docker:result>
																<![CDATA[
																		{
																				"Version":"1.8.3",
																				"ApiVersion":"1.21",
																				"GitCommit":"@ignore@",
																				"GoVersion":"go1.4.2",
																				"Os":"darwin",
																				"Arch":"amd64",
																				"KernelVersion":"@ignore@"
																		}
																]]>
														</docker:result>
												</docker:expect>
										</docker:version>
				</actions>
</testcase>

In	this	very	simple	example	we	first	ping	the	Docker	deamon	to	make	sure	we	have
connectivity	up	and	running.	After	that	we	get	the	Docker	version	information.	The
second	action	shows	an	important	concept	when	executing	Docker	commands	in	Citrus.

Citrus	Reference	Guide

360Docker



As	a	tester	we	might	be	interested	in	validating	the	command	result.	So	wen	can	specify
an	optional	docker:result	which	is	usually	in	JSON	data	format.	As	usual	we	can	use
test	variables	here	and	ignore	some	values	explicitly	such	as	the	GitCommit	value.

Based	on	that	we	can	execute	several	Docker	commands	in	a	test	case:

XML	DSL

<testcase	name="DockerCommandIT">
				<variables>
						<variable	name="imageId"	value="busybox"></variable>
						<variable	name="containerName"	value="citrus_box"></variable>
				</variables>

				<actions>
								<docker:pull	image="${imageId}"
																								tag="latest"/>

								<docker:create	image="${imageId}"
																										name="${containerName}"
																										cmd="top">
												<docker:expect>
																<docker:result>
																				<![CDATA[
																						{"Id":"@variable(containerId)@","Warnings":null}
																				]]>
																</docker:result>
												</docker:expect>
								</docker:create>

								<docker:start	container="${containerName}"/>
				</actions>
</testcase>

In	this	example	we	pull	a	Docker	image,	build	a	new	container	out	of	this	image	and	start
the	container.	As	you	can	see	each	Docker	command	action	offers	attributes	such	as
container,	image	or	tag	.	These	are	command	settings	that	are	available	on	the	Docker
command	specification.	Read	more	about	the	Docker	commands	and	the	specific
settings	in	official	Docker	API	reference	guide.

Citrus	supports	the	following	Docker	commands	with	respective	test	actions:

docker:pull
docker:build
docker:create
docker:start

Citrus	Reference	Guide

361Docker



docker:stop
docker:wait
docker:ping
docker:version
docker:inspect
docker:remove
docker:info

Some	of	the	Docker	commands	can	be	executed	both	on	container	and	image	targets
such	as	docker:inspect	or	docker:remove	.	The	command	action	then	offers	both
container	and	image	attributes	so	the	user	can	choose	the	target	of	the	command
operation	to	be	a	container	or	an	image.

Up	to	now	we	have	only	used	the	Citrus	XML	DSL.	Of	course	all	Docker	commands	are
also	available	in	Java	DSL	as	the	next	example	shows.

Java	DSL

@CitrusTest
public	void	dockerTest()	{
				docker().version()
								.validateCommandResult(new	CommandResultCallback<Version>()	{
												@Override
												public	void	doWithCommandResult(Version	version,	TestContext	context)	{
																Assert.assertEquals(version.getApiVersion(),	"1.20");
												}
				});

				docker().ping();

				docker().start("my_container");
}

The	Java	DSL	Docker	commands	provide	an	optional	CommandResultCallback	that	is
called	with	the	unmarshalled	command	result	object.	In	the	example	above	the	Version
model	object	is	passed	as	argument	to	the	callback.	So	the	tester	can	access	the
command	result	and	validate	its	properties.

By	default	Citrus	tries	to	find	a	Docker	client	component	within	the	Citrus	Spring
application	context.	If	not	present	Citrus	will	instantiate	a	default	docker	client	with	all
default	settings.	You	can	also	explicitly	set	the	docker	client	instance	when	using	the
Java	DSL	Docker	command	actions:

Java	DSL

Citrus	Reference	Guide

362Docker



@Autowired
private	DockerClient	dockerClient;

@CitrusTest
public	void	dockerTest()	{
				docker().client(dockerClient).version()
								.validateCommandResult(new	CommandResultCallback<Version>()	{
												@Override
												public	void	doWithCommandResult(Version	version,	TestContext	context)	{
																Assert.assertEquals(version.getApiVersion(),	"1.20");
												}
				});

				docker().client(dockerClient).ping();

				docker().client(dockerClient).start("my_container");
}

Citrus	Reference	Guide

363Docker



SSH	support
In	the	spirit	of	other	Citrus	mock	services,	there	is	support	for	simulating	an	external
SSH	server	as	well	as	for	connecting	to	SSH	servers	as	a	client	during	the	test
execution.	Citrus	translates	SSH	requests	and	responses	to	simple	XML	documents	for
better	validation	with	the	common	Citrus	mechanisms.

This	means	that	the	Citrus	test	case	does	not	deal	with	pure	SSH	protocol	commands.
Instead	of	this	we	use	the	powerful	XML	validation	capabilities	in	Citrus	when	dealing
with	the	simple	XML	documents	that	represent	the	SSH	request/response	data.

Let	us	clarify	this	with	a	little	example.	Once	the	real	SSH	server	daemon	is	fired	up
within	Citrus	we	accept	a	SSH	EXEC	request	for	instance.	The	request	is	translated	into
a	XML	message	of	the	following	format:

<ssh-request	xmlns="http://www.citrusframework.org/schema/ssh/message">
		<command>cat	-	|	sed	-e	's/Hello/Hello	SSH/'</command>
		<stdin>Hello	World</stdin>
</ssh-request>

This	message	can	be	validated	with	the	usual	Citrus	mechanism	in	a	receive	test	action.
If	you	do	not	know	how	to	do	this,	please	read	one	of	the	sections	about	XML	message
validation	in	this	reference	guide	first.	Now	after	having	received	this	request	message
the	respective	SSH	response	should	be	provided	as	appropriate	answer.	This	is	done
with	a	message	sending	action	on	a	reply	handler	as	it	is	known	from	synchronous	http
message	communication	in	Citrus	for	instance.	The	SSH	XML	representation	of	a
response	message	looks	like	this:

<ssh-response	xmlns="http://www.citrusframework.org/schema/ssh/message">
		<stdout>Hello	SSH	World</stdout>
		<stderr></stderr>
		<exit>0</exit>
</ssh-response>

Besides	simulating	a	full	featured	SSH	server,	Citrus	also	provides	SSH	client
functionality.	This	client	uses	the	same	request	message	pattern,	which	is	translated	into
a	real	SSH	call	to	an	SSH	server.	The	SSH	response	received	is	also	translated	into	a
XML	message	as	shown	above	so	we	can	validate	it	with	known	validation	mechanisms
in	Citrus.

Citrus	Reference	Guide

364Ssh



Similar	to	the	other	Citrus	modules	(http,	soap),	a	Citrus	SSH	server	and	client	is
configured	in	Citrus	Spring	application	context.	There	is	a	dedicated	ssh	namespace
available	for	all	ssh	Citrus	components.	The	namespace	declaration	goes	into	the
context	top-level	element	as	usual:

<beans	
				[...]
				xmlns:citrus-ssh="http://www.citrusframework.org/schema/ssh/config"
				[...]
				xsi:schemaLocation="
								[...]
								http://www.citrusframework.org/schema/ssh/config
								http://www.citrusframework.org/schema/ssh/config/citrus-ssh-config.xsd
								[...]	">
			[...]
</beans>

Both,	SSH	server	and	client	along	with	their	configuration	options	are	described	in	the
following	two	sections.

SSH	Client

A	Citrus	SSH	client	is	useful	for	testing	against	a	real	SSH	server.	So	Citrus	is	able	to
invoke	SSH	commands	on	the	external	server	and	validate	the	SSH	response
accordingly.	The	test	case	does	not	deal	with	the	pure	SSH	protocol	within	this
communication.	The	Citrus	SSH	client	component	expects	a	customized	XML
representation	and	automatically	translates	these	request	messages	into	a	real	SSH	call
to	a	specific	host.	Once	the	synchronous	SSH	response	was	received	the	result	gets
translated	back	to	the	XML	response	message	representation.	On	this	translated
response	we	can	easily	apply	the	validation	steps	by	the	usual	Citrus	means.

The	SSH	client	components	receive	its	configuration	in	the	Spring	application	context	as
usual.	We	can	use	the	special	SSH	module	namespace	for	easy	configuration:

<citrus-ssh:client	id="sshClient"
											port="9072"
											user="roland"
											private-key-path="classpath:com/consol/citrus/ssh/test_user.priv"
											strict-host-checking="false"
											host="localhost"/>

The	SSH	client	receives	several	attributes,	these	are:

Citrus	Reference	Guide

365Ssh



id:	Id	identifying	the	bean	and	used	as	reference	from	with	test	descriptions.	(e.g.
id="sshClient")
host:	Host	to	connect	to	for	sending	an	SSH	Exec	request.	Default	is	'localhost'
(e.g.	host="localhost")
port	Port	to	use.	Default	is	2222	(e.g.	port="9072")
private-key-path:	Path	to	a	private	key,	which	can	be	either	a	plain	file	path	or	an
class	resource	if	prefixed	with	'classpath'	(e.g.	private-key-
path="classpath:test_user.priv")
private-key-password:	Optional	password	for	the	private	key	(e.g.
password="s!cr!t")
user:	User	used	for	connecting	to	the	SSH	server	(e.g.	user="roland")
password:	Password	used	for	password	based	authentication.	Might	be	combined
with	"private-key-path"	in	which	case	both	authentication	mechanism	are	tried	(e.g.
password="ps!st)
strict-host-checking:	Whether	the	host	key	should	be	verified	by	looking	it	up	in	a
'known_hosts'	file.	Default	is	false	(e.g.	strict-host-checking="true")
known-hosts-path:	Path	to	a	known	hosts	file.	If	prefixed	with	'classpath:'	this	file	is
looked	up	as	a	resource	in	the	classpath	(e.g.	known-hosts-
path="/etc/ssh/known_hosts")
command-timeout:	Timeout	in	milliseconds	for	how	long	to	wait	for	the	SSH
command	to	complete.	Default	is	5	minutes	(e.g.	command-timeout="300000")
connection-timeout:	Timeout	in	milliseconds	for	how	long	to	for	a	connectiuon	to
connect.	Default	is	1	minute	(e.g.	connection-timeout="60000")
actor:	Actor	used	for	switching	groups	of	actions	(e.g.	actor="ssh-mock")

Once	defines	as	client	component	in	the	Spring	application	context	test	cases	can
reference	the	client	in	every	send	test	action.

Citrus	Reference	Guide

366Ssh



<send	endpoint="sshClient">
		<message>
				<payload>
								<ssh-request	xmlns="http://www.citrusframework.org/schema/ssh/message">
										<command>shutdown</command>
										<stdin>input</stdin>
								</ssh-request>
				</payload>
		</message>
</send>

<receive	endpoint="sshClient">
		<message>
				<payload>
								<ssh-response	xmlns="http://www.citrusframework.org/schema/ssh/message">
												<stdout>Hello	Citrus</stdout>
												<stderr/>
												<exit>0</exit>
								</ssh-response>
				</payload>
		</message>
</receive>

As	you	can	see	we	use	usual	send	and	receive	test	actions.	The	XML	SSH
representation	helps	us	to	specify	the	request	and	response	data	for	validation.	This	way
you	can	call	SSH	commands	against	an	external	SSH	server	and	validate	the	response
data.

SSH	Server

Now	that	we	have	used	Citrus	on	the	client	side	we	can	also	use	Citrus	SSH	server
module	in	order	to	provide	a	full	stacked	SSH	server	deamon.	We	can	accept	SSH	client
connections	and	provide	proper	response	messages	as	an	answer.

Given	the	above	SSH	module	namespace	declaration,	adding	a	new	SSH	server	is	quite
simple:

<citrus-ssh:server	id="sshServer"
													allowed-key-path="classpath:com/consol/citrus/ssh/test_user_pub.pem"
													user="roland"
													port="9072"
													auto-start="true"
													endpoint-adapter="sshEndpointAdapter"/>

Citrus	Reference	Guide

367Ssh



endpoint-adapter	is	the	handler	which	receives	the	SSH	request	as	messages	(in	the
request	format	described	above).	Endpoint	adapter	implementations	are	fully	described
inhttp-serverAll	adapters	described	there	are	supported	in	SSH	server	module,	too.

The	supports	the	following	attributes:

SSH	Server	Attributes:

id:	Name	of	the	SSH	server	which	identifies	it	unique	within	the	Citrus	Spring
context	(e.g.	id="sshServer")
host-key-path:	Path	to	PEM	encoded	key	pair	(public	and	private	key)	which	is
used	as	host	key.	By	default,	a	standard,	pre-generate,	fixed	keypair	is	used.	The
path	can	be	specified	either	as	an	file	path,	or,	if	prefixed	with	classpath:	is	looked
up	from	within	the	classpath.	The	path	the	is	relative	from	to	the	top-level	package,
so	no	leading	slash	should	be	used	(e.g.	hist-key-path="/etc/citrus_ssh_server.pem)
user:	User	which	is	allowed	to	connect	(e.g.	user="roland")
allowed-key-path:	Path	to	a	SSH	public	key	stored	in	PEM	format.	These	are	the
keys,	which	are	allowed	to	connect	to	the	SSH	server	when	publickey	authentication
is	used.	It	seves	the	same	purpose	asauthorized_keysfor	standard	SSH
installations.	The	path	can	be	specified	either	as	an	file	path,	or,	if	prefixed	with
classpath:	is	looked	up	from	within	the	classpath.	The	path	the	is	relative	from	to
the	top-level	package,	so	no	leading	slash	should	be	used	(e.g.	allowed-key-
path="classpath:test_user_pub.pem)
password:	Password	which	should	be	used	when	password	authentication	is	used.
Both	publickey	authentication	and	password	based	authentication	can	be	used
together	in	which	case	both	methods	are	tried	in	turn	(e.g.	password="s!cr!t")
host:	Host	address	(e.g.	localhost)
port:	Port	on	which	to	listen.	The	SSH	server	will	bind	on	localhost	to	this	port	(e.g.
port="9072")
auto-start:	Whether	to	start	this	SSH	server	automatically.	Default	is	true	.	If	set	to
false,	a	test	action	is	responsible	for	starting/stopping	the	server	(e.g.	auto-
start="true")
endpoint-adapter:	Bean	reference	to	a	endpoint	adapter	which	processes	the
incoming	SSH	request.	The	message	format	for	the	request	and	response	are
described	above	(e.g.	endpoint-adapter="sshEndpointAdapter")

Once	the	SSH	server	component	is	added	to	the	Spring	application	context	with	a
proper	endpoint	adapter	like	the	MessageChannel	forwarding	adapter	we	can	receive
incoming	requests	in	a	test	case	and	provide	a	respone	message	for	the	client.

Citrus	Reference	Guide

368Ssh



<receive	endpoint="sshServer">
		<message>
				<payload>
								<ssh-request	xmlns="http://www.citrusframework.org/schema/ssh/message">
											<command>shutdown</command>
											<stdin>input</stdin>
								</ssh-request>
				</payload>
		</message>
</receive>

<send	endpoint="sshServer">
		<message>
				<payload>
								<ssh-response	xmlns="http://www.citrusframework.org/schema/ssh/message">
												<stdout>Hello	Citrus</stdout>
												<exit>0</exit>
								</ssh-response>
				</payload>
		</message>
</send>

Citrus	Reference	Guide

369Ssh



RMI	support
RMI	stands	for	Remote	Method	Invocation	and	is	a	standard	way	of	calling	Java	method
interfaces	where	caller	and	callee	(client	and	server)	are	not	located	within	the	same
JVM.	So	the	object	passed	to	the	method	as	argument	as	well	as	the	method	return
value	are	transmitted	over	the	wire.

As	a	client	Citrus	is	able	to	connect	to	some	RMI	registry	that	exposes	some	remote
interfaces.	As	a	server	Citrus	implements	such	a	RMI	registry	and	handles	incoming
method	calls	with	providing	the	respective	return	value.

Note	The	RMI	components	in	Citrus	are	kept	in	a	separate	Maven	module.	So	you
should	check	that	the	module	is	available	as	Maven	dependency	in	your	project

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-rmi</artifactId>
		<version>2.6.1</version>
</dependency>

As	usual	Citrus	provides	a	customized	rmi	configuration	schema	that	is	used	in	Spring
configuration	files.	Simply	include	the	citrus-rmi	namespace	in	the	configuration	XML
files	as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
						xmlns:citrus="http://www.citrusframework.org/schema/config"
						xmlns:citrus-rmi="http://www.citrusframework.org/schema/rmi/config"
						xsi:schemaLocation="
						http://www.springframework.org/schema/beans
						http://www.springframework.org/schema/beans/spring-beans.xsd
						http://www.citrusframework.org/schema/config
						http://www.citrusframework.org/schema/config/citrus-config.xsd
						http://www.citrusframework.org/schema/rmi/config
						http://www.citrusframework.org/schema/rmi/config/citrus-rmi-config.xsd">

						[...]

						</beans>

Now	you	are	ready	to	use	the	customized	Http	configuration	elements	with	the	citrus-rmi
namespace	prefix.

Citrus	Reference	Guide

370Rmi



Read	the	next	section	in	order	to	find	out	more	about	the	RMI	message	support	in
Citrus.

RMI	client

On	the	client	side	we	want	to	call	e	remote	interface.	We	need	to	specify	the	method	to
call	as	well	as	all	method	arguments.	The	respective	method	return	value	is	receivable
within	the	test	case	for	validation.	Citrus	provides	a	client	component	for	RMI	that	sends
out	service	invocation	calls.

<citrus-rmi:client	id="rmiClient1"
						host="localhost"
						port="1099"
						binding="newsService"/>

						<citrus-rmi:client	id="rmiClient2"
								server-url="rmi://localhost:1099/newsService"/>

The	client	component	in	the	Spring	application	context	receives	host	and	port
configuration	of	a	valid	RMI	service	registry.	Either	by	specifying	a	proper	server	url	or
by	giving	host,	port	and	binding	properties.	The	service	binding	is	the	name	of	the
service	that	we	would	like	to	address	in	the	registry.	Now	we	are	ready	to	use	this	client
referenced	by	its	id	or	name	in	a	test	case	for	a	message	sending	action.

XML	DSL

<send	endpoint="rmiClient">
				<message>
								<payload>
												<service-invocation	xmlns="http://www.citrusframework.org/schema/rmi/message">
														<remote>com.consol.citrus.rmi.remote.NewsService</remote>
														<method>getNews</method>
												</service-invocation>
								</payload>
				</message>
</send>

Java	DSL

Citrus	Reference	Guide

371Rmi



@CitrusTest
public	void	rmiClientTest()	{
		send(rmiClient)
						.message(RmiMessage.invocation(NewsService.class,	"getNews"));
}

We	are	using	the	usual	Citrus	send	message	action	referencing	the	rmiClient	as
endpoint.	The	message	payload	is	a	special	Citrus	message	that	defines	the	service
invocation.	We	define	the	remote	interface	as	well	as	the	method	to	call.	Citrus	RMI
client	component	will	be	able	to	interpret	this	message	content	and	call	the	service
method.

The	method	return	value	is	receivable	for	validation	using	the	very	same	client	endpoint.

XML	DSL

<receive	endpoint="rmiClient">
				<message>
								<payload>
												<service-result	xmlns="http://www.citrusframework.org/schema/rmi/message">
														<object	type="java.lang.String"	value="This	is	news	from	RMI!"/>
												</service-result>
								</payload>
				</message>
</receive>

Java	DSL

@CitrusTest
public	void	rmiClientTest()	{
				receive(rmiClient)
								.message(RmiMessage.result("This	is	news	from	RMI!"));
}

In	the	sample	above	we	receive	the	service	result	and	expect	a	java.lang.String	object
return	value.	The	return	value	content	is	also	validated	within	the	service	result	payload.

Of	course	we	can	also	deal	with	method	arguments.

XML	DSL

Citrus	Reference	Guide

372Rmi



<send	endpoint="rmiClient">
				<message>
								<payload>
												<service-invocation	xmlns="http://www.citrusframework.org/schema/rmi/message">
																<remote>com.consol.citrus.rmi.remote.NewsService</remote>
																<method>setNews</method>
																<args>
																		<arg	value="This	is	breaking	news!"/>
																</args>
												</service-invocation>
								</payload>
				</message>
</send>

@CitrusTest
public	void	rmiServerTest()	{
				send(rmiClient)
								.message(RmiMessage.invocation(NewsService.class,	"setNews")
														.argument("This	is	breaking	news!"));
}

This	completes	the	basic	remote	service	call.	Citrus	invokes	the	remote	interface	method
and	validates	the	method	return	value.	As	a	tester	you	might	also	face	errors	and
exceptions	when	calling	the	remote	interface	method.	You	can	catch	and	assert	these
remote	exceptions	verifying	your	error	scenario.

XML	DSL

<assert	exception="java.rmi.RemoteException">
				<when>
								<send	endpoint="rmiClient">
												<message>
																<payload>
																				<service-invocation	xmlns="http://www.citrusframework.org/schema/rmi/message"
																								[...]
																				</service-invocation>
																</payload>
												</message>
								</send>
				</when>
<assert/>

Citrus	Reference	Guide

373Rmi



We	assert	the	RemoteException	to	be	thrown	while	calling	the	remote	service	method.
This	is	how	you	can	handle	some	sort	of	error	situation	while	calling	remote	services.	In
the	next	section	we	will	handle	RMI	communication	where	Citrus	provides	the	remote
interfaces.

RMI	server

On	the	server	side	Citrus	needs	to	provide	remote	interfaces	with	methods	callable	for
clients.	This	means	that	Citrus	needs	to	support	all	your	remote	interfaces	with	method
arguments	and	return	values.	The	Citrus	RMI	server	is	able	to	bind	your	remote
interfaces	to	a	service	registry.	All	incoming	RMI	client	method	calls	are	automatically
accepted	and	the	method	arguments	are	converted	into	a	Citrus	XML	service	invocation
representation.	The	RMI	method	call	is	then	passed	to	the	running	test	for	validation.

Let	us	have	a	look	at	the	Citrus	RMI	server	component	and	how	you	can	add	it	to	the
Spring	application	context.

<citrus-rmi:server	id="rmiServer"
						host="localhost"
						port="1099"
						interface="com.consol.citrus.rmi.remote.NewsService"
						binding="newService"
						create-registry="true"
						auto-start="true"/>

The	RMI	server	component	uses	properties	such	as	host	and	port	to	define	the	service
registry.	By	default	Citrus	will	connect	to	this	service	registry	and	bind	its	remote
interfaces	to	it.	With	the	attribute	create-registry	Citrus	can	also	create	the	registry	for
you.

You	have	to	give	Citrus	the	fully	qualified	remote	interface	name	so	Citrus	can	bind	it	to
the	service	registry	and	handle	incoming	method	calls	properly.	In	your	test	case	you
can	then	receive	the	incoming	method	calls	on	the	server	in	order	to	perform	validation
steps.

XML	DSL

Citrus	Reference	Guide

374Rmi



<receive	endpoint="rmiServer">
				<message>
								<payload>
												<service-invocation	xmlns="http://www.citrusframework.org/schema/rmi/message">
														<remote>com.consol.citrus.rmi.remote.NewsService</remote>
														<method>getNews</method>
												</service-invocation>
								</payload>
								<header>
												<element	name="citrus_rmi_interface"	value="com.consol.citrus.rmi.remote.NewsService"
												<element	name="citrus_rmi_method"	value="getNews"/>
								</header>
				</message>
</receive>

Java	DSL

@CitrusTest
public	void	rmiServerTest()	{
				receive(rmiServer)
								.message(RmiMessage.invocation(NewsService.class,	"getNews"));
}

As	you	can	see	Citrus	converts	the	incoming	service	invocation	to	a	special	XML
representation	which	is	passed	as	message	payload	to	the	test.	As	this	is	plain	XML	you
can	verify	the	RMI	message	content	as	usual	using	Citrus	variables,	functions	and
validation	matchers.

Since	we	have	received	the	method	call	we	need	to	provide	some	return	value	for	the
client.	As	usual	we	can	specify	the	method	return	value	with	some	XML	representation.

XML	DSL

<send	endpoint="rmiServer">
				<message>
								<payload>
										<service-result	xmlns="http://www.citrusframework.org/schema/rmi/message">
												<object	type="java.lang.String"	value="This	is	news	from	RMI!"/>
										</service-result>
								</payload>
				</message>
</send>

Java	DSL

Citrus	Reference	Guide

375Rmi



@CitrusTest
public	void	rmiServerTest()	{
				send(rmiServer)
								.message(RmiMessage.result("This	is	news	from	RMI!"));
}

The	service	result	is	defined	as	object	with	a	type	and	value	.	The	Citrus	RMI	remote
interface	method	will	return	this	value	to	the	calling	client.	This	would	complete	the
successful	remote	service	invocation.	At	this	point	we	also	have	to	think	of	choosing	to
raise	some	remote	exception	as	service	outcome.

XML	DSL

<send	endpoint="rmiServer">
				<message>
								<payload>
										<service-result	xmlns="http://www.citrusframework.org/schema/rmi/message">
												<exception>Something	went	wrong<exception/>
										</service-result>
								</payload>
				</message>
</send>

Java	DSL

@CitrusTest
public	void	rmiServerTest()	{
				send(rmiServer)
								.message(RmiMessage.exception("Something	went	wrong"));
}

In	the	example	above	Citrus	will	not	return	some	object	as	service	result	but	raise	a
java.rmi.RemoteException	with	respective	error	message	as	specified	in	the	test	case.
The	calling	client	will	receive	the	exception	accordingly.

Citrus	Reference	Guide

376Rmi



JMX	support
JMX	is	a	standard	Java	API	for	making	beans	accessible	to	others	in	terms	of
management	and	remote	configuration.	JMX	is	the	short	term	for	Java	Management
Extensions	and	is	often	used	in	JEE	application	servers	to	manage	bean	attributes	and
operations	from	outside	(e.g.	another	JVM).	A	managed	bean	server	hosts	multiple
managed	beans	for	JMX	access.	Remote	connections	to	JMX	can	be	realized	with	RMI
(Remote	method	invocation)	capabilities.

Citrus	is	able	to	connect	to	JMX	managed	beans	as	client	and	server.	As	a	client	Citrus
can	invoke	managed	bean	operations	and	read	write	managed	bean	attributes.	As	a
server	Citrus	is	able	to	expose	managed	beans	as	mbean	server.	Clients	can	access
those	Citrus	managed	beans	and	get	proper	response	objects	as	result.	Doing	so	you
can	use	the	JVM	platform	managed	bean	server	or	some	RMI	registry	for	providing
remote	access.

Note	The	JMX	components	in	Citrus	are	kept	in	a	separate	Maven	module.	So	you
should	check	that	the	module	is	available	as	Maven	dependency	in	your	project

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-jmx</artifactId>
		<version>2.6.1</version>
</dependency>

As	usual	Citrus	provides	a	customized	jmx	configuration	schema	that	is	used	in	Spring
configuration	files.	Simply	include	the	citrus-jmx	namespace	in	the	configuration	XML
files	as	follows.

Citrus	Reference	Guide

377Jmx



<beans	xmlns="http://www.springframework.org/schema/beans"
						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
						xmlns:citrus="http://www.citrusframework.org/schema/config"
						xmlns:citrus-jmx="http://www.citrusframework.org/schema/jmx/config"
						xsi:schemaLocation="
						http://www.springframework.org/schema/beans
						http://www.springframework.org/schema/beans/spring-beans.xsd
						http://www.citrusframework.org/schema/config
						http://www.citrusframework.org/schema/config/citrus-config.xsd
						http://www.citrusframework.org/schema/jmx/config
						http://www.citrusframework.org/schema/jmx/config/citrus-jmx-config.xsd">

						[...]

						</beans>

Now	you	are	ready	to	use	the	customized	Http	configuration	elements	with	the	citrus-jmx
namespace	prefix.

Next	sections	describe	the	JMX	message	support	in	Citrus	in	more	detail.

JMX	client

On	the	client	side	we	want	to	call	some	managed	bean	by	either	accessing	managed
attributes	with	read/write	or	by	invoking	a	managed	bean	operation.	For	proper	mbean
server	connectivity	we	should	specify	a	client	component	for	JMX	that	sends	out	mbean
invocation	calls.

<citrus-jmx:client	id="jmxClient"
						server-url="platform"/>

The	client	component	specifies	the	target	managed	bean	server	that	we	want	to	connect
to.	In	this	example	we	are	using	the	JVM	platform	mbean	server.	This	means	we	are
able	to	access	all	JVM	managed	beans	such	as	Memory,	Threading	and	Logging.	In
addition	to	that	we	can	access	all	custom	managed	beans	that	were	exposed	to	the
platform	mbean	server.

In	most	cases	you	may	want	to	access	managed	beans	on	a	different	JVM	or	application
server.	So	we	need	some	remote	connection	to	the	foreign	mbean	server.

Citrus	Reference	Guide

378Jmx



<citrus-jmx:client	id="jmxClient"
						server-url="service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi"
						username="user"
						password="s!cr!t"
						auto-reconnect="true"
						delay-on-reconnect="5000"/>

In	this	example	above	we	connect	to	a	remote	mbean	server	via	RMI	using	the	default
RMI	registry	localhost:1099	and	the	service	name	jmxrmi	.	Citrus	is	able	to	handle
different	remote	transport	protocols.	Just	define	those	in	the	server-url	.

Now	that	we	have	setup	the	client	component	we	can	use	it	in	a	test	case	to	access	a
managed	bean.

XML	DSL

<send	endpoint="jmxClient">
				<message>
								<payload>
												<mbean-invocation	xmlns="http://www.citrusframework.org/schema/jmx/message">
														<mbean>java.lang:type=Memory</mbean>
														<attribute	name="Verbose"/>
												</mbean-invocation>
								</payload>
				</message>
</send>

Java	DSL

@CitrusTest
public	void	jmxClientTest()	{
				send(jmxClient)
								.message(JmxMessage.invocation("java.lang:type=Memory")
												.attribute("Verbose"));
}

As	you	can	see	we	just	used	a	normal	send	action	referencing	the	jmx	client	component
that	we	have	just	added.	The	message	payload	is	a	XML	representation	of	the	managed
bean	access.	This	is	a	special	Citrus	XML	representation.	Citrus	will	convert	this	XML
payload	to	the	actuel	managed	bean	access.	In	the	example	above	we	try	to	access	a
managed	bean	with	object	name	java.lang:type=Memory	.	The	object	name	is	defined
in	JMX	specification	and	consists	of	a	key	java.lang:type	and	a	value	Memory	.	So	we
identify	the	managed	bean	on	the	server	by	its	type.

Citrus	Reference	Guide

379Jmx



Now	that	we	have	access	to	the	managed	bean	we	can	read	its	managed	attributes
such	as	Verbose	.	This	is	a	boolean	type	attribute	so	the	mbean	invocation	result	will	be
a	respective	Boolean	object.	We	can	validate	the	managed	bean	attribute	access	in	a
receive	action.

XML	DSL

<receive	endpoint="jmxClient">
				<message>
								<payload>
												<mbean-result	xmlns="http://www.citrusframework.org/schema/jmx/message">
														<object	type="java.lang.Boolean"	value="false"/>
												</mbean-result>
								</payload>
				</message>
</receive>

Java	DSL

@CitrusTest
public	void	jmxClientTest()	{
				receive(jmxClient)
								.message(JmxMessage.result(false));
}

In	the	sample	above	we	receive	the	mbean	result	and	expect	a	java.lang.Boolean
object	return	value.	The	return	value	content	is	also	validated	within	the	mbean	result
payload.

Some	managed	bean	attributes	might	also	be	settable	for	us.	So	wen	can	define	the
attribute	access	as	write	operation	by	specifying	a	value	in	the	send	action	payload.

XML	DSL

<send	endpoint="jmxClient">
				<message>
								<payload>
												<mbean-invocation	xmlns="http://www.citrusframework.org/schema/jmx/message">
														<mbean>java.lang:type=Memory</mbean>
														<attribute	name="Verbose"	value="true"	type="java.lang.Boolean"/>
												</mbean-invocation>
								</payload>
				</message>
</send>

Citrus	Reference	Guide

380Jmx



Java	DSL

@CitrusTest
public	void	jmxClientTest()	{
				send(jmxClient)
								.message(JmxMessage.invocation("java.lang:type=Memory")
												.attribute("Verbose",	true));
}

Now	we	have	write	access	to	the	managed	attribute	Verbose	.	We	do	specify	the	value
and	its	type	java.lang.Boolean	.	This	is	how	we	can	set	attribute	values	on	managed
beans.

Last	not	least	we	are	able	to	access	managed	bean	operations.

XML	DSL

<send	endpoint="jmxClient">
				<message>
								<payload>
												<mbean-invocation	xmlns="http://www.citrusframework.org/schema/jmx/message">
														<mbean>com.consol.citrus.jmx.mbean:type=HelloBean</mbean>
														<operation	name="sayHello">
																>parameter>
																		>param	type="java.lang.String"	value="Hello	JMX!"/>
																>/parameter>
														>/operation>
												</mbean-invocation>
								</payload>
				</message>
</send>

Java	DSL

@CitrusTest
public	void	jmxClientTest()	{
				send(jmxClient)
								.message(JmxMessage.invocation("com.consol.citrus.jmx.mbean:type=HelloBean")
												.operation("sayHello")
												.parameter("Hello	JMX!"));
}

In	the	example	above	we	access	a	custom	managed	bean	and	invoke	its	operation
sayHello	.	We	are	also	using	operation	parameters	for	the	invocation.	This	should	call
the	managed	bean	operation	and	return	its	result	if	any	as	usual.

Citrus	Reference	Guide

381Jmx



This	completes	the	basic	JMX	managed	bean	access	as	client.	Now	we	also	want	to
discuss	the	server	side	were	Citrus	is	able	to	provide	managed	beans	for	others

JMX	server

The	server	side	is	always	a	little	bit	more	tricky	because	we	need	to	simulate	custom
managed	bean	access	as	a	server.	First	of	all	Citrus	provides	a	server	component	that
specifies	the	connection	properties	for	clients	such	as	transport	protocols,	ports	and
mbean	object	names.	Lets	create	a	new	server	that	accepts	incoming	requests	via	RMI
on	a	remote	registry	localhost:1099	.

<citrus-jmx:server	id="jmxServer"
						server-url="service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi"
				<citrus-jmx:mbeans>
								<citrus-jmx:mbean	type="com.consol.citrus.jmx.mbean.HelloBean"/>
								<citrus-jmx:mbean	type="com.consol.citrus.jmx.mbean.NewsBean"	objectDomain="com.consol.citrus.news"	objectName="name=News"/>
				</citrus-jmx:mbeans>
</citrus-jmx:server>

As	usual	we	define	a	server-url	that	controls	the	JMX	connector	access	to	the	mbean
server.	In	this	example	above	we	open	a	JMX	RMI	connector	for	clients	using	the
registry	localhost:1099	and	the	service	name	jmxrmi	By	default	Citrus	will	not	attempt
to	create	this	registry	automatically	so	the	registry	has	to	be	present	before	the	server
start	up.	With	the	optional	server	property	create-registry	set	to	true	you	can	auto
create	the	registry	when	the	server	starts	up.	These	properties	do	only	apply	when	using
a	remote	JMX	connector	server.

Besides	using	the	whole	server-url	as	property	we	can	also	construct	the	connection	by
host,	port,	protocol	and	binding	properties.

<citrus-jmx:server	id="jmxServer"
						host="localhost"
						port="1099"
						protocol="rmi"
						binding="jmxrmi"
				<citrus-jmx:mbeans>
								<citrus-jmx:mbean	type="com.consol.citrus.jmx.mbean.HelloBean"/>
								<citrus-jmx:mbean	type="com.consol.citrus.jmx.mbean.NewsBean"	objectDomain="com.consol.citrus.news"	objectName="name=News"/>
				</citrus-jmx:mbeans>
</citrus-jmx:server>

Citrus	Reference	Guide

382Jmx



On	last	thing	to	mention	is	that	we	could	have	also	used	platform	as	server-url	in	order
to	use	the	JVM	platform	mbean	server	instead.

Now	that	we	clarified	the	connectivity	we	need	to	talk	about	how	to	define	the	managed
beans	that	are	available	on	our	JMX	mbean	server.	This	is	done	as	nested	mbean
configuration	elements.	Here	the	managed	bean	definitions	describe	the	managed	bean
with	its	objectDomain,	objectName,	operations	and	attributes.	The	most	convenient	way
of	defining	such	managed	bean	definitions	is	to	give	a	bean	type	which	is	the	fully
qualified	class	name	of	the	managed	bean.	Citrus	will	use	the	package	name	and	class
name	for	proper	objectDomain	and	objectName	construction.

Lets	have	a	closer	look	at	the	irst	mbean	definition	in	the	example	above.	So	the	first
managed	bean	is	defined	by	its	class	name	com.consol.citrus.jmx.mbean.HelloBean
and	therefore	is	accessible	using	the	objectName
com.consol.citrus.jmx.mbean:type=HelloBean	.	In	addition	to	that	Citrus	will	read	the
class	information	such	as	available	methods,	getters	and	setters	for	constructing	a
proper	MBeanInfo.	In	the	second	managed	bean	definition	in	our	example	we	have	used
additional	custom	objectDomain	and	objectName	values.	So	the	NewsBean	will	be
accessible	with	com.consol.citrus.news:name=News	on	the	managed	bean	server.

This	is	how	we	can	define	the	bindings	of	managed	beans	and	what	clients	need	to
search	for	when	finding	and	accessing	the	managed	beans	on	the	server.	When	clients
try	to	find	the	managed	beans	they	have	to	use	proper	objectNames	accordingly.
ObjectNames	that	are	not	defined	on	the	server	will	be	rejected	with	managed	bean	not
found	error.

Right	now	we	have	to	use	the	qualified	class	name	of	the	managed	bean	in	the
definition.	What	happens	if	we	do	not	have	access	to	that	mbean	class	or	if	there	is	not
managed	bean	interface	available	at	all?	Citrus	provides	a	generic	managed	bean	that	is
able	to	handle	any	managed	bean	interaction.	The	generic	bean	implementation	needs
to	know	the	managed	operations	and	attributes	though.	So	lets	define	a	new	generic
managed	bean	on	our	server:

Citrus	Reference	Guide

383Jmx



<citrus-jmx:server	id="jmxServer"
server-url="service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi"
				<citrus-jmx:mbeans>
								<citrus-jmx:mbean	name="fooBean"	objectDomain="foo.object.domain"	objectName="type=FooBean">
												<citrus-jmx:operations>
																<citrus-jmx:operation	name="fooOperation">
																				<citrus-jmx:parameter>
																								<citrus-jmx:param	type="java.lang.String"/>
																								<citrus-jmx:param	type="java.lang.Integer"/>
																				</citrus-jmx:parameter>
																</citrus-jmx:operation>
																<citrus-jmx:operation	name="barOperation"/>
												</citrus-jmx:operations>
												<citrus-jmx:attributes>
																<citrus-jmx:attribute	name="fooAttribute"	type="java.lang.String"/>
																<citrus-jmx:attribute	name="barAttribute"	type="java.lang.Boolean"/>
												</citrus-jmx:attributes>
								</citrus-jmx:mbean>
				</citrus-jmx:mbeans>
</citrus-jmx:server>

The	generic	bean	definition	needs	to	define	all	operations	and	attributes	that	are
available	for	access.	Up	to	now	we	are	restricted	to	using	Java	base	types	when	defining
operation	parameter	and	attribute	return	types.	There	is	actually	no	way	to	define	more
complex	return	types.	Nevertheless	Citrus	is	now	able	to	expose	the	managed	bean	for
client	access	without	having	to	know	the	actual	managed	bean	implementation.

Now	we	can	use	the	server	component	in	a	test	case	to	receive	some	incoming
managed	bean	access.

XML	DSL

<receive	endpoint="jmxServer">
				<message>
								<payload>
												<mbean-invocation	xmlns="http://www.citrusframework.org/schema/jmx/message">
														<mbean>com.consol.citrus.jmx.mbean:type=HelloBean</mbean>
														<operation	name="sayHello">
																>parameter>
																		>param	type="java.lang.String"	value="Hello	JMX!"/>
																>/parameter>
														</operation>
												</mbean-invocation>
								</payload>
				</message>
</receive>

Citrus	Reference	Guide

384Jmx



Java	DSL

@CitrusTest
public	void	jmxServerTest()	{
				receive(jmxServer)
								.message(JmxMessage.invocation("com.consol.citrus.jmx.mbean:type=HelloBean")
												.operation("sayHello")
												.parameter("Hello	JMX!"));
}

In	this	very	first	example	we	expect	a	managed	bean	access	to	the	bean
com.consol.citrus.jmx.mbean:type=HelloBean	.	We	further	expect	the	operation
sayHello	to	be	called	with	respective	parameter	values.	Now	we	have	to	define	the
operation	result	that	will	be	returned	to	the	calling	client	as	operation	result.

XML	DSL

<send	endpoint="jmxServer">
				<message>
								<payload>
										<mbean-result	xmlns="http://www.citrusframework.org/schema/jmx/message">
												<object	type="java.lang.String"	value="Hello	from	JMX!"/>
										</mbean-result>
								</payload>
				</message>
</send>

Java	DSL

@CitrusTest
public	void	jmxServerTest()	{
				send(jmxServer)
								.message(JmxMessage.result("Hello	from	JMX!"));
}

The	operation	returns	a	String	Hello	from	JMX!	.	This	is	how	we	can	expect	operation
calls	on	managed	beans.	Now	we	already	have	seen	that	managed	beans	also	expose
attributes.	The	next	example	is	handling	incoming	attribute	read	access.

XML	DSL

Citrus	Reference	Guide

385Jmx



<receive	endpoint="jmxServer">
				<message>
								<payload>
												<mbean-invocation	xmlns="http://www.citrusframework.org/schema/jmx/message">
														<mbean>com.consol.citrus.news:name=News</mbean>
																>attribute	name="newsCount"/>
												</mbean-invocation>
								</payload>
				</message>
</receive>

<send	endpoint="jmxServer">
				<message>
								<payload>
										<mbean-result	xmlns="http://www.citrusframework.org/schema/jmx/message">
												<object	type="java.lang.Integer"	value="100"/>
										</mbean-result>
								</payload>
				</message>
</send>

Java	DSL

@CitrusTest
public	void	jmxServerTest()	{
				receive(jmxServer)
								.message(JmxMessage.invocation("com.consol.citrus.news:name=News")
												.attribute("newsCount");

				send(jmxServer)
								.message(JmxMessage.result(100));
}

The	receive	action	expects	read	access	to	the	NewsBean	attribute	newsCount	and
returns	a	result	object	of	type	java.lang.Integer	.	This	way	we	can	expect	all	attribute
access	to	our	managed	beans.	Write	operations	will	have	a	attribute	value	specified.

This	completes	the	JMX	server	capabilities	with	managed	bean	access	on	operations
and	attributes.

Citrus	Reference	Guide

386Jmx



Cucumber	BDD	support
Behavior	driven	development	(BDD)	is	becoming	more	and	more	popular	these	days.
The	idea	of	defining	and	describing	the	software	behavior	as	basis	for	all	tests	in	prior	to
translating	those	feature	descriptions	into	executable	tests	is	a	very	interesting	approach
because	it	includes	the	technical	experts	as	well	as	the	domain	experts.	With	BDD	the
domain	experts	can	easily	read	and	verify	the	tests	and	the	technical	experts	get	a
detailed	description	of	what	should	happen	in	the	test.

The	test	scenario	descriptions	follow	the	Gherkin	syntax	with	a	"Given-When-Then"
structure	most	of	the	time.	The	Gherkin	language	is	business	readable	and	well	known
in	BDD.

There	are	lots	of	frameworks	in	the	Java	community	that	support	BDD	concepts.	Citrus
has	dedicated	support	for	the	Cucumber	framework	because	Cucumber	is	well	suited	for
extensions	and	plugins.	So	with	the	Citrus	and	Cucumber	integration	you	can	write
Gherkin	syntax	scenario	and	feature	stories	in	order	to	execute	the	Citrus	integration	test
capabilities.	As	usual	we	have	a	look	at	a	first	example.	First	lets	see	the	Citrus
cucumber	dependency	and	XML	schema	definitions.

Note	The	Cucumber	components	in	Citrus	are	kept	in	a	separate	Maven	module.	If	not
already	done	so	you	have	to	include	the	module	as	Maven	dependency	to	your	project

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-cucumber</artifactId>
		<version>2.6.1</version>
</dependency>

Citrus	provides	a	separate	configuration	namespace	and	schema	definition	for
Cucumber	related	step	definitions.	Include	this	namespace	into	your	Spring	configuration
in	order	to	use	the	Citrus	Cucumber	configuration	elements.	The	namespace	URI	and
schema	location	are	added	to	the	Spring	configuration	XML	file	as	follows.

Citrus	Reference	Guide

387Cucumber



<spring:beans	xmlns:spring="http://www.springframework.org/schema/beans"
					xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
					xmlns="http://www.citrusframework.org/schema/cucumber/testcase"
					xsi:schemaLocation="
					http://www.springframework.org/schema/beans
					http://www.springframework.org/schema/beans/spring-beans.xsd
					http://www.citrusframework.org/schema/cucumber/testcase
					http://www.citrusframework.org/schema/cucumber/testcase/citrus-cucumber-testcase.xsd">

				[...]

</spring:beans>

Cucumber	works	with	both	JUnit	and	TestNG	as	unit	testing	framework.	You	can	choose
which	framework	to	use	with	Cucumber.	So	following	from	that	we	need	a	Maven
dependency	for	the	unit	testing	framework	support:

<dependency>
		<groupId>info.cukes</groupId>
		<artifactId>cucumber-junit</artifactId>
		<version>${cucumber.version}</version>
</dependency>

In	order	to	enable	Citrus	Cucumber	support	we	need	to	specify	a	special	object	factory
in	the	environment.	The	most	comfortable	way	to	specify	a	custom	object	factory	is	to
add	this	property	to	the	cucumber.properties	in	classpath.

cucumber.api.java.ObjectFactory=cucumber.runtime.java.CitrusObjectFactory

This	special	object	factory	takes	care	on	creating	all	step	definition	instances.	The	object
factory	is	able	to	inject	@CitrusResource	annotated	fields	in	step	classes.	We	will	see
this	later	on	in	the	examples.	The	usage	of	this	special	object	factory	is	mandatory	in
order	to	combine	Citrus	and	Cucumber	capabilities.

The	CitrusObjectFactory	will	automatically	initialize	the	Citrus	world	for	us.	This
includes	the	default	citrus-context.xml	Citrus	Spring	configuration	that	is	automatically
loaded	within	the	object	factory.	So	you	can	define	and	use	Citrus	components	as	usual
within	your	test.

After	these	preparation	steps	you	are	able	to	combine	Citrus	and	Cucumber	in	your
project.

Citrus	Reference	Guide

388Cucumber



Cucumber	integration

Cucumber	is	able	to	run	tests	with	JUnit.	The	basic	test	case	is	an	empty	test	which
uses	the	respective	JUnit	runner	implementation	from	cucumber.

@RunWith(Cucumber.class)
@CucumberOptions(
		plugin	=	{	"com.consol.citrus.cucumber.CitrusReporter"	}	)
public	class	MyFeatureIT	{

}

The	test	case	above	uses	the	Cucumber	JUnit	test	runner.	In	addition	to	that	we	give
some	options	to	the	Cucumber	execution.	We	define	a	special	Citrus	reporter
implementation.	This	class	is	responsible	for	printing	the	Citrus	test	summary.	This
reporter	extends	the	default	Cucumber	reporter	implementation	so	the	default	Cucumber
report	summaries	are	also	printed	to	the	console.

That	completes	the	JUnit	class	configuration.	Now	we	are	able	to	add	feature	stories	and
step	definitions	to	the	package	of	our	test	MyFeatureIT	.	Cucumber	and	Citrus	will
automatically	pick	up	step	definitions	and	glue	code	in	that	test	package.	So	lets	write	a
feature	story	echo.feature	right	next	to	the	MyFeatureIT	test	class.

Feature:	Echo	service

		Scenario:	Say	hello
				Given	My	name	is	Citrus
				When	I	say	hello	to	the	service
				Then	the	service	should	return:	"Hello,	my	name	is	Citrus!"

		Scenario:	Say	goodbye
				Given	My	name	is	Citrus
				When	I	say	goodbye	to	the	service
				Then	the	service	should	return:	"Goodbye	from	Citrus!"

As	you	can	see	this	story	defines	two	scenarios	with	the	Gherkin	Given-When-Then
syntax.	Now	we	need	to	add	step	definitions	that	glue	the	story	description	to	Citrus	test
actions.	Lets	do	this	in	a	new	class	EchoSteps	.

Citrus	Reference	Guide

389Cucumber



public	class	EchoSteps	{

				@CitrusResource
				protected	TestDesigner	designer;

				@Given("^My	name	is	(.*)$")
				public	void	my_name_is(String	name)	{
								designer.variable("username",	name);
				}

				@When("^I	say	hello.*$")
				public	void	say_hello()	{
								designer.send("echoEndpoint")
										.messageType(MessageType.PLAINTEXT)
										.payload("Hello,	my	name	is	${username}!");
				}

				@When("^I	say	goodbye.*$")
				public	void	say_goodbye()	{
								designer.send("echoEndpoint")
										.messageType(MessageType.PLAINTEXT)
										.payload("Goodbye	from	${username}!");
				}

				@Then("^the	service	should	return:	\"([^\"]*)\"$")
				public	void	verify_return(final	String	body)	{
								designer.receive("echoEndpoint")
										.messageType(MessageType.PLAINTEXT)
										.payload("You	just	said:	"	+	body);
				}

}

If	we	have	a	closer	look	at	the	step	definition	class	we	see	that	it	is	a	normal	POJO	that
uses	a	@CitrusResource	annotated	TestDesigner	.	The	test	designer	is	automatically
injected	by	Citrus	Cucumber	extension.	This	is	done	because	we	have	included	the
citrus-cucumber	dependency	to	our	project	before.	Now	we	can	write	@Given,	@When
or	@Then	annotated	methods	that	match	the	scenario	descriptions	in	our	story.
Cucumber	will	automatically	find	matching	methods	and	execute	them.	The	methods
add	test	actions	to	the	test	designer	as	we	are	used	to	it	in	normal	Java	DSL	tests.	At
the	end	the	test	designer	is	automatically	executed	with	the	test	logic.

Important	Of	course	you	can	do	the	dependency	injection	with	@CitrusResource
annotations	on	TestRunner	instances,	too.	Which	variation	should	someone	use
TestDesigner	or	TestRunner	?	In	fact	there	is	a	significant	difference	when	looking	at
the	two	approaches.	The	designer	will	use	the	Gherkin	methods	to	build	the	whole	Citrus

Citrus	Reference	Guide

390Cucumber



test	case	first	before	any	action	is	executed.	The	runner	will	execute	each	test	action
that	has	been	built	with	a	Gherkin	step	immediately.	This	means	that	a	designer
approach	will	always	complete	all	BDD	step	definitions	before	taking	action.	This	directly
affects	the	Cucumber	step	reports.	All	steps	are	usually	marked	as	successful	when
using	a	designer	approach	as	the	Citrus	test	is	executed	after	the	Cucumber	steps	have
been	executed.	The	runner	approach	in	contrast	will	fail	the	step	when	the
corresponding	test	action	fails.	The	Cucumber	test	reports	will	definitely	look	different
depending	on	what	approach	you	are	choosing.	All	other	functions	stay	the	same	in	both
approaches.	If	you	need	to	learn	more	about	designer	and	runner	approaches	please
see

If	we	run	the	Cucumber	test	the	Citrus	test	case	automatically	performs	its	actions.	That
is	a	first	combination	of	Citrus	and	Cucumber	BDD.	The	story	descriptions	are	translated
to	test	actions	and	we	are	able	to	run	integration	tests	with	behavior	driven	development.
Great!	In	a	next	step	we	will	use	XML	step	definitions	rather	than	coding	the	steps	in
Java	DSL.

Cucumber	XML	steps

So	far	we	have	written	glue	code	in	Java	in	order	to	translate	Gherkin	syntax
descriptions	to	test	actions.	Now	we	want	to	do	the	same	with	just	XML	configuration.
The	JUnit	Cucumber	class	should	not	change.	We	still	use	the	Cucumber	runner
implementation	with	some	options	specific	to	Citrus:

@RunWith(Cucumber.class)
@CucumberOptions(
				plugin	=	{	"com.consol.citrus.cucumber.CitrusReporter"	}	)
public	class	MyFeatureIT	{

}

The	scenario	description	is	also	not	changed:

Citrus	Reference	Guide

391Cucumber



Feature:	Echo	service

		Scenario:	Say	hello
				Given	My	name	is	Citrus
				When	I	say	hello	to	the	service
				Then	the	service	should	return:	"Hello,	my	name	is	Citrus!"

		Scenario:	Say	goodbye
				Given	My	name	is	Citrus
				When	I	say	goodbye	to	the	service
				Then	the	service	should	return:	"Goodbye	from	Citrus!"

In	the	feature	package	my.company.features	we	add	a	new	XML	file	EchoSteps.xml
that	holds	the	new	XML	step	definitions:

Citrus	Reference	Guide

392Cucumber



<?xml	version="1.0"	encoding="UTF-8"?>
<spring:beans	xmlns:citrus="http://www.citrusframework.org/schema/testcase"
						xmlns:spring="http://www.springframework.org/schema/beans"
						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
						xmlns="http://www.citrusframework.org/schema/cucumber/testcase"
						xsi:schemaLocation="http://www.springframework.org/schema/beans
																										http://www.springframework.org/schema/beans/spring-beans.xsd
																										http://www.citrusframework.org/schema/cucumber/testcase
																										http://www.citrusframework.org/schema/cucumber/testcase/citrus-cucumber-testcase.xsd"

		<step	given="^My	name	is	(.*)$"	parameter-names="username">
				<citrus:create-variables>
						<citrus:variable	name="username"	value="${username}"/>
				</citrus:create-variables>
		</step>

		<step	when="^I	say	hello.*$">
				<citrus:send	endpoint="echoEndpoint">
						<citrus:message	type="plaintext">
								<citrus:data>Hello,	my	name	is	${username}!</citrus:data>
						</citrus:message>
				</citrus:send>
		</step>

		<step	when="^I	say	goodbye.*$">
				<citrus:send	endpoint="echoEndpoint">
						<citrus:message	type="plaintext">
								<citrus:data>Goodbye	from	${username}!</citrus:data>
						</citrus:message>
				</citrus:send>
		</step>

		<step	then="^the	service	should	return:	&quot;([^&quot;]*)&quot;$"	parameter-names="body">
				<citrus:receive	endpoint="echoEndpoint">
						<citrus:message	type="plaintext">
								<citrus:data>You	just	said:	${body}</citrus:data>
						</citrus:message>
				</citrus:receive>
		</step>

</spring:beans>

The	above	steps	definition	is	written	in	pure	XML.	Citrus	will	automatically	read	the	step
definition	and	add	those	to	the	Cucumber	runtime.	Following	from	that	the	step
definitions	are	executed	when	matching	to	the	feature	story.	The	XML	step	files	follow	a
naming	convention.	Citrus	will	look	for	all	files	located	in	the	feature	package	with	name
pattern	**/.Steps.xml**	and	load	those	definitions	when	Cucumber	starts	up.

Citrus	Reference	Guide

393Cucumber



The	XML	steps	are	able	to	receive	parameters	from	the	Gherkin	regexp	matcher.	The
parameters	are	passed	to	the	step	as	test	variable.	The	parameter	names	get	declared
in	the	optional	attribute	parameter-names	.	In	the	step	definition	actions	you	can	use
the	parameter	names	as	test	variables.

Note	The	test	variables	are	visible	in	all	upcoming	steps,	too.	This	is	because	the	test
variables	are	global	by	default.	If	you	need	to	set	local	state	for	a	step	definition	you	can
use	another	attribute	global-context	and	set	it	to	false	in	the	step	definition.	This	way	all
test	variables	and	parameters	are	only	visible	in	the	step	definition.	Other	steps	will	not
see	the	test	variables.

Note	Another	notable	thing	is	the	XML	escaping	of	reserved	characters	in	the	pattern
definition.	You	can	see	that	in	the	last	step	where	the	then	attribute	is	escaping
quotation	characters.

then="^the	service	should	return:	&quot;([^&quot;]*)&quot;$"

We	have	to	do	this	because	otherwise	the	quotation	characters	will	interfere	with	the
XML	syntax	in	the	attribute.

This	completes	the	description	of	how	to	add	XML	step	definitions	to	the	cucumber	BDD
tests.	In	a	next	section	we	will	use	predefined	steps	for	sending	and	receiving
messages.

Cucumber	Spring	support

Cucumber	provides	support	for	Spring	dependency	injection	in	step	definition	classes.
The	Cucumber	Spring	capabilities	are	included	in	a	separate	module.	So	we	first	of	all
we	have	to	add	this	dependency	to	our	project:

<dependency>
		<groupId>info.cukes</groupId>
		<artifactId>cucumber-spring</artifactId>
		<version>${cucumber.version}</version>
</dependency>

The	Citrus	Cucumber	extension	has	to	handle	things	different	when	Cucumber	Spring
support	is	enabled.	Therefore	we	use	another	object	factory	implementation	that	also
support	Cucumber	Spring	features.	Change	the	object	factory	property	in
cucumber.properties	to	the	following:

Citrus	Reference	Guide

394Cucumber



cucumber.api.java.ObjectFactory=cucumber.runtime.java.spring.CitrusSpringObjectFactory

Now	we	are	ready	to	add	@Autowired	Spring	bean	dependeny	injection	to	step
definition	classes:

@ContextConfiguration(classes	=	CitrusSpringConfig.class)
public	class	EchoSteps	{
				@Autowired
				private	Endpoint	echoEndpoint;

				@CitrusResource
				protected	TestDesigner	designer;

				@Given("^My	name	is	(.*)$")
				public	void	my_name_is(String	name)	{
								designer.variable("username",	name);
				}

				@When("^I	say	hello.*$")
				public	void	say_hello()	{
								designer.send(echoEndpoint)
												.messageType(MessageType.PLAINTEXT)
												.payload("Hello,	my	name	is	${username}!");
				}

				@When("^I	say	goodbye.*$")
				public	void	say_goodbye()	{
								designer.send(echoEndpoint)
												.messageType(MessageType.PLAINTEXT)
												.payload("Goodbye	from	${username}!");
				}

				@Then("^the	service	should	return:	\"([^\"]*)\"$")
				public	void	verify_return(final	String	body)	{
								designer.receive(echoEndpoint)
												.messageType(MessageType.PLAINTEXT)
												.payload("You	just	said:	"	+	body);
				}
}

As	you	can	see	we	used	Spring	autowiring	mechanism	for	the	echoEndpoint	field	in	the
step	definition.	Also	be	sure	to	define	the	@ContextConfiguration	annotation	on	the
step	definition.	The	Cucumber	Spring	support	loads	the	Spring	application	context	and
takes	care	on	dependency	injection.	We	use	the	Citrus	CitrusSpringConfig	Java
configuration	because	this	is	the	main	entrance	for	Citrus	test	cases.	You	can	add

Citrus	Reference	Guide

395Cucumber



custom	beans	and	further	Spring	related	configuration	to	this	Spring	application	context.
If	you	want	to	add	more	beans	for	autowiring	do	so	in	the	Citrus	Spring	configuration.
Usually	this	is	the	default	citrus-context.xml	which	is	automatically	loaded.

Of	course	you	can	also	use	a	custom	Java	Spring	configuration	class	here.	But	be	sure
to	always	import	the	Citrus	Spring	Java	configuration	classes,	too.	Otherwise	you	will	not
be	able	to	execute	the	Citrus	integration	test	capabilities.

As	usual	we	are	able	to	use	@CitrusResource	annotated	TestDesigner	fields	for
building	the	Citrus	integration	test	logic.	With	this	extension	you	can	use	the	full	Spring
testing	power	in	your	tests	in	particular	dependency	injection	and	also	transaction
management	for	data	persistance	tests.

Citrus	step	definitions

Citrus	provides	some	out	of	the	box	predefined	steps	for	typical	integration	test
scenarios.	These	steps	are	ready	to	use	in	scenario	or	feature	stories.	You	can	basically
define	send	and	receive	operations.	As	these	steps	are	predefined	in	Citrus	you	just
need	to	write	feature	stories.	The	step	definitions	with	glue	to	test	actions	are	handled
automatically.

If	you	want	to	enable	predefined	steps	support	in	your	test	you	need	to	include	the	glue
code	package	in	your	test	class	like	this:

@RunWith(Cucumber.class)
@CucumberOptions(
				glue	=	{	"com.consol.citrus.cucumber.step.designer"	}
				plugin	=	{	"com.consol.citrus.cucumber.CitrusReporter"	}	)
public	class	MyFeatureIT	{

}

Instead	of	writing	the	glue	code	on	our	own	in	step	definition	classes	we	include	the	glue
package	com.consol.citrus.cucumber.step.designer	.	This	automatically	loads	all
Citrus	glue	step	definitions	in	this	package.	Once	you	have	done	this	you	can	use
predefined	steps	that	add	Citrus	test	logic	without	having	to	write	any	glue	code	in	Java
step	definitions.

Of	course	you	can	also	choose	to	include	the	TestRunner	step	definitions	by	choosing
the	glue	package	com.consol.citrus.cucumber.step.runner	.

Citrus	Reference	Guide

396Cucumber



@RunWith(Cucumber.class)
@CucumberOptions(
				glue	=	{	"com.consol.citrus.cucumber.step.runner"	}
				plugin	=	{	"com.consol.citrus.cucumber.CitrusReporter"	}	)
public	class	MyFeatureIT	{

}

Following	basic	step	definitions	are	included	in	this	package:

Given	variable	[name]	is	"[value]"
Given	variables
|	[name1]			|	[value1]			|
|	[name2]			|	[value2]			|

When	<[endpoint-name]>	sends	"[message-payload]"
Then	<[endpoint-name]>	should	receive	(message-type)	"[message-payload]"

When	<[endpoint-name]>	sends
		"""
		[message-payload]
		"""
Then	<[endpoint-name]>	should	receive	(message-type)
		"""
		[message-payload]
		"""

When	<[endpoint-name]>	receives	(message-type)	"[message-payload]"
Then	<[endpoint-name]>	should	send	"[message-payload]"

When	<[endpoint-name]>	receives	(message-type)
		"""
		[message-payload]
		"""
Then	<[endpoint-name]>	should	send
		"""
		[message-payload]
		"""

Once	again	it	should	be	said	that	the	step	definitions	included	in	this	package	are	loaded
automatically	as	glue	code.	So	you	can	start	to	write	feature	stories	in	Gherkin	syntax
that	trigger	the	predefined	steps.	In	the	following	sections	we	have	a	closer	look	at	all
predefined	Citrus	steps	and	how	they	work.

Variable	steps

Citrus	Reference	Guide

397Cucumber



As	you	already	know	Citrus	is	able	to	work	with	test	variables	that	hold	important
information	during	a	test	such	as	identifiers	and	dynamic	values.	The	predefined	step
definitions	in	Citrus	are	able	to	create	new	test	variables.

Given	variable	messageText	is	"Hello"

The	syntax	of	this	predefined	step	is	pretty	self	describing.	The	step	instruction	follows
the	pattern:

Given	variable	[name]	is	"[value]"

If	you	keep	this	syntax	in	your	feature	story	the	predefined	step	is	activated	for	creating	a
new	variable.	We	always	use	the	Given	step	to	create	new	variables.

Scenario:	Create	Variables
				Given	variable	messageText	is	"Hello"
						And	variable	operationHeader	is	"sayHello"

So	we	can	use	the	And	keyword	to	create	more	than	one	variable.	Even	more
comfortable	is	the	usage	of	data	tables:

Given	variables
				|	hello			|	I	say	hello			|
				|	goodbye	|	I	say	goodbye	|

This	data	table	will	create	the	test	variable	for	each	row.	This	is	how	you	can	easily
create	new	variables	in	your	Citrus	test.	As	usual	the	variables	are	referenced	in
message	payloads	and	headers	as	placeholders	for	dynamically	adding	content.

Adding	variables	is	usually	done	within	a	Scenario	block	in	your	feature	story.	This
means	that	the	test	variable	is	used	in	this	scenario	which	is	exactly	one	Citrus	test
case.	Cucumber	BDD	also	defines	a	Background	block	at	the	very	beginning	of	your
Feature	.	We	can	also	place	variables	in	here.	This	means	that	Cucumber	will	execute
these	steps	for	all	upcoming	scenarios.	The	test	variable	is	so	to	speak	global	for	this
feature	story.

Citrus	Reference	Guide

398Cucumber



Feature:	Variables

				Background:
						Given	variable	messageText	is	"Hello"

				Scenario:	Do	something
				Scenario:	Do	something	else

That	completes	the	variable	step	definitions	in	Citrus.

Messaging	steps

In	the	previous	section	we	have	learned	how	to	use	a	first	predefined	Citrus	step.	Now
we	want	to	cover	messaging	steps	for	sending	and	receiving	messages	in	Citrus.	As
usual	with	predefined	steps	you	do	not	need	to	write	any	glue	code	for	the	steps	to	take
action.	The	steps	are	already	included	in	Citrus	just	use	them	in	your	feature	stories.

Feature:	Messaging	features

				Background:
						Given	variable	messageText	is	"Hello"

				Scenario:	Send	and	receive	plaintext
						When	<echoEndpoint>	sends	"${messageText}"
						Then	<echoEndpoint>	should	receive	plaintext	"You	just	said:	${messageText}"

Of	course	we	need	to	follow	the	predefined	syntax	when	writing	feature	stories	in	order
to	trigger	a	predefined	step.	Let's	have	a	closer	look	at	this	predefined	syntax	by	further
describing	the	above	example.

First	of	all	we	define	a	new	test	variable	with	Given	variable	messageText	is	"Hello"	.
This	tells	Citrus	to	create	a	new	test	variable	named	messageText	with	respective
value.	We	can	do	the	same	for	sending	and	receiving	messages	like	done	in	our	test
scenario:

When	<[endpoint-name]>	sends	"[message-payload]"

The	step	definition	requires	the	endpoint	component	name	and	a	message	payload.	The
predefined	step	will	automatically	configure	a	send	test	action	in	the	Citrus	test	as	result.

Then	<[endpoint-name]>	should	receive	(message-type)	"[message-payload]"

Citrus	Reference	Guide

399Cucumber



The	predefined	receive	step	also	requires	the	endpoint-name	and	message-payload	.
As	optional	parameter	you	can	define	the	message-type	.	This	is	required	when
sending	message	payloads	other	than	XML.

This	way	you	can	write	Citrus	tests	with	just	writing	feature	stories	in	Gherkin	syntax.	Up
to	now	we	have	used	pretty	simple	message	payloads	in	on	single	line.	Of	course	we
can	also	use	multiline	payloads	in	the	stories:

Feature:	Messaging	features

				Background:
						Given	variable	messageText	is	"Hello"

				Scenario:	Send	and	receive
						When	<echoEndpoint>	sends
								"""
								<message>
										<text>${messageText}</text>
								</message>
								"""
						Then	<echoEndpoint>	should	receive
								"""
								<message>
										<text>${messageText}</text>
								</message>
								"""

As	you	can	see	we	are	able	to	use	the	send	and	receive	steps	with	multiline	XML
message	payload	data.

Named	messages

In	the	previous	section	we	have	learned	how	to	use	Citrus	predefined	step	definitions	for
send	and	receive	operations.	The	message	payload	has	been	added	directly	to	the
stories	so	far.	But	what	is	with	message	header	information?	We	want	to	specify	a
complete	message	with	payload	and	header.	You	can	do	this	by	defining	a	named
message.

As	usual	we	demonstrate	this	in	a	first	example:

Citrus	Reference	Guide

400Cucumber



Feature:	Named	message	feature

				Background:
						Given	message	echoRequest
								And	<echoRequest>	payload	is	"Hi	my	name	is	Citrus!"
								And	<echoRequest>	header	operation	is	"sayHello"

						Given	message	echoResponse
								And	<echoResponse>	payload	is	"Hi,	Citrus	how	are	you	doing	today?"
								And	<echoResponse>	header	operation	is	"sayHello"

				Scenario:	Send	and	receive
						When	<echoEndpoint>	sends	message	<echoRequest>
						Then	<echoEndpoint>	should	receive	message	<echoResponse>

In	the	Background	section	we	introduce	named	messages	echoRequest	and
echoResponse	.	This	makes	use	of	the	new	predefined	step	for	adding	named
message:

Given	message	[message-name]

Once	the	message	is	introduced	with	its	name	we	can	use	the	message	in	further
configuration	steps.	You	can	add	payload	information	and	you	can	add	multiple	headers
to	the	message.	The	named	message	then	is	referenced	in	send	and	receive	steps	as
follows:

When	<[endpoint-name]>	sends	message	<[message-name]>
Then	<[endpoint-name]>	should	receive	message	<[message-name]>

The	steps	reference	a	message	by	its	name	echoRequest	and	echoResponse	.

As	you	can	see	the	named	messages	are	used	to	define	complete	messages	with
payload	and	header	information.	Of	course	the	named	messages	can	be	referenced	in
many	scenarios	and	steps.	Also	with	usage	of	test	variables	in	payload	and	header	you
can	dynmaically	adjust	those	messages	in	each	step.

Message	creator	steps

In	the	previous	section	we	have	learned	how	to	use	named	messages	as	predefined
step.	The	named	message	has	been	defined	directly	in	the	stories	so	far.	The	message
creator	concept	moves	this	task	to	some	Java	POJO.	This	way	you	are	able	to	construct
more	complicated	messages	for	reuse	in	several	scenarios	and	feature	stories.

Citrus	Reference	Guide

401Cucumber



As	usual	we	demonstrate	this	in	a	first	example:

Feature:	Message	creator	features

				Background:
						Given	message	creator	com.consol.citrus.EchoMessageCreator
						And	variable	messageText	is	"Hello"
						And	variable	operation	is	"sayHello"

				Scenario:	Send	and	receive
						When	<echoEndpoint>	sends	message	<echoRequest>
						Then	<echoEndpoint>	should	receive	message	<echoResponse>

In	the	Background	section	we	introduce	a	message	creator	EchoMessageCreator	in
package	com.consol.citrus	.	This	makes	use	of	the	new	predefined	step	for	adding
message	creators	to	the	test:

Given	message	creator	[message-creator-name]

The	message	creator	name	must	be	the	fully	qualified	Java	class	name	with	package
information.	Once	this	is	done	we	can	use	named	messages	in	the	send	and	receive
operations:

When	<[endpoint-name]>	sends	message	<[message-name]>
Then	<[endpoint-name]>	should	receive	message	<[message-name]>

The	steps	reference	a	message	by	its	name	echoRequest	and	echoResponse	.	Now
lets	have	a	look	at	the	message	creator	EchoMessageCreator	implementation	in	order
to	see	how	this	correlates	to	a	real	message.

Citrus	Reference	Guide

402Cucumber



public	class	EchoMessageCreator	{
				@MessageCreator("echoRequest")
				public	Message	createEchoRequest()	{
						return	new	DefaultMessage(""	+
												"${messageText}"	+
										"")
												.setHeader("operation",	"${operation}");
				}

				@MessageCreator("echoResponse")
				public	Message	createEchoResponse()	{
						return	new	DefaultMessage(""	+
												"${messageText}"	+
										"")
												.setHeader("operation",	"${operation}");
				}
}

As	you	can	see	the	message	creator	is	a	POJO	Java	class	that	defines	one	or	more
methods	that	are	annotated	with	@MessageCreator	annotation.	The	annotation
requires	a	message	name.	This	is	how	Citrus	will	correlate	message	names	in	feature
stories	to	message	creator	methods.	The	message	returned	is	the	used	for	the	send	and
receive	operations	in	the	test.	The	message	creator	is	reusable	accross	multiple	feature
stories	and	scenarios.	In	addition	to	that	the	creator	is	able	to	construct	messages	in	a
more	powerful	way.	For	instance	the	message	payload	could	be	loaded	from	file	system
resources.

Echo	steps

Another	predefined	step	definition	in	Citrus	is	used	to	add	a	echo	test	action.	You	can
use	the	following	step	in	your	feature	scenarios:

Feature:	Echo	features

				Scenario:	Echo	messages
						Given	variable	foo	is	"bar"
						Then	echo	"Variable	foo=${foo}"
						Then	echo	"Today	is	citrus:currentDate()"

The	step	definition	requires	following	pattern:

Then	echo	"[message]"

Citrus	Reference	Guide

403Cucumber



Sleep	steps

You	can	add	sleep	test	actions	to	the	feature	scenarios:

Feature:	Sleep	features

						Scenario:	Sleep	default	time
								Then	sleep

						Scenario:	Sleep	milliseconds	time
								Then	sleep	200	ms

The	step	definition	requires	one	of	the	following	patterns:

Then	sleep
Then	sleep	[time]	ms

This	adds	a	new	sleep	test	action	to	the	Citrus	test.

Citrus	Reference	Guide

404Cucumber



Zookeeper	support
Citrus	provides	configuration	components	and	test	actions	for	interacting	with
Zookeeper.	The	Citrus	Zookeeper	client	component	executes	commands	like	create-
node,	check	node-exists,	delete-node,	get	node-data	or	set	node-data.	As	a	user	you
can	execute	Zookeeper	commands	as	part	of	a	Citrus	test	and	validate	possible
command	results.

Note	The	Zookeeper	test	components	in	Citrus	are	kept	in	a	separate	Maven	module.	If
not	already	done	so	you	have	to	include	the	module	as	Maven	dependency	to	your
project

<dependency>
						<groupId>com.consol.citrus</groupId>
						<artifactId>citrus-zookeeper</artifactId>
						<version>2.6.1</version>
						</dependency>

Citrus	provides	a	"citrus-zookeeper"	configuration	namespace	and	schema	definition	for
Zookeeper	related	components	and	actions.	Include	this	namespace	into	your	Spring
configuration	in	order	to	use	the	Citrus	zookeeper	configuration	elements.	The
namespace	URI	and	schema	location	are	added	to	the	Spring	configuration	XML	file	as
follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
						xmlns:citrus-zookeeper="http://www.citrusframework.org/schema/zookeeper/config"
						xsi:schemaLocation="
						http://www.springframework.org/schema/beans
						http://www.springframework.org/schema/beans/spring-beans.xsd
						http://www.citrusframework.org/schema/zookeeper/config
						http://www.citrusframework.org/schema/zookeeper/config/citrus-zookeeper-config.xsd">

						[...]

						</beans>

After	that	you	are	able	to	use	customized	Citrus	XML	elements	in	order	to	define	the
Spring	beans.

Citrus	Reference	Guide

405Zookeeper



Zookeeper	client

Before	you	can	interact	with	a	Zookeeper	server	you	have	to	configure	the	Zookeeper
client.	A	sample	configuration	is	provided	below	describing	the	configuration	options
available:

<citrus-zookeeper:client	id="zookeeperClient"
																															url="http://localhost:21118"
																															timeout="2000"/>

This	is	a	typical	client	configuration	for	connecting	to	a	Zookeeper	server.	Now	you	are
able	to	execute	several	commands.	These	commands	will	be	sent	to	the	Zookeeper
server	for	execution.

Zookeeper	commands

See	below	all	available	Zookeeper	commands	that	a	Citrus	client	is	able	to	execute.

info:	Retrieves	the	current	state	of	the	client	connection
create:	Creates	a	znode	in	a	specified	path	of	the	ZooKeeper	namespace
delete:	Deletes	a	znode	from	a	specified	path	of	the	ZooKeeper	namespace
exists:	Checks	if	a	znode	exists	in	the	path
children:	Gets	a	list	of	children	of	a	znode
get:	Gets	the	data	associated	with	a	znode
set:	Sets/writes	data	into	the	data	field	of	a	znode

Before	we	see	some	of	these	commands	in	action	we	have	to	add	a	new	test
namespace	to	our	test	case	when	using	the	XML	DSL.

<beans	xmlns="http://www.springframework.org/schema/beans"
						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
						xmlns:zookeeper="http://www.citrusframework.org/schema/zookeeper/testcase"
						xsi:schemaLocation="
						http://www.springframework.org/schema/beans
						http://www.springframework.org/schema/beans/spring-beans.xsd
						http://www.citrusframework.org/schema/zookeeper/testcase
						http://www.citrusframework.org/schema/zookeeper/testcase/citrus-zookeeper-testcase.xsd"

						[...]

						</beans>

Citrus	Reference	Guide

406Zookeeper



We	added	the	Zookeeper	namespace	with	prefix	zookeeper:	so	now	we	can	start	to	add
special	test	actions	to	the	test	case:

XML	DSL

<zookeeper:create	zookeeper-client="zookeeperClient"	path="/${randomString}"	acl="OPEN_ACL_UNSAFE"
		<zookeeper:data>foo</zookeeper:data>
		<zookeeper:expect>
				<zookeeper:result>
						<![CDATA[
								{
										"responseData":{
														"path":"/${randomString}"
										}
								}
						]]>
				</zookeeper:result>
		</zookeeper:expect>
</zookeeper:create>

<zookeeper:get	zookeeper-client="zookeeperClient"	path="/${randomString}">
		<zookeeper:expect>
				<zookeeper:result>
						<![CDATA[
						{
								"responseData":{
										"data":"foo"
								}
						}
						]]>
				</zookeeper:result>
		</zookeeper:expect>
</zookeeper:getData>

<zookeeper:set	zookeeper-client="zookeeperClient"	path="/${randomString}">
		<zookeeper:data>bar</zookeeper:data>
</zookeeper:setData>

When	using	the	Java	DSL	we	can	directly	configure	the	commands	with	a	fluent	API.

Java	DSL	designer	and	runner

Citrus	Reference	Guide

407Zookeeper



@CitrusTest
public	void	testZookeeper()	{
				variable("randomString",	"citrus:randomString(10)");

				zookeeper()
								.create("/${randomString}",	"foo")
								.acl("OPEN_ACL_UNSAFE")
								.mode("PERSISTENT")
								.validateCommandResult(new	CommandResultCallback<ZooResponse>()	{
												@Override
												public	void	doWithCommandResult(ZooResponse	result,	TestContext	context)	{
																Assert.assertEquals(result.getResponseData().get("path"),	context.replaceDynamicContentInString("/${randomString}"));
												}
								});

				zookeeper()
								.get("/${randomString}")
								.validateCommandResult(new	CommandResultCallback<ZooResponse>()	{
												@Override
												public	void	doWithCommandResult(ZooResponse	result,	TestContext	context)	{
																Assert.assertEquals(result.getResponseData().get("version"),	0);
												}
								});

				zookeeper()
								.set("/${randomString}",	"bar");
}

The	examples	above	create	a	new	znode	in	Zookeeper	using	a	randomString	as	path.
We	can	get	and	set	the	data	with	expecting	and	validating	the	result	of	the	Zookeeper
server.	This	is	basically	the	idea	of	integrating	Zookepper	operations	to	a	Citrus	test.
This	opens	the	gate	to	manage	Zookeeper	related	entities	within	a	Citrus	test.	We	can
manipulate	and	validate	the	znodes	on	the	Zookeeper	instance.

Zookeeper	keeps	its	nodes	in	a	hierarchical	storage.	This	means	a	znode	can	have
children	and	we	can	add	and	remove	those.	In	Citrus	you	can	get	all	children	of	a	znode
and	manage	those	within	the	test:

XML	DSL

Citrus	Reference	Guide

408Zookeeper



<zookeeper:create	zookeeper-client="zookeeperClient"	path="/${randomString}/child1"	acl="OPEN_ACL_UNSAFE"
		<zookeeper:data></zookeeper:data>
		<zookeeper:expect>
				<zookeeper:result>
						<![CDATA[
								{
										"responseData":{
														"path":"/${randomString}/child1"
										}
								}
						]]>
				</zookeeper:result>
		</zookeeper:expect>
</zookeeper:create>

<zookeeper:create	zookeeper-client="zookeeperClient"	path="/${randomString}/child2"	acl="OPEN_ACL_UNSAFE"
		<zookeeper:data></zookeeper:data>
		<zookeeper:expect>
				<zookeeper:result>
						<![CDATA[
								{
										"responseData":{
														"path":"/${randomString}/child2"
										}
								}
						]]>
				</zookeeper:result>
		</zookeeper:expect>
</zookeeper:create>

<zookeeper:children	zookeeper-client="zookeeperClient"	path="/${randomString}">
		<zookeeper:expect>
				<zookeeper:result>
						<![CDATA[
								{
										"responseData":{
														"children":["child1","child2"]
										}
								}
						]]>
				</zookeeper:result>
		</zookeeper:expect>
</zookeeper:children>

Java	DSL	designer	and	runner

Citrus	Reference	Guide

409Zookeeper



zookeeper()
				.create("/${randomString}/child1",	"")
				.acl("OPEN_ACL_UNSAFE")
				.mode("PERSISTENT")
				.validateCommandResult(new	CommandResultCallback<ZooResponse>()	{
								@Override
								public	void	doWithCommandResult(ZooResponse	result,	TestContext	context)	{
												Assert.assertEquals(result.getResponseData().get("path"),	context.replaceDynamicContentInString("/${randomString}/child1"));
								}
				});

zookeeper()
				.create("/${randomString}/child2",	"")
				.acl("OPEN_ACL_UNSAFE")
				.mode("PERSISTENT")
				.validateCommandResult(new	CommandResultCallback<ZooResponse>()	{
								@Override
								public	void	doWithCommandResult(ZooResponse	result,	TestContext	context)	{
												Assert.assertEquals(result.getResponseData().get("path"),	context.replaceDynamicContentInString("/${randomString}/child2"));
								}
				});

zookeeper()
				.children("/${randomString}")
				.validateCommandResult(new	CommandResultCallback<ZooResponse>()	{
								@Override
								public	void	doWithCommandResult(ZooResponse	result,	TestContext	context)	{
												Assert.assertEquals(result.getResponseData().get("children").toString(),	"[child1,	child2]");
								}
				});

Citrus	Reference	Guide

410Zookeeper



Spring	Restdocs	support
Spring	Restdocs	project	helps	to	easily	generate	API	documentation	for	RESTful
services.	While	messages	are	exchanged	the	Restdocs	library	generates
request/response	snippets	and	API	documentation.	You	can	add	the	Spring	Restdocs
documentation	to	the	Citrus	client	components	for	Http	and	SOAP	endpoints.

Note	The	Spring	Restdocs	support	components	in	Citrus	are	kept	in	a	separate	Maven
module.	If	not	already	done	so	you	have	to	include	the	module	as	Maven	dependency	to
your	project

<dependency>
		<groupId>com.consol.citrus</groupId>
		<artifactId>citrus-restdocs</artifactId>
		<version>2.6.1</version>
</dependency>

For	easy	configuration	Citrus	has	created	a	separate	namespace	and	schema	definition
for	Spring	Restdocs	related	documentation.	Include	this	namespace	into	your	Spring
configuration	in	order	to	use	the	Citrus	Restdocs	configuration	elements.	The
namespace	URI	and	schema	location	are	added	to	the	Spring	configuration	XML	file	as
follows.

<spring:beans	xmlns:spring="http://www.springframework.org/schema/beans"
					xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
					xmlns="http://www.citrusframework.org/schema/cucumber/testcase"
					xsi:schemaLocation="
					http://www.springframework.org/schema/beans
					http://www.springframework.org/schema/beans/spring-beans.xsd
					http://www.citrusframework.org/schema/restdocs/config
					http://www.citrusframework.org/schema/restdocs/config/citrus-restdocs-config.xsd">

				[...]

</spring:beans>

After	that	you	are	able	to	use	customized	Citrus	XML	elements	in	order	to	define	the
Spring	beans.

Spring	Restdocs	using	Http

Citrus	Reference	Guide

411Restdocs



First	of	all	we	concentrate	on	adding	the	Spring	Restdocs	feature	to	Http	client
communication.	The	next	sample	configuration	uses	the	new	Spring	Restdocs
components	in	Citrus:

<citrus-restdocs:documentation	id="restDocumentation"
																																														output-directory="test-output/generated-snippets"
																																														identifier="rest-docs/{method-name}"/>

The	above	component	adds	a	new	documentation	configuration.	Behind	the	scenes	the
component	creates	a	new	restdocs	configurer	and	a	client	interceptor.	We	can	reference
the	new	restdocs	component	in	citrus-http	client	components	like	this:

<citrus-http:client	id="httpClient"
										request-url="http://localhost:8080/test"
										request-method="POST"
										interceptors="restDocumentation"/>

The	Spring	Restdocs	documentation	component	acts	as	a	client	interceptor.	Every	time
the	client	component	is	used	to	send	and	receive	a	message	the	restdocs	interceptor	will
automatically	create	its	API	documentation.	The	configuration	identifier	attribute
describes	the	output	format	rest-docs/{method-name}	which	results	in	a	folder	layout
like	this:

test-output
		|-	rest-docs
				|-	test-a
						|-	curl-request.adoc
						|-	http-request.adoc
						|-	http-response.adoc
				|-	test-b
						|-	curl-request.adoc
						|-	http-request.adoc
						|-	http-response.adoc
				|-	test-c
						|-	curl-request.adoc
						|-	http-request.adoc
						|-	http-response.adoc

The	example	above	is	the	result	of	three	test	cases	each	of	them	performing	a	client
Http	request/response	communication.	Each	test	message	exchange	is	documented
with	separate	files:

Citrus	Reference	Guide

412Restdocs



curl-request.adoc

[source,bash]
----
$	curl	'http://localhost:8080/test'	-i	-X	POST	-H	'Accept:	application/xml'	-H	'CustomHeaderId:	123456789'	-H	'Content-Type:	application/xml;charset=UTF-8'	-H	'Accept-Charset:	utf-8'	-d	'>testRequestMessage>
				>text>Hello	HttpServer>/text>
>/testRequestMessage>'
----

The	curl	file	represents	the	client	request	as	curl	command	and	can	be	seen	as	a
sample	to	reproduce	the	request.

http-request.adoc

[source,http,options="nowrap"]
----
POST	/test	HTTP/1.1
Accept:	application/xml
CustomHeaderId:	123456789
Content-Type:	application/xml;charset=UTF-8
Content-Length:	118
Accept-Charset:	utf-8
Host:	localhost

>testRequestMessage>
				>text>Hello	HttpServer>/text>
>/testRequestMessage>
----

The	http-request.adoc	file	represents	the	sent	message	data	for	the	client	request.	The
respective	http-response.adoc	represents	the	response	that	was	sent	to	the	client.

http-response.adoc

Citrus	Reference	Guide

413Restdocs



[source,http,options="nowrap"]
----
HTTP/1.1	200	OK
Date:	Tue,	07	Jun	2016	12:10:46	GMT
Content-Type:	application/xml;charset=UTF-8
Accept-Charset:	utf-8
Content-Length:	122
Server:	Jetty(9.2.15.v20160210)

>testResponseMessage>
				>text>Hello	Citrus!>/text>
>/testResponseMessage>
----

Nice	work!	We	have	automatically	created	snippets	for	the	RESTful	API	by	just	adding
the	interceptor	to	the	Citrus	client	component.	Spring	Restdocs	components	can	be
combined	manually.	See	the	next	configuration	that	uses	this	approach.

<citrus-restdocs:configurer	id="restDocConfigurer"	output-directory="test-output/generated-snippets"
<citrus-restdocs:client-interceptor	id="restDocClientInterceptor"	identifier="rest-docs/{method-name}"

<util:list	id="restDocInterceptors">
				<ref	bean="restDocConfigurer"/>
				<ref	bean="restDocClientInterceptor"/>
</util:list>

<citrus-http:client	id="httpClient"
										request-url="http://localhost:8080/test"
										request-method="POST"
										interceptors="restDocInterceptors"/>

What	exactly	is	the	difference	to	the	citrus-restdocs:documentation	that	we	have	used
before?	In	general	there	is	no	difference.	Both	configurations	are	identical	in	its	outcome.
Why	should	someone	use	the	second	approach	then?	It	is	more	verbose	as	we	need	to
also	define	a	list	of	interceptors.	The	answer	is	easy.	If	you	want	to	combine	the	restdocs
interceptors	with	other	client	interceptors	in	a	list	then	you	should	use	the	manual
combination	approach.	We	can	add	basic	authentication	interceptors	for	instance	to	the
list	of	interceptors	then.	The	more	comfortable	citrus-restdocs:documentation
component	only	supports	exclusive	restdocs	interceptors.

Spring	Restdocs	using	SOAP

Citrus	Reference	Guide

414Restdocs



You	can	use	the	Spring	Restdocs	features	also	for	SOAP	clients	in	Citrus.	This	is	a
controversy	idea	as	SOAP	endpoints	are	different	to	RESTful	concepts.	But	at	the	end
SOAP	Http	communication	is	Http	communication	with	request	and	response	messages.
Why	should	we	miss	out	the	fantastic	documentation	feature	here	just	because	of
ideology	reasons.

The	concept	of	adding	the	Spring	Restdocs	documentation	as	interceptor	to	the	client	is
still	the	same.

<citrus-restdocs:documentation	id="soapDocumentation"
																																														type="soap"
																																														output-directory="test-output/generated-snippets"
																																														identifier="soap-docs/{method-name}"/>

We	have	added	a	type	setting	with	value	soap	.	And	that	is	basically	all	we	need	to	do.
Now	Citrus	knows	that	we	would	like	to	add	documentation	for	a	SOAP	client:

<citrus-ws:client	id="soapClient"
						request-url="http://localhost:8080/test"
						interceptors="soapDocumentation"/>

Following	from	that	the	soapClient	is	enabled	to	generate	Spring	Restdocs
documentation	for	each	request/response.	The	generated	snippets	then	do	represent
the	SOAP	request	and	response	messages.

http-request.adoc

Citrus	Reference	Guide

415Restdocs



[source,http,options="nowrap"]
----
POST	/test	HTTP/1.1
SOAPAction:	"test"
Accept:	application/xml
CustomHeaderId:	123456789
Content-Type:	application/xml;charset=UTF-8
Content-Length:	529
Accept-Charset:	utf-8
Host:	localhost

>SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
		>SOAP-ENV:Header>
				>Operation	xmlns="http://citrusframework.org/test">sayHello>/Operation>
		>/SOAP-ENV:Header>
		>SOAP-ENV:Body>
				>testRequestMessage>
						>text>Hello	HttpServer>/text>
				>/testRequestMessage>
		>/SOAP-ENV:Body>
>/SOAP-ENV:Envelope>
----

http-response.adoc

[source,http,options="nowrap"]
----
HTTP/1.1	200	OK
Date:	Tue,	07	Jun	2016	12:10:46	GMT
Content-Type:	application/xml;charset=UTF-8
Accept-Charset:	utf-8
Content-Length:	612
Server:	Jetty(9.2.15.v20160210)

>SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
		>SOAP-ENV:Header>
				>Operation	xmlns="http://citrusframework.org/test">sayHello>/Operation>
		>/SOAP-ENV:Header>
		>SOAP-ENV:Body>
				>testResponseMessage>
						>text>Hello	Citrus!>/text>
				>/testResponseMessage>
		>/SOAP-ENV:Body>
>/SOAP-ENV:Envelope>
----

The	file	names	are	still	using	http-request	and	http-response	but	the	content	is	clearly
the	SOAP	request/response	message	data.

Citrus	Reference	Guide

416Restdocs



Spring	Restdocs	in	Java	DSL

How	can	we	use	Spring	Restdocs	in	Java	DSL?	Of	course	we	have	special	support	in
Citrus	Java	DSL	for	the	Spring	Restdocs	configuration,	too.

Java	DSL

public	class	RestDocConfigurationIT	extends	TestNGCitrusTestDesigner	{

				@Autowired
				private	TestListeners	testListeners;

				private	HttpClient	httpClient;

				@BeforeClass
				public	void	setup()	{
								CitrusRestDocConfigurer	restDocConfigurer	=	CitrusRestDocsSupport.restDocsConfigurer(new	ManualRestDocumentation("target/generated-snippets"));
								RestDocClientInterceptor	restDocInterceptor	=	CitrusRestDocsSupport.restDocsInterceptor("rest-docs/{method-name}");

								httpClient	=	CitrusEndpoints.http()
												.client()
												.requestUrl("http://localhost:8073/test")
												.requestMethod(HttpMethod.POST)
												.contentType("text/xml")
												.interceptors(Arrays.asList(restDocConfigurer,	restDocInterceptor))
												.build();

								testListeners.addTestListener(restDocConfigurer);
				}

				@Test
				@CitrusTest
				public	void	testRestDocs()	{
								http().client(httpClient)
												.send()
												.post()
												.payload("<testRequestMessage>"	+
																						"<text>Hello	HttpServer</text>"	+
																		"</testRequestMessage>");

								http().client(httpClient)
												.receive()
												.response(HttpStatus.OK)
												.payload("<testResponseMessage>"	+
																						"<text>Hello	TestFramework</text>"	+
																		"</testResponseMessage>");
				}
}

Citrus	Reference	Guide

417Restdocs



The	mechanism	is	quite	similar	to	the	XML	configuration.	We	add	the	Restdocs
configurer	and	interceptor	to	the	list	of	interceptors	for	the	Http	client.	If	we	do	this	all
client	communication	is	automatically	documented.	The	Citrus	Java	DSL	provides	some
convenient	configuration	methods	in	class	CitrusRestDocsSupport	for	creating	the
configurer	and	interceptor	objects.

Note	The	configurer	must	be	added	to	the	list	of	test	listeners.	This	is	a	mandatory	step
in	order	to	enable	the	configurer	for	documentation	preparations	before	each	test.
Otherwise	we	would	not	be	able	to	generate	proper	documentation.	If	you	are	using	the
XML	configuration	this	is	done	automatically	for	you.

Citrus	Reference	Guide

418Restdocs



Dynamic	endpoint	components
Endpoints	represent	the	central	components	in	Citrus	to	send	or	receive	a	message	on
some	destination.	Usually	endpoints	get	defined	in	the	basic	Citrus	Spring	application
context	configuration	as	Spring	bean	components.	In	some	cases	this	might	be	over
engineering	as	the	tester	just	wants	to	send	or	receive	a	message.	In	particular	this	is
done	when	doing	sanity	checks	in	server	endpoints	while	debugging	a	certain	scenario.

With	endpoint	components	you	are	able	to	create	the	Citrus	endpoint	for	sending	and
receiving	a	message	at	test	runtime.	There	is	no	additional	configuration	or	Spring	bean
component	needed.	You	just	use	the	endpoint	uri	in	a	special	naming	convention	and
Citrus	will	create	the	endpoint	for	you.	Let	us	see	a	first	example	of	this	scenario:

<testcase	name="DynamicEndpointTest">
				<actions>
								<send	endpoint="jms:Hello.Queue?timeout=10000">
												<message>
																<payload>
																[...]
																</payload>
												</message>
								</send>

								<receive	endpoint="jms:Hello.Response.Queue?timeout=5000">
												<message>
																<payload>
																[...]
																</payload>
												</message>
								</receive>
				</actions>
</testcase>

As	you	can	see	the	endpoint	uri	just	goes	into	the	test	case	action	in	substitution	to	the
usual	endpoint	reference	name.	Instead	of	referencing	a	bean	id	that	points	to	the
previously	configured	Citrus	endpoint	we	use	the	endpoint	uri	directly.	The	endpoint	uri
should	give	all	information	to	create	the	endpoint	at	runtime.	In	the	example	above	we
use	a	keyword	jms:	which	tells	Citrus	that	we	need	to	create	a	JMS	message	endpoint.
Secondly	we	give	the	JMS	destination	name	Hello.Queue	which	is	a	mandatory	part	of

Citrus	Reference	Guide

419Endpoint-component



the	endpoint	uri	when	using	the	JMS	component.	The	optional	timeout	parameter
completed	the	uri.	Citrus	is	able	to	create	the	JMS	endpoint	at	runtime	sending	the
message	to	the	defined	destination	via	JMS.

Of	course	this	mechanism	is	not	limited	to	JMS	endpoints.	We	can	use	all	default	Citrus
message	transports	in	the	endpoint	uri.	Just	pick	the	right	keyword	that	defines	the
message	transport	to	use.	Here	is	a	list	of	supported	keywords:

jms:	Creates	a	JMS	endpoint	for	sending	and	receiving	message	to	a	queue	or	topic
channel:	Creates	a	channel	endpoint	for	sending	and	receiving	messages	using	an
in	memory	Spring	Integration	message	channel
http:	Creates	a	HTTP	client	for	sending	a	request	to	some	server	URL
synchronously	waiting	for	the	response	message
ws:	Creates	a	Web	Socket	client	for	sending	messages	to	or	receiving	messages
from	a	Web	Socket	server
soap:	Creates	a	SOAP	WebService	client	that	send	a	proper	SOAP	message	to	the
server	URL	and	waits	for	the	synchronous	response	to	arrive
ssh:	Creates	a	new	ssh	client	for	publishing	a	command	to	the	server
mail:	or	smtp:	Creates	a	new	mail	client	for	sending	a	mail	mime	message	to	a
SMTP	server
camel:	Creates	a	new	Apache	Camel	endpoint	for	sending	and	receiving	Camel
exchanges	both	to	and	from	Camel	routes.
vertx:	or	eventbus:	Creates	a	new	Vert.x	instance	sending	and	receiving	messages
with	the	network	event	bus
rmi:	Creates	a	new	RMI	client	instance	sending	and	receiving	messages	for	method
invocation	on	remote	interfaces
jmx:	Creates	a	new	JMX	client	instance	sending	and	receiving	messages	to	and
from	a	managed	bean	server.

Depending	on	the	message	transport	we	have	to	add	mandatory	parameters	to	the
endpoint	uri.	In	the	JMS	example	we	had	to	specify	the	destination	name.	The
mandatory	parameters	are	always	part	of	the	endpoint	uri.	Optional	parameters	can	be
added	as	key	value	pairs	to	the	endpoint	uri.	The	available	parameters	depend	on	the
endpoint	keyword	that	you	have	chosen.	See	these	example	endpoint	uri	expressions:

Citrus	Reference	Guide

420Endpoint-component



				jms:queuename?connectionFactory=specialConnectionFactory&timeout=10000
				jms:topic:topicname?connectionFactory=topicConnectionFactory
				jms:sync:queuename?connectionFactory=specialConnectionFactory&pollingInterval=100&replyDestination=myReplyDestination

				channel:channelName
				channel:sync:channelName
				channel:channelName?timeout=10000&channelResolver=myChannelResolver

				http:localhost:8088/test
				http://localhost:8088/test
				http:localhost:8088?requestMethod=GET&timeout=10000&errorHandlingStrategy=throwsException&requestFactory=myRequestFactory
				http://localhost:8088/test?requestMethod=DELETE&customParam=foo

				websocket:localhost:8088/test
				websocket://localhost:8088/test
				ws:localhost:8088/test
				ws://localhost:8088/test

				soap:localhost:8088/test
				soap:localhost:8088?timeout=10000&errorHandlingStrategy=propagateError&messageFactory=myMessageFactory

				mail:localhost:25000
				smtp://localhost:25000
				smtp://localhost?timeout=10000&username=foo&password=1234&mailMessageMapper=myMapper

				ssh:localhost:2200
				ssh://localhost:2200?timeout=10000&strictHostChecking=true&user=foo&password=12345678

				rmi://localhost:1099/someService
				rmi:localhost/someService&timeout=10000

				jmx:rmi:///jndi/rmi://localhost:1099/someService
				jmx:platform&timeout=10000

				camel:direct:address
				camel:seda:address
				camel:jms:queue:someQueue?connectionFactory=myConnectionFactory
				camel:activemq:queue:someQueue?concurrentConsumers=5&destination.consumer.prefetchSize=50
				camel:controlbus:route?routeId=myRoute&action=status

				vertx:addressName
				vertx:addressName?port=10105&timeout=10000&pubSubDomain=true
				vertx:addressName?vertxInstanceFactory=vertxFactory

The	optional	parameters	get	directly	set	as	endpoint	configuration.	You	can	use	primitive
values	as	well	as	Spring	bean	id	references.	Citrus	will	automatically	detect	the	target
parameter	type	and	resolve	the	value	to	a	Spring	bean	in	the	application	context	if

Citrus	Reference	Guide

421Endpoint-component



necessary.	If	you	use	some	unknown	parameter	Citrus	will	raise	an	exception	at	runtime
as	the	endpoint	could	not	be	created	properly.

In	synchronous	communication	we	have	to	reuse	endpoint	components	in	order	to
receive	synchronous	messages	on	reply	destinations.	This	is	a	problem	when	using
dynamic	endpoints	as	the	endpoints	get	created	at	runtime.	Citrus	uses	a	caching	of
endpoints	that	get	created	at	runtime.	Following	from	that	we	have	to	use	the	exact
same	endpoint	uri	in	your	test	case	in	order	to	get	the	cached	endpoint	instance.	With
this	little	trick	synchronous	communication	will	work	just	as	it	is	done	with	static	endpoint
components.	Have	a	look	at	this	sample	test:

<testcase	name="DynamicEndpointTest">
				<actions>
								<send	endpoint="jms:sync:Hello.Sync.Queue">
												<message>
																<payload>
																[...]
																</payload>
												</message>
								</send>

								<receive	endpoint="jms:sync:Hello.Sync.Queue">
												<message>
																<payload>
																[...]
																</payload>
												</message>
								</receive>
				</actions>
</testcase>

As	you	can	see	we	used	the	exact	dynamic	endpoint	uri	in	both	send	and	receive
actions.	Citrus	is	then	able	to	reuse	the	same	dynamic	endpoint	and	the	synchronous
reply	will	be	received	as	expected.	However	the	reuse	of	exactly	the	same	endpoint	uri
might	get	annoying	as	we	also	have	to	copy	endpoint	uri	parameters	and	so	on.

Citrus	Reference	Guide

422Endpoint-component



<testcase	name="DynamicEndpointTest">
				<actions>
								<send	endpoint="http://localhost:8080/HelloService?user=1234567">
												<message>
																<payload>
																[...]
																</payload>
												</message>
								</send>

								<receive	endpoint="http://localhost:8080/HelloService?user=1234567">
												<message>
																<payload>
																[...]
																</payload>
												</message>
								</receive>
				</actions>
</testcase>

We	have	to	use	the	exact	same	endpoint	uri	when	receiving	the	synchronous	service
response.	This	is	not	very	straight	forward.	This	is	why	Citrus	also	supports	dynamic
endpoint	names.	With	a	special	endpoint	uri	parameter	called	endpointName	you	can
name	the	dynamic	endpoint.	In	a	corresponding	receive	action	you	just	use	the	endpoint
name	as	reference	which	makes	life	more	easy:

<testcase	name="DynamicEndpointTest">
				<actions>
								<send	endpoint="http://localhost:8080/HelloService?endpointName=myHttpClient">
												<message>
																<payload>
																[...]
																</payload>
												</message>
								</send>

								<receive	endpoint="http://localhost?endpointName=myHttpClient">
												<message>
																<payload>
																[...]
																</payload>
												</message>
								</receive>
				</actions>
</testcase>

Citrus	Reference	Guide

423Endpoint-component



So	we	can	reference	the	dynamic	endpoint	with	the	given	name.	The	internal
endpointName	uri	parameter	is	automatically	removed	before	sending	out	messages.
Once	again	the	dynamic	endpoint	uri	mechanism	provides	a	fast	way	to	write	test	cases
in	Citrus	with	less	configuration.	But	you	should	consider	to	use	the	static	endpoint
components	defined	in	the	basic	Spring	bean	application	context	for	endpoints	that	are
heavily	reused	in	multiple	test	cases.

Citrus	Reference	Guide

424Endpoint-component



Endpoint	adapter
Endpoint	adapter	help	to	customize	the	behavior	of	a	Citrus	server	such	as	HTTP	or
SOAP	web	servers.	As	the	servers	get	started	with	the	Citrus	context	they	are	ready	to
receive	incoming	client	requests.	Now	there	are	different	ways	to	process	these
incoming	requests	and	to	provide	a	proper	response	message.	By	default	the	server	will
forward	the	incoming	request	to	a	in	memory	message	channel	where	a	test	can	receive
the	message	and	provide	a	synchronous	response.	This	message	channel	handling	is
done	automatically	behind	the	scenes	so	the	tester	does	not	care	about	these	things.
The	tester	just	uses	the	server	directly	as	endpoint	reference	in	the	test	case.	This	is	the
default	behaviour.	In	addition	to	that	you	can	define	custom	endpoint	adapters	on	the
Citrus	server	in	order	to	change	this	default	behavior.

You	set	the	custom	endpoint	adapter	directly	on	the	server	configuration	as	follows:

<citrus-http:server	id="helloHttpServer"
				port="8080"
				auto-start="true"
				endpoint-adapter="emptyResponseEndpointAdapter"
				resource-base="src/it/resources"/>

				<citrus:empty-response-adapter	id="emptyResponseEndpointAdapter"/>

Now	let	us	have	a	closer	look	at	the	provided	endpoint	adapter	implementations.

Empty	response	endpoint	adapter

This	is	the	simplest	endpoint	adapter	you	can	think	of.	It	simply	provides	an	empty
success	response	using	the	HTTP	response	code	200	.	The	adapter	does	not	need	any
configurations	or	properties	as	it	simply	responds	with	an	empty	HTTP	response.

<citrus:empty-response-adapter	id="emptyResponseEndpointAdapter"/>

Static	response	endpoint	adapter

The	next	more	complex	endpoint	adapter	will	always	return	a	static	response	message.

Citrus	Reference	Guide

425Endpoint-adapter



<citrus:static-response-adapter	id="endpointAdapter">
				<citrus:payload>
								<![CDATA[
										<HelloResponse
												xmlns="http://www.consol.de/schemas/samples/sayHello.xsd">
														<MessageId>123456789</MessageId>
														<CorrelationId>Cx1x123456789</CorrelationId>
														<Text>Hello	User</Text>
										</HelloResponse>
								]]>
				</citrus:payload>
				<citrus:header>
								<citrus:element	name="{http://www.consol.de/schemas/samples}h1:Operation"
																		value="sayHello"/>
								<citrus:element	name="{http://www.consol.de/schemas/samples}h1:MessageId"
																		value="123456789"/>
				</citrus:header>
	</citrus:static-response-adapter>

The	endpoint	adapter	is	configured	with	a	static	message	payload	and	static	response
header	values.	The	response	to	the	client	is	therefore	always	the	same.

Request	dispatching	endpoint	adapter

The	idea	behind	the	request	dispatching	endpoint	adapter	is	that	the	incoming	requests
are	dispatched	to	several	other	endpoint	adapters.	The	decision	which	endpoint	adapter
should	handle	the	actual	request	is	done	depending	on	some	adapter	mapping.	The
mapping	is	done	based	on	the	payload	or	header	data	of	the	incoming	request.	A
mapping	strategy	evaluates	a	mapping	key	using	the	incoming	request.	You	can	think	of
an	XPath	expression	that	evaluates	to	the	mapping	key	for	instance.	The	endpoint
adapter	that	maps	to	the	mapping	key	is	then	called	to	handle	the	request.

So	the	request	dispatching	endpoint	adapter	is	able	to	dynamically	call	several	other
endpoint	adapters	based	on	the	incoming	request	message	at	runtime.	This	is	very
powerful.	The	next	example	uses	the	request	dispatching	endpoint	adapter	with	a	XPath
mapping	key	extractor.

Citrus	Reference	Guide

426Endpoint-adapter



<citrus:dispatching-endpoint-adapter	id="dispatchingEndpointAdapter"
									mapping-key-extractor="mappingKeyExtractor"
									mapping-strategy="mappingStrategy"/>

<bean	id="mappingStrategy"
		class="com.consol.citrus.endpoint.adapter.mapping.SimpleMappingStrategy">
				<property	name="adapterMappings">
						<map>
										<entry	key="sayHello"	ref="helloEndpointAdapter"/>
						</map>
				</property>
</bean>

<bean	id="mappingKeyExtractor"
		class="com.consol.citrus.endpoint.adapter.mapping.XPathPayloadMappingKeyExtractor">
				<property	name="xpathExpression"	value="//TestMessage/Operation/*"/>
</bean>

<citrus:static-response-adapter	id="helloEndpointAdapter">
				<citrus:payload>
								<![CDATA[
												<HelloResponse
																xmlns="http://www.consol.de/schemas/samples/sayHello.xsd">
																<MessageId>123456789</MessageId>
																<Text>Hello	User</Text>
												</HelloResponse>
								]]>
				</citrus:payload>
</citrus:static-response-adapter>

The	XPath	mapping	key	extractor	expression	decides	for	each	request	which	mapping
key	to	use	in	order	to	find	a	proper	endpoint	adapter	through	the	mapping	strategy.	The
endpoint	adapters	available	in	the	application	context	are	mapped	via	their	bean	id.	For
instance	an	incoming	request	with	a	matching	element
//TestMessage/Operation/sayHello	would	be	handled	by	the	endpoint	adapter	bean
that	is	registered	in	the	mapping	strategy	as	"sayHello"	key.	The	available	endpoint
adapters	are	configured	in	the	same	Spring	application	context.

Citrus	provides	several	default	mapping	key	extractor	implementations.

HeaderMappingKeyExtractor	:	Reads	a	special	header	entry	and	uses	its	value	as
mapping	key

SoapActionMappingKeyExtractor	:	Uses	the	soap	action	header	entry	as
mapping	key

Citrus	Reference	Guide

427Endpoint-adapter



XPathPayloadMappingKeyExtractor	:	Evaluates	a	XPath	expression	on	the
request	payload	and	uses	the	result	as	mapping	key

In	addition	to	that	we	need	a	mapping	strategy.	Citrus	provides	following	default
implementations.

SimpleMappingStrategy	:	Simple	key	value	map	with	endpoint	adapter	references

BeanNameMappingStrategy	:	Loads	the	endpoint	adapter	Spring	bean	with	the
given	id	matching	the	mapping	key

ContextLoadingMappingStrategy	:	Same	as	BeanNameMappingStrategy	but
loads	a	separate	application	context	defined	by	external	file	resource

Channel	endpoint	adapter

The	channel	connecting	endpoint	adapter	is	the	default	adapter	used	in	all	Citrus	server
components.	Indeed	this	adapter	also	provides	the	most	flexibility.	This	adapter	forwards
incoming	requests	to	a	channel	destination.	The	adapter	is	waiting	for	a	proper	response
on	a	reply	destination	synchronously.	With	the	channel	endpoint	components	you	can
read	the	requests	on	the	channel	and	provide	a	proper	response	on	the	reply
destination.

<citrus:channel-endpoint-adapter	id="channelEndpointAdapter"
														channel-name="inbound.channel"
														timeout="2500"/>

JMS	endpoint	adapter

Another	powerful	endpoint	adapter	is	the	JMS	connecting	adapter	implementation.	This
adapter	forwards	incoming	requests	to	a	JMS	destination	and	waits	for	a	proper
response	on	a	reply	destination.	A	JMS	endpoint	can	access	the	requests	internally	and
provide	a	proper	response	on	the	reply	destination.	So	this	adapter	is	very	flexible	to
provide	proper	response	messages.

This	special	adapter	comes	with	the	citrus-jms	module.	So	you	have	to	add	the	module
and	the	special	XML	namespace	for	this	module	to	your	configuration	files.	The	Maven
module	for	citrus-jms	goes	to	the	Maven	POM	file	as	normal	project	dependency.	The
citrus-jms	namespace	goes	to	the	Spring	bean	XML	configuration	file	as	follows:

Citrus	Reference	Guide

428Endpoint-adapter



Note	Citrus	provides	a	"citrus-jms"	configuration	namespace	and	schema	definition	for
JMS	related	components	and	features.	Include	this	namespace	into	your	Spring
configuration	in	order	to	use	the	Citrus	JMS	configuration	elements.	The	namespace
URI	and	schema	location	are	added	to	the	Spring	configuration	XML	file	as	follows.

<beans	xmlns="http://www.springframework.org/schema/beans"
								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
								xmlns:citrus-jms="http://www.citrusframework.org/schema/jms/config"
								xsi:schemaLocation="
								http://www.springframework.org/schema/beans
								http://www.springframework.org/schema/beans/spring-beans.xsd
								http://www.citrusframework.org/schema/jms/config
								http://www.citrusframework.org/schema/jms/config/citrus-jms-config.xsd">

				[...]

</beans>

After	that	you	are	able	to	use	the	adapter	implementation	in	the	Spring	bean
configuration.

<citrus-jms:endpoint-adapter	id="jmsEndpointAdapter"
														destination-name="JMS.Queue.Requests.In"
														reply-destination-name="JMS.Queue.Response.Out"
														connection-factory="jmsConnectionFactory"
														timeout="2500"/>

<bean	id="jmsConnectionFactory"	class="org.apache.activemq.ActiveMQConnectionFactory">
						<property	name="brokerURL"	value="tcp://localhost:61616"	/>
</bean>

Citrus	Reference	Guide

429Endpoint-adapter



Functions
The	test	framework	will	offer	several	functions	that	are	useful	throughout	the	test
execution.	The	functions	will	always	return	a	string	value	that	is	ready	for	use	as	variable
value	or	directly	inside	a	text	message.

A	set	of	functions	is	usually	combined	to	a	function	library.	The	library	has	a	prefix	that
will	identify	the	functions	inside	the	test	case.	The	default	test	framework	function	library
uses	a	default	prefix	(citrus).	You	can	write	your	own	function	library	using	your	own
prefix	in	order	to	extend	the	test	framework	functionality	whenever	you	want.

The	library	is	built	in	the	Spring	configuration	and	contains	a	set	of	functions	that	are	of
public	use.

<citrus:function-library	id="testLibrary"	prefix="foo:">
										<citrus:function	name="randomNumber">	class="com.consol.citrus.functions.RandomNumberFunction"/>
										<citrus:function	name="randomString">	class="com.consol.citrus.functions.RandomStringFunction"/>
										<citrus:function	name="customFunction">	ref="customFunctionBean"/>
										...
</citrus:function-library>

As	you	can	see	the	library	defines	one	to	many	functions	either	referenced	as	normal
Spring	bean	or	by	its	implementing	Java	class	name.	Citrus	constructs	the	library	and
you	are	able	to	use	the	functions	in	your	test	case	with	the	leading	library	prefix	just	like
this:

foo:randomNumber()
						foo:randomString()
						foo:customFunction()

Tip	You	can	add	custom	function	implementations	and	custom	function	libraries.	Just
use	a	custom	prefix	for	your	library.	The	default	Citrus	function	library	uses	the	citrus:
prefix.In	the	next	chapters	the	default	functions	offered	by	the	framework	will	be
described	in	detail.

citrus:concat()

Citrus	Reference	Guide

430Functions



The	function	will	combine	several	string	tokens	to	a	single	string	value.	This	means	that
you	can	combine	a	static	text	value	with	a	variable	value	for	instance.	A	first	example
should	clarify	the	usage:

<testcase	name="concatFunctionTest">
				<variables>
								<variable	name="date"	value="citrus:currentDate(yyyy-MM-dd)"	/>
								<variable	name="text"	value="Hello	Test	Framework!"	/>
				</variables>
				<actions>
								<echo>
												<message>
																citrus:concat('Today	is:	',	${date},	'	right!?')
												</message>
								</echo>
								<echo>
												<message>
																citrus:concat('Text	is:	',	${text})
												</message>
								</echo>
				</actions>
</testcase>

Please	do	not	forget	to	mark	static	text	with	single	quote	signs.	There	is	no	limitation	for
string	tokens	to	be	combined.

citrus:concat('Text1',	'Text2',	'Text3',	${text},	'Text5',	…,	'TextN')

The	function	can	be	used	wherever	variables	can	be	used.	For	instance	when	validating
XML	elements	in	the	receive	action.

<message>
				<validate	path="//element/element"	value="citrus:concat('Cx1x',	${generatedId})"/>
</message>

citrus:substring()

The	function	will	have	three	parameters.

1.	 String	to	work	on
2.	 Starting	index
3.	 End	index	(optional)

Let	us	have	a	look	at	a	simple	example	for	this	function:

Citrus	Reference	Guide

431Functions



<echo>
				<message>
								citrus:substring('Hello	Test	Framework',	6)
				</message>
</echo>
<echo>
				<message>
								citrus:substring('Hello	Test	Framework',	0,	5)
				</message>
</echo>

Function	output:

Test	Framework	
Hello

citrus:stringLength()

The	function	will	calculate	the	number	of	characters	in	a	string	representation	and	return
the	number.

<echo>
				<message>citrus:stringLength('Hello	Test	Framework')</message>
</echo>

Function	output:

20

citrus:translate()

This	function	will	replace	regular	expression	matching	values	inside	a	string
representation	with	a	specified	replacement	string.

<echo>
				<message>
								citrus:translate('H.llo	Test	Fr.mework',	'\.',	'a')
				</message>
</echo>

Note	that	the	second	parameter	will	be	a	regular	expression.	The	third	parameter	will	be
a	simple	replacement	string	value.

Citrus	Reference	Guide

432Functions



Function	output:

Hello	Test	Framework

citrus:substringBefore()

The	function	will	search	for	the	first	occurrence	of	a	specified	string	and	will	return	the
substring	before	that	occurrence.	Let	us	have	a	closer	look	in	a	simple	example:

<echo>
				<message>
								citrus:substringBefore('Test/Framework',	'/')
				</message>
</echo>

In	the	specific	example	the	function	will	search	for	the	‘/’	character	and	return	the	string
before	that	index.

Function	output:

Test

citrus:substringAfter()

The	function	will	search	for	the	first	occurrence	of	a	specified	string	and	will	return	the
substring	after	that	occurrence.	Let	us	clarify	this	with	a	simple	example:

<echo>
				<message>
								citrus:substringAfter('Test/Framework',	'/')
				</message>
</echo>

Similar	to	the	substringBefore	function	the	‘/’	character	is	found	in	the	string.	But	now	the
remaining	string	is	returned	by	the	function	meaning	the	substring	after	this	character
index.

Function	output:

Framework

citrus:round()

Citrus	Reference	Guide

433Functions



This	is	a	simple	mathematic	function	that	will	round	decimal	numbers	representations	to
their	nearest	non	decimal	number.

<echo>
				<message>citrus:round('3.14')</message>
</echo>

Function	output:

3

citrus:floor()

This	function	will	round	down	decimal	number	values.

<echo>
				<message>citrus:floor('3.14')</message>
</echo>

Function	output:

3.0

citrus:ceiling()

Similar	to	floor	function,	but	now	the	function	will	round	up	the	decimal	number	values.

<echo>
				<message>citrus:ceiling('3.14')</message>
</echo>

Function	output:

4.0

citrus:randomNumber()

The	random	number	function	will	provide	you	the	opportunity	to	generate	random
number	strings	containing	positive	number	letters.	There	is	a	singular	Boolean
parameter	for	that	function	describing	whether	the	generated	number	should	have
exactly	the	amount	of	digits.	Default	value	for	this	padding	flag	will	be	true.

Citrus	Reference	Guide

434Functions



Next	example	will	show	the	function	usage:

<variables>
				<variable	name="rndNumber1"	value="citrus:randomNumber(10)"/>
				<variable	name="rndNumber2"	value="citrus:randomNumber(10,	true)"/>
				<variable	name="rndNumber2"	value="citrus:randomNumber(10,	false)"/>
				<variable	name="rndNumber3"	value="citrus:randomNumber(3,	false)"/>
</variables>

Function	output:

8954638765	
5003485980	
6387650	
65

citrus:randomString()

This	function	will	generate	a	random	string	representation	with	a	defined	length.	A
second	parameter	for	this	function	will	define	the	case	of	the	generated	letters
(UPPERCASE,	LOWERCASE,	MIXED).	The	last	parameter	allows	also	digit	characters
in	the	generated	string.	By	default	digit	charaters	are	not	allowed.

<variables>
				<variable	name="rndString0"	value="${citrus:randomString(10)}"/>
				<variable	name="rndString1"	value="citrus:randomString(10)"/>
				<variable	name="rndString2"	value="citrus:randomString(10,	UPPERCASE)"/>
				<variable	name="rndString3"	value="citrus:randomString(10,	LOWERCASE)"/>
				<variable	name="rndString4"	value="citrus:randomString(10,	MIXED)"/>
				<variable	name="rndString4"	value="citrus:randomString(10,	MIXED,	true)"/>
</variables>

Function	output:

HrGHOdfAer	
AgSSwedetG	
JSDFUTTRKU	
dtkhirtsuz	
Vt567JkA32

citrus:randomEnumValue()

Citrus	Reference	Guide

435Functions



This	function	returns	one	of	its	supplied	arguments.	Furthermore	you	can	specify	a
custom	function	with	a	configured	list	of	values	(the	enumeration).	The	function	will
randomly	return	an	entry	when	called	without	arguments.	This	promotes	code	reuse	and
facilitates	refactoring.

In	the	next	sample	the	function	is	used	to	set	a	httpStatusCode	variable	to	one	of	the
given	HTTP	status	codes	(200,	401,	500)

<variable	name="httpStatusCode"	value="citrus:randomEnumValue('200',	'401',	'500')"	/>

As	mentioned	before	you	can	define	a	custom	function	for	your	very	specific	needs	in
order	to	easily	manage	a	list	of	predefined	values	like	this:

<citrus:function-library	id="myCustomFunctionLibrary"	prefix="custom:">
				<citrus-function	name="randomHttpStatusCode"	ref="randomHttpStatusCodeFunction"/>
</citrus:function-library>

<bean	id="randomHttpStatusCodeFunction"	class="com.consol.citrus.functions.core.RandomEnumValueFunction"
		<property	name="values">
				<list>
						<value>200</value>
						<value>500</value>
						<value>401</value>
				</list>
		</property>
</bean>

We	have	added	a	custom	function	library	with	a	custom	function	definition.	The	custom
function	"randomHttpStatusCode"	randomly	chooses	an	HTTP	status	code	each	time	it
is	called.	Inside	the	test	you	can	use	the	function	like	this:

<variable	name="httpStatusCode"	value="custom:randomHttpStatusCode()"	/>

citrus:currentDate()

This	function	will	definitely	help	you	when	accessing	the	current	date.	Some	examples
will	show	the	usage	in	detail:

Citrus	Reference	Guide

436Functions



<echo><message>citrus:currentDate()</message></echo>
<echo><message>citrus:currentDate('yyyy-MM-dd')</message></echo>
<echo><message>citrus:currentDate('yyyy-MM-dd	HH:mm:ss')</message></echo>
<echo><message>citrus:currentDate('yyyy-MM-dd'T'hh:mm:ss')</message></echo>
<echo><message>citrus:currentDate('yyyy-MM-dd	HH:mm:ss',	'+1y')</message></echo>
<echo><message>citrus:currentDate('yyyy-MM-dd	HH:mm:ss',	'+1M')</message></echo>
<echo><message>citrus:currentDate('yyyy-MM-dd	HH:mm:ss',	'+1d')</message></echo>
<echo><message>citrus:currentDate('yyyy-MM-dd	HH:mm:ss',	'+1h')</message></echo>
<echo><message>citrus:currentDate('yyyy-MM-dd	HH:mm:ss',	'+1m')</message></echo>
<echo><message>citrus:currentDate('yyyy-MM-dd	HH:mm:ss',	'+1s')</message></echo>
<echo><message>citrus:currentDate('yyyy-MM-dd	HH:mm:ss',	'-1y')</message></echo>

Note	that	the	currentDate	function	provides	two	parameters.	First	parameter	describes
the	date	format	string.	The	second	will	define	a	date	offset	string	containing	year,	month,
days,	hours,	minutes	or	seconds	that	will	be	added	or	subtracted	to	or	from	the	actual
date	value.

Function	output:

01.09.2009	
2009-09-01	
2009-09-01	12:00:00	
2009-09-01T12:00:00

citrus:upperCase()

This	function	converts	any	string	to	upper	case	letters.

<echo>
				<message>citrus:upperCase('Hello	Test	Framework')</message>
</echo>

Function	output:

HELLO	TEST	FRAMEWORK

citrus:lowerCase()

This	function	converts	any	string	to	lower	case	letters.

Citrus	Reference	Guide

437Functions



<echo>
				<message>citrus:lowerCase('Hello	Test	Framework')</message>
</echo>

Function	output:

hello	test	framework

citrus:average()

The	function	will	sum	up	all	specified	number	values	and	divide	the	result	through	the
number	of	values.

<variable	name="avg"	value="citrus:average('3',	'4',	'5')"/>

avg	=	4.0

citrus:minimum()

This	function	returns	the	minimum	value	in	a	set	of	number	values.

<variable	name="min"	value="citrus:minimum('3',	'4',	'5')"/>

min	=	3.0

citrus:maximum()

This	function	returns	the	maximum	value	in	a	set	of	number	values.

<variable	name="max"	value="citrus:maximum('3',	'4',	'5')"/>

max	=	5.0

citrus:sum()

The	function	will	sum	up	all	number	values.	The	number	values	can	also	be	negative.

<variable	name="sum"	value="citrus:sum('3',	'4',	'5')"/>

Citrus	Reference	Guide

438Functions



sum	=	12.0

citrus:absolute()

The	function	will	return	the	absolute	number	value.

<variable	name="abs"	value="citrus:absolute('-3')"/>

abs	=	3.0

citrus:mapValue()

This	function	implementation	maps	string	keys	to	string	values.	This	is	very	helpful	when
the	used	key	is	randomly	chosen	at	runtime	and	the	corresponding	value	is	not	defined
during	the	design	time.

The	following	function	library	defines	a	custom	function	for	mapping	HTTP	status	codes
to	the	corresponding	messages:

<citrus:function-library	id="myCustomFunctionLibrary"	prefix="custom:">
						<citrus-function	name="getHttpStatusMessage"	ref="getHttpStatusMessageFunction"/>
</citrus:function-library>

<bean	id="getHttpStatusMessageFunction"	class="com.consol.citrus.functions.core.MapValueFunction"
		<property	name="values">
				<map>
						<entry	key="200"	value="OK"	/>
						<entry	key="401"	value="Unauthorized"	/>
						<entry	key="500"	value="Internal	Server	Error"	/>
				</map>
		</property>
</bean>

In	this	example	the	function	sets	the	variable	httpStatusMessage	to	the	'Internal	Server
Error'	string	dynamically	at	runtime.	The	test	only	knows	the	HTTP	status	code	and	does
not	care	about	spelling	and	message	locales.

<variable	name="httpStatusCodeMessage"	value="custom:getHttpStatusMessage('500')"	/>

citrus:randomUUID()

Citrus	Reference	Guide

439Functions



The	function	will	generate	a	random	Java	UUID.

<variable	name="uuid"	value="citrus:randomUUID()"/>

uuid	=	98fbd7b0-832e-4b85-b9d2-e0113ee88356

citrus:encodeBase64()

The	function	will	encode	a	string	to	binary	data	using	base64	hexadecimal	encoding.

<variable	name="encoded"	value="citrus:encodeBase64('Hallo	Testframework')"/>

encoded	=	VGVzdCBGcmFtZXdvcms=

citrus:decodeBase64()

The	function	will	decode	binary	data	to	a	character	sequence	using	base64	hexadecimal
decoding.

<variable	name="decoded"	value="citrus:decodeBase64('VGVzdCBGcmFtZXdvcms=')"/>

decoded	=	Hallo	Testframework

citrus:escapeXml()

If	you	want	to	deal	with	escaped	XML	in	your	test	case	you	may	want	to	use	this
function.	It	automatically	escapes	all	XML	special	characters.

<echo>
				<message>
								<![CDATA[
												citrus:escapeXml('<Message>Hallo	Test	Framework</Message>')																								
								]]>
				</message>
</echo>

<Message>Hallo	Test	Framework</Message>

citrus:cdataSection()

Citrus	Reference	Guide

440Functions



Usually	we	use	CDATA	sections	to	define	message	payload	data	inside	a	testcase.	We
might	run	into	problems	when	the	payload	itself	contains	CDATA	sections	as	nested
CDATA	sections	are	prohibited	by	XML	nature.	In	this	case	the	next	function	ships	very
usefull.

<variable	name="cdata"	value="citrus:cdataSection('payload')"/>

cdata	=	<![CDATA[payload]]>

citrus:digestAuthHeader()

Digest	authentication	is	a	commonly	used	security	algorithm,	especially	in	Http
communication	and	SOAP	WebServices.	Citrus	offers	a	function	to	generate	a	digest
authentication	principle	used	in	the	Http	header	section	of	a	message.

<variable	name="digest"	
		value="citrus:digestAuthHeader('username',	'password',	'authRealm',	'acegi',	
																												'POST',	'http://127.0.0.1:8080',	'citrus',	'md5')"/>

A	possible	digest	authentication	header	value	looks	like	this:

<Digest	username=foo,realm=arealm,nonce=MTMzNT,
uri=http://127.0.0.1:8080,response=51f98c,opaque=b29a30,algorithm=md5>

You	can	use	these	digest	headers	in	messages	sent	by	Citrus	like	this:

<header>
		<element	name="citrus_http_Authorization"	
				value="vflig:digestAuthHeader('${username}','${password}','${authRealm}',
																												'${nonceKey}','POST','${uri}','${opaque}','${algorithm}')"/>
</header>

This	will	set	a	Http	Authorization	header	with	the	respective	digest	in	the	request
message.	So	your	test	is	ready	for	client	digest	authentication.

citrus:localHostAddress()

Test	cases	may	use	the	local	host	address	for	some	reason	(e.g.	used	as	authentication
principle).	As	the	tests	may	run	on	different	machines	at	the	same	time	we	can	not	use
static	host	addresses.	The	provided	function	localHostAddress()	reads	the	local	host

Citrus	Reference	Guide

441Functions



name	dynamically	at	runtime.

<variable	name="address"	value="citrus:localHostAddress()"/>

A	possible	value	is	either	the	host	name	as	used	in	DNS	entry	or	an	IP	address	value:

address	=	<192.168.2.100>

citrus:changeDate()

This	function	works	with	date	values	and	manipulates	those	at	runtime	by	adding	or
removing	a	date	value	offset.	You	can	manipulate	several	date	fields	such	as:	year,
month,	day,	hour,	minute	or	second.

Let	us	clarify	this	with	a	simple	example	for	this	function:

<echo>
				<message>citrus:changeDate('01.01.2000',	'+1y+1M+1d')</message>
</echo>
<echo>
				<message>citrus:changeDate(citrus:currentDate(),	'-1M')</message>
</echo>

Function	output:

02.02.2001	
13.04.2013

As	you	can	see	the	change	date	function	works	on	static	date	values	or	dynamic
variable	values	or	functions	like	citrus:currentDate()	.	By	default	the	change	date
function	requires	a	date	format	such	as	the	current	date	function	('dd.MM.yyyy').	You	can
also	define	a	custom	date	format:

<echo>
				<message>citrus:changeDate('2000-01-10',	'-1M-1d',	'yyyy-MM-dd')</message>
</echo>

Function	output:

1999-12-09

Citrus	Reference	Guide

442Functions



With	this	you	are	able	to	manipulate	all	date	values	of	static	or	dynamic	nature	at	test
runtime.

citrus:readFile()

The	readFile	function	reads	a	file	resource	from	given	file	path	and	loads	the	complete
file	content	as	function	result.	The	file	path	can	be	a	system	file	path	as	well	as	a
classpath	file	resource.	The	file	path	can	have	test	variables	as	part	of	the	path	or	file
name.	In	addition	to	that	the	file	content	can	also	have	test	variable	values	and	other
functions.

Let's	see	this	function	in	action:

<echo>
				<message>citrus:readFile('classpath:some/path/to/file.txt')</message>
</echo>
<echo>
				<message>citrus:readFile(${filePath})</message>
</echo>

The	function	reads	the	file	content	and	places	the	content	at	the	position	where	the
function	has	been	called.	This	means	that	you	can	also	use	this	function	as	part	of
Strings	and	message	payloads	for	instance.	This	is	a	very	powerful	way	to	extract	large
message	parts	to	separate	file	resources.	Just	add	the	readFile	function	somewhere	to
the	message	content	and	Citrus	will	load	the	extra	file	content	and	place	it	right	into	the
message	payload	for	you.

Citrus	Reference	Guide

443Functions



Validation	matcher
Message	validation	in	Citrus	is	essential.	The	framework	offers	several	validation
mechanisms	for	different	message	types	and	formats.	With	test	variables	we	are	able	to
check	for	simple	value	equality.	We	ensure	that	message	entries	are	equal	to	predefined
expected	values.	Validation	matcher	add	powerful	assertion	functionality	on	top	of	that.
You	just	can	use	the	predefined	validation	matcher	functionalities	in	order	to	perform
more	complex	assertions	like	contains	or	isNumber	in	your	validation	statements.

The	following	sections	describe	the	Citrus	default	validation	matcher	implementations
that	are	ready	for	usage.	The	matcher	implementations	should	cover	the	basic
assertions	on	character	sequences	and	numbers.	Of	course	you	can	add	custom
validation	matcher	implementations	in	order	to	meet	your	very	specific	validation
assertions,	too.

First	of	all	let	us	have	a	look	at	a	validation	matcher	statement	in	action	so	we
understand	how	to	use	them	in	a	test	case.

<message>
				<payload>
								<RequestMessage>
												<MessageBody>
																<Customer>
																				<Id>@greaterThan(0)@</Id>
																				<Name>@equalsIgnoreCase('foo')@</Name>
																</Customer>
												</MessageBody>
								</RequestMessage>
				</payload>
</message>

The	listing	above	describes	a	normal	message	validation	block	inside	a	receive	test
action.	We	use	some	inline	message	payload	template	as	CDATA.	As	you	know	Citrus
will	compare	the	actual	message	payload	to	this	expected	template	in	DOM	tree
comparison.	In	addition	to	that	you	can	simply	include	validation	matcher	statements.
The	message	element	Id	is	automatically	validated	to	be	a	number	greater	than	zero
and	the	Name	character	sequence	is	supposed	to	match	'foo'	ignoring	case	spelling
considerations.

Citrus	Reference	Guide

444Validation	Matchers



Please	note	the	special	validation	matcher	syntax.	The	statements	are	surrounded	with
'@'	markers	and	are	identified	by	some	unique	name.	The	optional	parameters	passed
to	the	matcher	implementation	state	the	expected	values	to	match.

Tip	You	can	use	validation	matcher	with	all	validation	mechanisms	-	not	only	with	XML
validation.	Plaintext,	JSON,	SQL	result	set	validation	are	also	supported.

A	set	of	validation	matcher	implementations	is	usually	combined	to	a	validation	matcher
library.	The	library	has	a	prefix	that	will	identify	the	validation	matcher	inside	the	test
case.	The	default	test	framework	validation	matcher	library	uses	a	default	prefix	(citrus).
You	can	write	your	own	validation	matcher	library	using	your	own	prefix	in	order	to
extend	the	test	framework	functionality	whenever	you	want.

The	library	is	built	in	the	Spring	configuration	and	contains	a	set	of	validation	matcher
that	are	of	public	use.

<citrus:validation	matcher-library	id="testMatcherLibrary"	prefix="foo:">
						<citrus:matcher	name="isNumber">	class="com.consol.citrus.validation.matcher.core.IsNumberValidationMatcher"/>
						<citrus:matcher	name="contains">	class="com.consol.citrus.validation.matcher.core.ContainsValidationMatcher"/>
						<citrus:matcher	name="customMatcher">	ref="customMatcherBean"/>
						...
						</citrus:validation	matcher-library>

As	you	can	see	the	library	defines	one	to	many	validation	matcher	members	either
referenced	as	normal	Spring	bean	or	by	its	implementing	Java	class	name.	Citrus
constructs	the	library	and	you	are	able	to	use	the	validation	matcher	in	your	test	case
with	the	leading	library	prefix	just	like	this:

@foo:isNumber()@
						@foo:contains()@
						@foo:customMatcher()@

Tip	You	can	add	custom	validation	matcher	implementations	and	custom	validation
matcher	libraries.	Just	use	a	custom	prefix	for	your	library.	The	default	Citrus	validation
matcher	library	uses	no	prefix.See	now	the	following	sections	describing	the	default
validation	validation	matcher	in	Citrus.

matchesXml()

Citrus	Reference	Guide

445Validation	Matchers



The	XML	validation	matcher	implementation	is	the	possibly	most	exciting	one,	as	we	can
validate	nested	XML	with	full	validation	power	(e.g.	ignoring	elements,	variable	support).
The	matcher	checks	a	nested	XML	fragment	to	compare	against	expected	XML.	For
instance	we	receive	following	XML	message	payload	for	validation:

<GetCustomerMessage>
						<CustomerDetails>
										<Id>5</Id>
										<Name>Christoph</Name>
										<Configuration><![CDATA[
												<config>
																<premium>true</premium>
																<last-login>2012-02-24T23:34:23</last-login>
																<link>http://www.citrusframework.org/customer/5</link>
												</config>
										]]></Configuration>
						</CustomerDetails>
</GetCustomerMessage>

As	you	can	see	the	message	payload	contains	some	configuration	as	nested	XML	data
in	a	CDATA	section.	We	could	validate	this	CDATA	section	as	static	character	sequence
comparison,	true.	But	the	timestamp	changes	its	value	continuously.	This	breaks	the
static	validation	for	CDATA	elements	in	XML.	Fortunately	the	new	XML	validation
matcher	provides	a	solution	for	us:

<message>
				<payload>
								<GetCustomerMessage>
												<CustomerDetails>
																<Id>5</Id>
																<Name>Christoph</Name>
																<Configuration>citrus:cdataSection('@matchesXml('<config>
																				<premium>${isPremium}</premium>
																				<last-login>@ignore@</last-login>
																				<link>http://www.citrusframework.org/customer/5</link>
																		</config>')@')</Configuration>
												</CustomerDetails>
								</GetCustomerMessage>
				</payload>
</message>

With	the	validation	matcher	you	are	able	to	validate	the	nested	XML	with	full	validation
power.	Ignoring	elements	is	possible	and	we	can	also	use	variables	in	our	control	XML.

Citrus	Reference	Guide

446Validation	Matchers



Note	Nested	CDATA	elements	within	other	CDATA	sections	are	not	allowed	by	XML
standard.	This	is	why	we	create	the	nested	CDATA	section	on	the	fly	with	the	function
cdataSection().###	equalsIgnoreCase()

This	matcher	implementation	checks	for	equality	without	any	case	spelling
considerations.	The	matcher	expects	a	single	parameter	as	the	expected	character
sequence	to	check	for.

<value>@equalsIgnoreCase('foo')@</value>

contains()

This	matcher	searches	for	a	character	sequence	inside	the	actual	value.	If	the	character
sequence	is	not	found	somewhere	the	matcher	starts	complaining.

<value>@contains('foo')@</value>

The	validation	matcher	also	exist	in	a	case	insensitive	variant.

<value>@containsIgnoreCase('foo')@</value>

startsWith()

The	matcher	implementation	asserts	that	the	given	value	starts	with	a	character
sequence	otherwise	the	matcher	will	arise	some	error.

<value>@startsWith('foo')@</value>

endsWith()

Ends	with	matcher	validates	a	value	to	end	with	a	given	character	sequence.

<value>@endsWith('foo')@</value>

matches()

You	can	check	a	value	to	meet	a	regular	expression	with	this	validation	matcher.	This	is
for	instance	very	useful	for	email	address	validation.

Citrus	Reference	Guide

447Validation	Matchers



<value>@matches('[a-z0-9]')@</value>

matchesDatePattern()

Date	values	are	always	difficult	to	check	for	equality.	Especially	when	you	have
millisecond	timestamps	to	deal	with.	Therefore	the	date	pattern	validation	matcher
should	have	some	improvement	for	you.	You	simply	validate	the	date	format	pattern
instead	of	checking	for	total	equality.

<value>@matchesDatePattern('yyyy-MM-dd')@</value>

The	example	listing	uses	a	date	format	pattern	that	is	expected.	The	actual	date	value	is
parsed	according	to	this	pattern	and	may	cause	errors	in	case	the	value	is	no	valid	date
matching	the	desired	format.

isNumber()

Checking	on	values	to	be	of	numeric	nature	is	essential.	The	actual	value	must	be	a
numeric	number	otherwise	the	matcher	raises	errors.	The	matcher	implementation	does
not	evaluate	any	parameters.

<value>@isNumber()@</value>

lowerThan()

This	matcher	checks	a	number	to	be	lower	than	a	given	threshold	value.

<value>@lowerThan(5)@</value>

greaterThan()

The	matcher	implementation	will	check	on	numeric	values	to	be	greater	than	a	minimum
value.

<value>@greaterThan(5)@</value>

isWeekday()

Citrus	Reference	Guide

448Validation	Matchers



The	matcher	works	on	date	values	and	checks	that	a	given	date	evaluates	to	the
expected	day	of	the	week.	The	user	defines	the	expected	day	by	its	name	in	uppercase
characters.	The	matcher	fails	in	case	the	given	date	is	another	week	day	than	expected.

<someDate>@isWeekday('MONDAY')@</someDate>

Possible	values	for	the	expected	day	of	the	week	are:	MONDAY,	TUESDAY,
WEDNESDAY,	THURSDAY,	FRIDAY,	SATURDAY	or	SUNDAY.

The	field	value	has	to	be	a	date	value	otherwise	the	matcher	will	fail	to	parse	the	date.
The	matcher	requires	a	date	format	which	is	dd.MM.yyyy	by	default.	You	can	change
this	date	format	as	follows:

<someDate>@isWeekday(MONDAY('yyyy-MM-dd'))@</someDate>

Now	the	matcher	uses	the	custom	date	format	in	order	to	parse	the	date	value	for
evaluation.	The	validation	matcher	also	works	with	date	time	values.	In	this	case	you
have	to	give	a	valid	date	time	format	respectively	(e.g.	FRIDAY('yyyy-MM-
dd'T'hh:mm:ss')).

variable()

This	is	a	very	special	validation	matcher.	Instead	of	performing	a	validation	logic	you	can
save	the	actual	value	passed	to	the	validation	matcher	as	new	test	variable.	This	comes
very	handy	as	you	can	use	the	matcher	wherever	you	want:	JSON	message	payloads,
XML	message	payloads,	headers	and	so	on.

<value>@variable('foo')@</value>

The	validation	matcher	creates	a	new	variable	foo	with	the	actual	element	value	as
variable	value.	When	leaving	out	the	control	value	the	field	name	itself	is	used	as
variable	name.

<date>@variable()@</date>

This	creates	a	new	variable	date	with	the	actual	element	value	as	variable	value.

dateRange()

Citrus	Reference	Guide

449Validation	Matchers



The	matcher	works	on	date	values	and	checks	that	a	given	date	is	within	the	expected
date	range.	The	user	defines	the	expected	date	range	by	specifying	a	from-date,	a	to-
date	and	optionally	a	date	format.	The	matcher	fails	when	the	given	date	lies	outside	the
expected	date	range.

<someDate>@dateRange('01-12-2015',	'31-12-2015',	'dd-MM-yyyy')@</someDate>

Possible	valid	values	would	be	'some	date'	>=	'01-12-2015'	and	'some	date'	<=	'31-12-
2015'

The	date-format	is	optional	and	when	omitted	it	is	assumed	that	all	dates	match	the
default	date	format	yyyy-MM-dd	.	When	specifying	a	custom	date	format	use	java's	date
format	as	a	reference	for	valid	date	formats.	Only	dates	were	used	in	the	example	above
but	we	could	just	as	easily	used	date	and	time	as	shown	in	the	example	below

<someDate>@dateRange('2015.12.01	07:00:00',	'2015.12.01	19:00:00',	'yyyy.MM.dd	HH:mm:ss')@</someDate

assertThat()

Hamcrest	is	a	very	powerful	matcher	library	with	extraordinary	matcher	implementations.
You	can	use	Hamcrest	matchers	also	as	Citrus	validation	matcher.

<someValue>@assertThat(equalTo(foo))@</someValue>

In	the	listing	above	we	are	using	the	equalTo()	matcher.	All	Hamcrest	matchers	are
surrounded	by	a	assertThat	expression.	You	are	able	to	combine	several	Hamcrest
matchers	then	in	order	to	construct	very	powerful	validation	logic.	See	the	following
examples	on	what	is	possible	then:

Citrus	Reference	Guide

450Validation	Matchers



<someValue>@assertThat(equalTo(value))@</someValue>
<someValue>@assertThat(not(equalTo(other))@</someValue>
<someValue>@assertThat(is(not(other))@</someValue>
<someValue>@assertThat(not(is(other))@</someValue>
<someValue>@assertThat(equalToIgnoringCase(VALUE)@</someValue>
<someValue>@assertThat(containsString(lue)@</someValue>
<someValue>@assertThat(not(containsString(other))@</someValue>
<someValue>@assertThat(startsWith(val)@</someValue>
<someValue>@assertThat(endsWith(lue)@</someValue>
<someValue>@assertThat(anyOf(startsWith(val),	endsWith(lue))@</someValue>
<someValue>@assertThat(allOf(startsWith(val),	endsWith(lue))@</someValue>
<someValue>@assertThat(isEmptyString()@</someValue>
<someValue>@assertThat(not(isEmptyString())@</someValue>
<someValue>@assertThat(isEmptyOrNullString()@</someValue>
<someValue>@assertThat(nullValue()@</someValue>
<someValue>@assertThat(notNullValue()@</someValue>
<someValue>@assertThat(empty()@</someValue>
<someValue>@assertThat(not(empty())@</someValue>
<someValue>@assertThat(greaterThan(4)@</someValue>
<someValue>@assertThat(allOf(greaterThan(4),	lessThan(6),	not(lessThan(5)))@</someValue>
<someValue>@assertThat(is(not(greaterThan(5)))@</someValue>
<someValue>@assertThat(greaterThanOrEqualTo(5)@</someValue>
<someValue>@assertThat(lessThan(5)@</someValue>
<someValue>@assertThat(not(lessThan(1))@</someValue>
<someValue>@assertThat(lessThanOrEqualTo(4)@</someValue>
<someValue>@assertThat(hasSize(5))@</someValue>

Citrus	will	automatically	perform	validation	matchers	on	the	element	value.	Only	if	all
matchers	are	satisfied	the	validation	will	pass.

Citrus	Reference	Guide

451Validation	Matchers



Data	dictionaries
Data	dictionaries	in	Citrus	provide	a	new	way	to	manipulate	message	payload	data
before	a	message	is	sent	or	received.	The	dictionary	defines	a	set	of	keys	and
respective	values.	Just	like	every	other	dictionary	it	is	used	to	translate	things.	In	our
case	we	translate	message	data	elements.

You	can	translate	common	message	elements	that	are	used	widely	throughout	your
domain	model.	As	Citrus	deals	with	different	types	of	message	data	(e.g.	XML,	JSON)
we	have	different	dictionary	implementations	that	are	described	in	the	next	sections.

XML	data	dictionaries

XML	data	dictionaries	do	apply	to	XML	message	format	payloads,	of	course.	In	general
we	add	a	dictionary	to	the	basic	Citrus	Spring	application	context	in	order	to	make	the
dictionary	visible	to	all	test	cases:

<citrus:xml-data-dictionary	id="nodeMappingDataDictionary">
		<citrus:mappings>
				<citrus:mapping	path="TestMessage.MessageId"	value="${messageId}"/>
				<citrus:mapping	path="TestMessage.CorrelationId"	value="${correlationId}"/>
				<citrus:mapping	path="TestMessage.User"	value="Christoph"/>
				<citrus:mapping	path="TestMessage.TimeStamp"	value="citrus:currentDate()"/>
		</citrus:mappings>
</citrus:xml-data-dictionary>

As	you	can	see	the	dictionary	is	nothing	but	a	normal	Spring	bean	definition.	The
NodeMappingDataDictionary	implementation	receives	a	map	of	key	value	pairs	where
the	key	is	a	message	element	path	expression.	For	XML	payloads	the	message	element
tree	is	traversed	so	the	path	expression	is	built	for	an	exact	message	element	inside	the
payload.	If	matched	the	respective	value	is	set	accordingly	through	the	dictionary.

Besides	defining	the	dictionary	key	value	mappings	as	property	map	inside	the	bean
definition	we	can	extract	the	mapping	data	to	an	external	file.

<citrus:xml-data-dictionary	id="nodeMappingDataDictionary">
		<citrus:mapping-file	path="classpath:com/consol/citrus/sample.dictionary"/>
</citrus:xml-data-dictionary>

The	mapping	file	content	just	looks	like	a	normal	property	file	in	Java:

Citrus	Reference	Guide

452Data-dictionary



TestMessage.MessageId=${messageId}
TestMessage.CorrelationId=${correlationId}
TestMessage.User=Christoph
TestMessage.TimeStamp=citrus:currentDate()

You	can	set	any	message	element	value	inside	the	XML	message	payload.	The	path
expression	also	supports	XML	attributes.	Just	use	the	attribute	name	as	last	part	of	the
path	expression.	Let	us	have	a	closer	look	at	a	sample	XML	message	payload	with
attributes:

<TestMessage>
		<User	name="Christoph"	age="18"/>
</TestMessage>

With	this	sample	XML	payload	given	we	can	access	the	attributes	in	the	data	dictionary
as	follows:

<citrus:mapping	path="TestMessage.User.name"	value="${userName}"/>
<citrus:mapping	path="TestMessage.User.age"	value="${userAge}"/>

The	NodeMappingDataDictionary	implementation	is	easy	to	use	and	fits	the	basic
needs	for	XML	data	dictionaries.	The	message	element	path	expressions	are	very
simple	and	do	fit	basic	needs.	However	when	more	complex	XML	payloads	apply	for
translation	we	might	reach	the	boundaries	here.

For	more	complex	XML	message	payloads	XPath	data	dictionaries	are	very	effective:

<citrus:xpath-data-dictionary	id="xpathMappingDataDictionary">
		<citrus:mappings>
				<citrus:mapping	path="//TestMessage/MessageId"	value="${messageId}"/>
				<citrus:mapping	path="//TestMessage/CorrelationId"	value="${correlationId}"/>
				<citrus:mapping	path="//TestMessage/User"	value="Christoph"/>
				<citrus:mapping	path="//TestMessage/User/@id"	value="123"/>
				<citrus:mapping	path="//TestMessage/TimeStamp"	value="citrus:currentDate()"/>
		</citrus:mappings>
</citrus:xpath-data-dictionary>

As	expected	XPath	mapping	expressions	are	way	more	powerful	and	can	also	handle
very	complex	scenarios	with	XML	namespaces,	attributes	and	node	lists.	Just	like	the
node	mapping	dictionary	the	XPath	mapping	dictionary	does	also	support	variables,
functions	and	an	external	mapping	file.

Citrus	Reference	Guide

453Data-dictionary



XPath	works	fine	with	namespaces.	In	general	it	is	good	practice	to	define	a	namespace
context	where	you	map	namespace	URI	values	with	prefix	values.	So	your	XPath
expression	is	always	exact	and	evaluation	is	strict.	In	Citrus	the
NamespaceContextBuilder	which	is	also	added	as	normal	Spring	bean	to	the
application	context	manages	namespaces	used	in	your	XPath	expressions.	See	our
XML	and	XPAth	chapters	in	this	documentation	for	detailed	description	how	to
accomplish	fail	safe	XPath	expressions	with	namespaces.

This	completes	the	XML	data	dictionary	usage	in	Citrus.	Later	on	we	will	see	some	more
advanced	data	dictionary	scenarios	where	we	will	discuss	the	usage	of	dictionary
scopes	and	mapping	strategies.	But	before	that	let	us	have	a	look	at	other	message
formats	like	JSON	messages.

JSON	data	dictionaries

JSON	data	dictionaries	complement	with	XML	data	dictionaries.	As	usual	we	have	to
add	the	JSON	data	dictionary	to	the	basic	Spring	application	context	first.	Once	this	is
done	the	data	dictionary	automatically	applies	for	all	JSON	message	payloads	in	Citrus.
This	means	that	all	JSON	messages	sent	and	received	get	translated	with	the	JSON
data	dictionary	implementation.

Citrus	uses	message	types	in	order	to	evaluate	which	data	dictionary	may	fit	to	the
message	that	is	currently	processed.	As	usual	you	can	define	the	message	type	directly
in	your	test	case	as	attribute	inside	the	sending	and	receiving	message	action.

Let	us	see	a	simple	dictionary	for	JSON	data:

<citrus:json-data-dictionary	id="jsonMappingDataDictionary">
		<citrus:mappings>
				<citrus:mapping	path="TestMessage.MessageId"	value="${messageId}"/>
				<citrus:mapping	path="TestMessage.CorrelationId"	value="${correlationId}"/>
				<citrus:mapping	path="TestMessage.User"	value="Christoph"/>
				<citrus:mapping	path="TestMessage.TimeStamp"	value="citrus:currentDate()"/>
		</citrus:mappings>
</citrus:json-data-dictionary>

The	message	path	expressions	do	look	very	similar	to	those	used	in	XML	data
dictionaries.	Here	the	path	expression	keys	do	apply	to	the	JSON	object	graph.	See	the
following	sample	JSON	data	which	perfectly	applies	to	the	dictionary	expressions	above.

Citrus	Reference	Guide

454Data-dictionary



{"TestMessage":	{
		"MessageId":	"1122334455",
		"CorrelationId":	"100000001",
		"User":	"Christoph",
		"TimeStamp":	1234567890	}
}

The	path	expressions	will	match	a	very	specific	message	element	inside	the	JSON
object	graph.	The	dictionary	will	automatically	set	the	message	element	values	then.	The
path	expressions	are	easy	to	use	as	you	can	traverse	the	JSON	object	graph	very	easy.

Of	course	the	data	dictionary	does	also	support	test	variables,	functions.	Also	very
interesting	is	the	usage	of	JSON	arrays.	A	JSON	array	element	is	referenced	in	a	data
dictionary	like	this:

<citrus:mapping	path="TestMessage.Users[0]"	value="Christoph"/>
		<citrus:mapping	path="TestMessage.Users[1]"	value="Julia"/>

The	Users	element	is	a	JSON	array,	so	we	can	access	the	elements	with	index.	Nesting
JSON	objects	and	arrays	is	also	supported	so	you	can	also	handle	more	complex	JSON
data.

Dictionary	scopes

Now	that	we	have	learned	how	to	add	data	dictionaries	to	Citrus	we	need	to	discuss
some	advanced	topics.	Data	dictionary	scopes	do	define	the	boundaries	where	the
dictionary	may	apply.	By	default	data	dictionaries	are	global	scope	dictionaries.	This
means	that	the	data	dictionary	applies	to	all	messages	sent	and	received	with	Citrus.	Of
course	message	types	are	considered	so	XML	data	dictionaries	do	only	apply	to	XML
message	types.	However	global	scope	dictionaries	will	be	activated	throughout	all	test
cases	and	actions.

You	can	overwrite	the	dictionary	scope.	For	instance	in	order	to	use	an	explicit	scope.
When	this	is	done	the	dictionary	wil	not	apply	automatically	but	the	user	has	to	explicitly
set	the	data	dictionary	in	sending	or	receiving	test	action.	This	way	you	can	activate	the
dictionary	to	a	very	special	set	of	test	actions.

<citrus:xml-data-dictionary	id="specialDataDictionary"	global-scope="false">
		<citrus:mapping-file	path="classpath:com/consol/citrus/sample.dictionary"/>
</citrus:xml-data-dictionary>

Citrus	Reference	Guide

455Data-dictionary



We	set	the	global	scope	property	to	false	so	the	dictionary	is	handled	in	explicit	scope.
This	means	that	you	have	to	set	the	data	dictionary	explicitly	in	your	test	actions:

XML	DSL

<send	endpoint="myEndpoint">
		<message	data-dictionary="specialDataDictionary">
				<payload>
						<TestMessage>Hello	Citrus"/TestMessage>
				</payload>
		</message>
</send>

Java	DSL	designer	and	runner

@CitrusTest
public	void	dictionaryTest()	{
				send(myEndpoint)
								.payload("<TestMessage>Hello	Citrus"/TestMessage>")
								.dictionary("specialDataDictionary");
}

The	sample	above	is	a	sending	test	action	with	an	explicit	data	dictionary	reference	set.
Before	sending	the	message	the	dictionary	is	asked	for	translation.	So	all	matching
message	element	values	will	be	set	by	the	dictionary	accordingly.	Other	global	data
dictionaries	do	also	apply	for	this	message	but	the	explicit	dictionary	will	always
overwrite	the	message	element	values.

Path	mapping	strategies

Another	advanced	topic	about	data	dictionaries	is	the	path	mapping	strategy.	When
using	simple	path	expressions	the	default	strategy	is	always	EXACT_MATCH	.	This
means	that	the	path	expression	has	to	evaluate	exactly	to	a	message	element	within	the
payload	data.	And	only	this	exact	message	element	is	translated.

You	can	set	your	own	path	mapping	strategy	in	order	to	change	this	behavior.	For
instance	another	mapping	strategy	would	be	STARS_WITH	.	All	elements	are	translated
that	start	with	a	certain	path	expression.	Let	us	clarify	this	with	an	example:

Citrus	Reference	Guide

456Data-dictionary



<citrus:xml-data-dictionary	id="nodeMappingDataDictionary"	mapping-strategy="STARTS_WITH">
		<citrus:mappings>
				<citrus:mapping	path="TestMessage.Property"	value="citrus:randomString()"/>
		</citrus:mappings>
</citrus:xml-data-dictionary>

Now	with	the	path	mapping	strategy	set	to	STARS_WITH	all	message	element	path
expressions	starting	with	TestMessage.Property	will	find	translation	in	this	dictionary.
Following	sample	message	payload	would	be	translated	accordingly:

<TestMessage>
				<Property>XXX</Property>
				<PropertyName>XXX</PropertyName>
				<PropertyValue>XXX</PropertyValue>
		</TestMessage>

All	child	elements	of	TestMessage	starting	with	Property	will	be	translated	with	this
data	dictionary.	In	the	resulting	message	payload	Citrus	will	use	a	random	string	as
value	for	these	elements	as	we	used	the	citrus:randomString()	function	in	the
dictionary	mapping.

The	next	mapping	strategy	would	be	ENDS_WITH	.	No	surprises	here	-	this	mapping
strategy	looks	for	message	elements	that	end	with	a	certain	path	expression.	Again	a
simple	example	will	clarify	this	for	you.

<citrus:xml-data-dictionary	id="nodeMappingDataDictionary"	mapping-strategy="ENDS_WITH">
		<citrus:mappings>
				<citrus:mapping	path="Id"	value="citrus:randomNumber()"/>
		</citrus:mappings>
</citrus:xml-data-dictionary>

Again	let	us	see	some	sample	message	payload	for	this	dictionary	usage:

Citrus	Reference	Guide

457Data-dictionary



<TestMessage>
		<RequestId>XXX</RequestId>
		<Properties>
				<Property>
						<PropertyId>XXX</PropertyId>
						<PropertyValue>XXX</PropertyValue>
				</Property>
				<Property>
						<PropertyId>XXX</PropertyId>
						<PropertyValue>XXX</PropertyValue>
				</Property>
		</Properties>
		</TestMessage>

In	this	sample	all	message	elements	ending	with	Id	would	be	translated	with	a	random
number.	No	matter	where	in	the	message	tree	the	elements	are	located.	This	is	quite
useful	but	also	very	powerful.	So	be	careful	to	use	this	strategy	in	global	data
dictionaries	as	it	may	translate	message	elements	that	you	would	not	expect	in	the	first
place.

Citrus	Reference	Guide

458Data-dictionary



Test	actors
The	concept	of	test	actors	came	to	our	mind	when	reusing	Citrus	test	cases	in	end-to-
end	test	scenarios.	Usually	Citrus	simulates	all	interface	partners	within	a	test	case
which	is	great	for	continuous	integration	testing.	In	end-to-end	integration	test	scenarios
some	of	our	interface	partners	may	be	real	and	alive.	Some	other	interface	partners	still
require	Citrus	simulation	logic.

It	would	be	great	if	we	could	reuse	the	Citrus	integration	tests	in	this	test	setup	as	we
have	the	complete	test	flow	of	messages	available	in	the	Citrus	tests.	We	only	have	to
remove	the	simulated	send/receive	actions	for	those	real	interface	partner	applications
which	are	available	in	our	end-to-end	test	setup.

With	test	actors	we	have	the	opportunity	to	link	test	actions,	in	particular	send/receive
message	actions,	to	a	test	actor.	The	test	actor	can	be	disabled	in	configuration	very
easy	and	following	from	that	all	linked	send/receive	actions	are	disabled,	too.	One	Citrus
test	case	is	runnable	with	different	test	setup	scenarios	where	different	partner
applications	on	the	one	hand	are	available	as	real	life	applications	and	on	the	other	hand
my	require	simulation.

Define	test	actors

First	thing	to	do	is	to	define	one	or	more	test	actors	in	Citrus	configuration.	A	test	actor
represents	a	participating	party	(e.g.	interface	partner,	backend	application).	We	write
the	test	actors	into	the	central	Spring	application	context.	We	can	use	a	special	Citrus
Spring	XML	schema	so	definitions	are	quite	easy:

<citrus:actor	id="travelagency"	name="TRAVEL_AGENCY"/>
<citrus:actor	id="royalairline"	name="ROYAL_AIRLINE"/>
<citrus:actor	id="smartariline"	name="SMART_AIRLINE"/>

The	listing	above	defines	three	test	actors	participating	in	our	test	scenario.	A	travel
agency	application	which	is	simulated	by	Citrus	as	a	calling	client,	the	smart	airline
application	and	a	royal	airline	application.	Now	we	have	the	test	actors	defined	we	can
link	those	to	message	sender/receiver	instances	and/or	test	actions	within	our	test	case.

Link	test	actors

Citrus	Reference	Guide

459Test-actors



We	need	to	link	the	test	actors	to	message	send	and	receive	actions	in	our	test	cases.
We	can	do	this	in	two	different	ways.	First	we	can	set	a	test	actor	reference	on	a
message	sender	and	message	receiver.

<citrus-jms:sync-endpoint	id="royalAirlineBookingEndpoint"
								destination-name="${royal.airline.request.queue}"
								actor="royalairline"/>

Now	all	test	actions	that	are	using	these	message	receiver	and	message	sender
instances	are	linked	to	the	test	actor.	In	addition	to	that	you	can	also	explicitly	link	test
actions	to	test	actors	in	a	test.

<receive	endpoint="royalAirlineBookingEndpoint"	actor="royalairline">
				<message>
								[...]
				</message>
</receive>

<send	endpoint="royalAirlineBookingEndpoint"	actor="royalairline">
				<message>
								[...]
				</message>
</send>

This	explicitly	links	test	actors	to	test	actions	so	you	can	decide	which	link	should	be	set
without	having	to	rely	on	the	message	receiver	and	sender	configuration.

Disable	test	actors

Usually	both	airline	applications	are	simulated	in	our	integration	tests.	But	this	time	we
want	to	change	this	by	introducing	a	royal	airline	application	which	is	online	as	a	real
application	instance.	So	we	need	to	skip	all	simulated	message	interactions	for	the	royal
airline	application	in	our	Citrus	tests.	This	is	easy	as	we	have	linked	all	send/receive
actions	to	one	of	our	test	actors.	So	wen	can	disable	the	royal	airline	test	actor	in	our
configuration:

<citrus:actor	id="royalairline"	name="ROYAL_AIRLINE"	disabled="true"/>

Any	test	action	linked	to	this	test	actor	is	now	skipped.	As	we	introduced	a	real	royal
airline	application	in	our	test	scenario	the	requests	get	answered	and	the	test	should	be
successful	within	this	end-to-end	test	scenario.	The	travel	agency	and	the	smart	airline

Citrus	Reference	Guide

460Test-actors



still	get	simulated	by	Citrus.	This	is	a	perfect	way	of	reusing	integration	tests	in	different
test	scenarios	where	you	enable	and	disable	simulated	participating	parties	in	Citrus.

Important	Server	ports	may	be	of	special	interest	when	dealing	with	different	test
scenarios.	You	may	have	to	also	disable	a	Citrus	embedded	Jetty	server	instance	in
order	to	avoid	port	binding	conflicts	and	you	may	have	to	wire	endpoint	URIs	accordingly
before	executing	a	test.	The	real	life	application	may	not	use	the	same	port	and	ip	as	the
Citrus	embedded	servers	for	simulation.

Citrus	Reference	Guide

461Test-actors



Test	suite	actions
A	test	framework	should	also	provide	the	functionality	to	do	some	work	before	and	after
the	test	run.	You	could	think	of	preparing/deleting	the	data	in	a	database	or
starting/stopping	a	server	in	this	section	before/after	a	test	run.	These	tasks	fit	best	into
the	initialization	and	cleanup	phases	of	Citrus.

Note	It	is	important	to	notice	that	the	Citrus	configuration	components	that	we	are	going
to	use	in	the	next	section	belong	to	a	separate	XML	namespace	citrus-test	.	We	have	to
add	the	namespace	declaration	to	the	XML	root	element	of	our	XML	configuration	file
accordingly.

<spring:beans	xmlns="http://www.citrusframework.org/schema/testcase"
								xmlns:spring="http://www.springframework.org/schema/beans"
								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
								xmlns:citrus-test="http://www.citrusframework.org/schema/testcase"
								xsi:schemaLocation="
								http://www.springframework.org/schema/beans
								http://www.springframework.org/schema/beans/spring-beans.xsd
								http://www.citrusframework.org/schema/testcase
								http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd">

								[...]

								</beans>

Before	suite

You	can	influence	the	behavior	of	a	test	run	in	the	initialization	phase	actually	before	the
tests	are	executed.	See	the	next	code	example	to	find	out	how	it	works	with	actions	that
take	place	before	the	first	test	is	executed:

XML	Config

<citrus:before-suite	id="actionsBeforeSuite">
				<citrus:actions>
								<!--	list	of	actions	before	suite	-->
				</citrus:actions>
</citrus:before-suite>

Citrus	Reference	Guide

462Test-suite



The	Citrus	configuration	component	holds	a	list	of	Citrus	test	actions	that	get	executed
before	the	test	suite	run.	You	can	add	all	Citrus	test	actions	here	as	you	would	do	in	a
normal	test	case	definition.

XML	Config

<citrus:before-suite	id="actionsBeforeSuite">
				<citrus:actions>
								<citrus-test:sql	dataSource="testDataSource"/>
												<citrus-test:statement">CREATE	TABLE	PERSON	(ID	integer,	NAME	char(250))</citrus-test:statement
								</citrus-test:sql>
				</citrus:actions>
</citrus:before-suite>

Note	that	we	must	use	the	Citrus	test	case	namespace	for	the	nested	test	action
definitions.	We	access	the	database	and	create	a	table	PERSON	which	is	obviously
needed	in	our	test	cases.	You	can	think	of	several	actions	here	to	prepare	the	database
for	instance.

Tip	Citrus	offers	special	startup	and	shutdown	actions	that	may	start	and	stop	server
implementations	automatically.	This	might	be	helpful	when	dealing	with	Http	servers	or
WebService	containers	like	Jetty.	You	can	also	think	of	starting/stopping	a	JMS	broker
before	a	test	run.

So	far	we	have	used	XML	DSL	actions	in	before	suite	configuration.	Now	if	you
exclusively	want	to	use	Java	DSL	you	can	do	the	same	with	adding	a	custom	class	that
extends	TestDesignerBeforeSuiteSupport	or	TestRunnerBeforeSuiteSupport	.

Java	DSL	designer

public	class	MyBeforeSuite	extends	TestDesignerBeforeSuiteSupport	{
				@Override
				public	void	beforeSuite(TestDesigner	designer)	{
								designer.echo("This	action	should	be	executed	before	suite");
				}
}

The	custom	implementation	extends	TestDesignerBeforeSuiteSupport	and	therefore
has	to	implement	the	method	beforeSuite	.	This	method	add	some	Java	DSL	designer
logic	to	the	before	suite.	The	designer	instance	is	injected	as	method	argument.	You	can

Citrus	Reference	Guide

463Test-suite



use	all	Java	DSL	methods	to	this	designer	instance.	Citrus	will	automatically	find	and
execute	the	before	suite	logic.	We	only	need	to	add	this	class	to	the	Spring	bean
application	context.	You	can	do	this	explicitly:

<bean	id="myBeforeSuite"	class="my.company.citrus.MyBeforeSuite"/>

Of	course	you	can	also	use	other	Spring	bean	mechanisms	such	as	component-scans
here	too.	The	respective	test	runner	implementation	extends	the
TestRunnerBeforeSuiteSupport	and	gets	a	test	runner	instance	as	method	argument
injected.

Java	DSL	runner

public	class	MyBeforeSuite	extends	TestRunnerBeforeSuiteSupport	{
				@Override
				public	void	beforeSuite(TestRunner	runner)	{
								runner.echo("This	action	should	be	executed	before	suite");
				}
}

You	can	have	many	before-suite	configuration	components	with	different	ids	in	a	Citrus
project.	By	default	the	containers	are	always	executed.	But	you	can	restrict	the	after
suite	action	container	execution	by	defining	a	suite	name	or	test	group	names	that
should	match	accordingly:

XML	Config

<citrus:before-suite	id="actionsBeforeSuite"	suites="databaseSuite"	groups="e2e">
				<citrus:actions>
								<citrus-test:sql	dataSource="testDataSource"/>
												<citrus-test:statement">CREATE	TABLE	PERSON	(ID	integer,	NAME	char(250))</citrus-test:statement
								</citrus-test:sql>
				</citrus:actions>
</citrus:before-suite>

The	above	before	suite	container	is	only	executed	with	the	test	suite	called
databaseSuite	or	when	the	test	group	e2e	is	defined.	Test	groups	and	suite	names	are
only	supported	when	using	the	TestNG	unit	test	framework.	Unfortunately	JUnit	does	not
allow	to	hook	into	suite	execution	as	easily	as	TestNG	does.	This	is	why	after	suite
action	containers	are	not	restricted	in	execution	when	using	Citrus	with	the	JUnit	test
framework.

Citrus	Reference	Guide

464Test-suite



You	can	define	multiple	suite	names	and	test	groups	with	comma	delimited	strings	as
attribute	values.

When	using	the	Java	DSL	before	suite	support	you	can	set	suite	names	and	test	group
filters	by	simply	calling	the	respective	setter	methods	in	your	custom	implementation.

<bean	id="myBeforeSuite"	class="my.company.citrus.MyBeforeSuite">
		<property	name="suiteNames">
				<list>
						<value>databaseSuite</value>
				</list>
		</property>
		<property	name="testGroups">
				<list>
						<value>e2e</value>
				</list>
		</property>
</bean>

After	suite

A	test	run	may	require	the	test	environment	to	be	clean.	Therefore	it	is	a	good	idea	to
purge	all	JMS	destinations	or	clean	up	the	database	after	the	test	run	in	order	to	avoid
errors	in	follow-up	test	runs.	Just	like	we	prepared	some	data	in	actions	before	suite	we
can	clean	up	the	test	run	in	actions	after	the	tests	are	finished.	The	Spring	bean	syntax
here	is	not	significantly	different	to	those	in	before	suite	section:

XML	Config

<citrus:after-suite	id="actionsAfterSuite">
				<citrus:actions>
								<!--	list	of	actions	after	suite	-->
				</citrus:actions>
</citrus:after-suite>

Again	we	give	the	after	suite	configuration	component	a	unique	id	within	the
configuration	and	put	one	to	many	test	actions	as	nested	configuration	elements	to	the
list	of	actions	executed	after	the	test	suite	run.

XML	Config

Citrus	Reference	Guide

465Test-suite



<citrus:after-suite	id="actionsAfterSuite">
				<citrus:actions>
								<citrus-test:sql	dataSource="testDataSource"/>
												<citrus-test:statement">DELETE	FROM	TABLE	PERSON</citrus-test:statement>
								</citrus-test:sql>
				</citrus:actions>
</citrus:after-suite>

We	have	to	use	the	Citrus	test	case	XML	namespace	when	defining	nested	test	actions
in	after	suite	list.	We	just	remove	all	data	from	the	database	so	we	do	not	influence
follow-up	tests.	Quite	simple	isn't	it!?

Of	course	we	can	also	define	Java	DSL	after	suite	actions.	You	can	do	this	by	adding	a
custom	class	that	extends	TestDesignerAfterSuiteSupport	or
TestRunnerAfterSuiteSupport	.

Java	DSL	designer

public	class	MyAfterSuite	extends	TestDesignerAfterSuiteSupport	{
				@Override
				public	void	afterSuite(TestDesigner	designer)	{
								designer.echo("This	action	should	be	executed	after	suite");
				}
}

The	custom	implementation	extends	TestDesignerAfterSuiteSupport	and	therefore
has	to	implement	the	method	afterSuite	.	This	method	add	some	Java	DSL	designer
logic	to	the	after	suite.	The	designer	instance	is	injected	as	method	argument.	You	can
use	all	Java	DSL	methods	to	this	designer	instance.	Citrus	will	automatically	find	and
execute	the	after	suite	logic.	We	only	need	to	add	this	class	to	the	Spring	bean
application	context.	You	can	do	this	explicitly:

<bean	id="myAfterSuite"	class="my.company.citrus.MyAfterSuite"/>

Of	course	you	can	also	use	other	Spring	bean	mechanisms	such	as	component-scans
here	too.	The	respective	test	runner	implementation	extends	the
TestRunnerAfterSuiteSupport	and	gets	a	test	runner	instance	as	method	argument
injected.

Java	DSL	runner

Citrus	Reference	Guide

466Test-suite



public	class	MyAfterSuite	extends	TestRunnerAfterSuiteSupport	{
				@Override
				public	void	afterSuite(TestRunner	runner)	{
								runner.echo("This	action	should	be	executed	after	suite");
				}
}

You	can	have	many	after-suite	configuration	components	with	different	ids	in	a	Citrus
project.	By	default	the	containers	are	always	executed.	But	you	can	restrict	the	after
suite	action	container	execution	by	defining	a	suite	name	or	test	group	names	that
should	match	accordingly:

XML	Config

<citrus:after-suite	id="actionsAfterSuite"	suites="databaseSuite"	groups="e2e">
				<citrus:actions>
								<citrus-test:sql	dataSource="testDataSource"/>
												<citrus-test:statement">DELETE	FROM	TABLE	PERSON</citrus-test:statement>
								</citrus-test:sql>
				</citrus:actions>
</citrus:after-suite>

The	above	after	suite	container	is	only	executed	with	the	test	suite	called	databaseSuite
or	when	the	test	group	e2e	is	defined.	Test	groups	and	suite	names	are	only	supported
when	using	the	TestNG	unit	test	framework.	Unfortunately	JUnit	does	not	allow	to	hook
into	suite	execution	as	easily	as	TestNG	does.	This	is	why	after	suite	action	containers
are	not	restricted	in	execution	when	using	Citrus	with	the	JUnit	test	framework.

You	can	define	multiple	suite	names	and	test	groups	with	comma	delimited	strings	as
attribute	values.

When	using	the	Java	DSL	before	suite	support	you	can	set	suite	names	and	test	group
filters	by	simply	calling	the	respective	setter	methods	in	your	custom	implementation.

Citrus	Reference	Guide

467Test-suite



<bean	id="myAfterSuite"	class="my.company.citrus.MyAfterSuite">
		<property	name="suiteNames">
				<list>
						<value>databaseSuite</value>
				</list>
		</property>
		<property	name="testGroups">
				<list>
						<value>e2e</value>
				</list>
		</property>
</bean>

Before	test

Before	each	test	is	executed	it	also	might	sound	reasonable	to	purge	all	JMS	queues	for
instance.	In	case	a	previous	test	fails	some	messages	might	be	left	in	the	JMS	queues.
Also	the	database	might	be	in	dirty	state.	The	follow-up	test	then	will	be	confronted	with
these	invalid	messages	and	data.	Purging	all	JMS	destinations	before	a	test	is	therefore
a	good	idea.	Just	like	we	prepared	some	data	in	actions	before	suite	we	can	clean	up
the	data	before	a	test	starts	to	execute.

XML	Config

<citrus:before-test	id="defaultBeforeTest">
				<citrus:actions>
								<!--	list	of	actions	before	test	-->
				</citrus:actions>
</citrus:before-test>

The	before	test	configuration	component	receives	a	unique	id	and	a	list	of	test	actions
that	get	executed	before	a	test	case	is	started.	The	component	receives	usual	test	action
definitions	just	like	you	would	write	them	in	a	normal	test	case	definition.	See	the
example	below	how	to	add	test	actions.

XML	Config

Citrus	Reference	Guide

468Test-suite



<citrus:before-test	id="defaultBeforeTest">
				<citrus:actions>
												<citrus-test:echo>
														<citrus-test:message>This	is	executed	before	each	test!</citrus-test:message>
												</citrus-test:echo>
				</citrus:actions>
</citrus:before-test>

Note	that	we	must	use	the	Citrus	test	case	XML	namespace	for	the	nested	test	action
definitions.	You	have	to	declare	the	XML	namespaces	accordingly	in	your	configuration
root	element.	The	echo	test	action	is	now	executed	before	each	test	in	our	test	suite	run.
Also	notice	that	we	can	restrict	the	before	test	container	execution.	We	can	restrict
execution	based	on	the	test	name,	package	and	test	groups.	See	following	example	how
this	works:

XML	Config

<citrus:before-test	id="defaultBeforeTest"	test="*_Ok_Test"	package="com.consol.citrus.longrunning.*"
				<citrus:actions>
												<citrus-test:echo>
														<citrus-test:message>This	is	executed	before	each	test!</citrus-test:message>
												</citrus-test:echo>
				</citrus:actions>
</citrus:before-test>

The	above	before	test	component	is	only	executed	for	test	cases	that	match	the	name
pattern	*_Ok_Test	and	that	match	the	package	com.consol.citrus.longrunning.*	.
Also	we	could	just	use	the	test	name	pattern	or	the	package	name	pattern	exclusively.
And	the	execution	can	be	restricted	based	on	the	included	test	groups	in	our	test	suite
run.	This	enables	us	to	specify	before	test	actions	in	various	ways.	Of	course	you	can
have	multiple	before	test	configuration	components	at	the	same	time.	Citrus	will	pick	the
right	containers	and	put	it	to	execution	when	necessary.

When	using	the	Java	DSL	we	need	to	implement	the	before	test	logic	in	a	separate	class
that	extends	TestDesignerBeforeTestSupport	or	TestRunnerBeforeTestSupport

Java	DSL	designer

Citrus	Reference	Guide

469Test-suite



public	class	MyBeforeTest	extends	TestDesignerBeforeTestSupport	{
				@Override
				public	void	beforeTest(TestDesigner	designer)	{
								designer.echo("This	action	should	be	executed	before	each	test");
				}
}

As	you	can	see	the	class	implements	the	method	beforeTest	that	is	provided	with	a	test
designer	argument.	You	simply	add	the	before	test	actions	to	the	designer	instance	as
usual	by	calling	Java	DSL	methods	on	the	designer	object.	Citrus	will	automatically
execute	these	operations	before	each	test	is	executed.	The	same	logic	applies	to	the
test	runner	variation	that	extends	TestRunnerBeforeTestSupport	:

Java	DSL	runner

public	class	MyBeforeTest	extends	TestRunnerBeforeTestSupport	{
				@Override
				public	void	beforeTest(TestRunner	runner)	{
								runner.echo("This	action	should	be	executed	before	each	test");
				}
}

The	before	test	implementations	are	added	to	the	Spring	bean	application	context	for
general	activation.	You	can	do	this	either	as	explicit	Spring	bean	definition	or	via
package	component-scan.	Here	is	a	sample	for	adding	the	bean	implementation
explicitly	with	some	configuration

<bean	id="myBeforeTest"	class="my.company.citrus.MyBeforeTest">
		<property	name="packageNamePattern"	value="com.consol.citrus.e2e"></property>
</bean>

We	can	add	filter	properties	to	the	before	test	Java	DSL	actions	so	they	applied	to
specific	packages	or	test	name	patterns.	The	above	example	will	only	apply	to	tests	in
package	com.consol.citrus.e2e	.	Leave	these	properties	empty	for	default	actions	that
are	executed	before	all	tests.

After	test

The	same	logic	that	applies	to	the	before-test	configuration	component	can	be	done
after	each	test.	The	after-test	configuration	component	defines	test	actions	executed
after	each	test.	Just	like	we	prepared	some	data	in	actions	before	a	test	we	can	clean	up

Citrus	Reference	Guide

470Test-suite



the	data	after	a	test	has	finished	execution.

XML	Config

<citrus:after-test	id="defaultAfterTest">
				<citrus:actions>
								<!--	list	of	actions	after	test	-->
				</citrus:actions>
</citrus:after-test>

The	after	test	configuration	component	receives	a	unique	id	and	a	list	of	test	actions	that
get	executed	after	a	test	case	is	finished.	Notice	that	the	after	test	actions	are	executed
no	matter	what	result	success	or	failure	the	previous	test	case	came	up	to.	The
component	receives	usual	test	action	definitions	just	like	you	would	write	them	in	a
normal	test	case	definition.	See	the	example	below	how	to	add	test	actions.

XML	Config

<citrus:after-test	id="defaultAfterTest">
				<citrus:actions>
												<citrus-test:echo>
														<citrus-test:message>This	is	executed	after	each	test!</citrus-test:message>
												</citrus-test:echo>
				</citrus:actions>
</citrus:after-test>

Please	be	aware	of	the	fact	that	we	must	use	the	Citrus	test	case	XML	namespace	for
the	nested	test	action	definitions.	You	have	to	declare	the	XML	namespaces	accordingly
in	your	configuration	root	element.	The	echo	test	action	is	now	executed	after	each	test
in	our	test	suite	run.	Of	course	we	can	restrict	the	after	test	container	execution.
Supported	restrictions	are	based	on	the	test	name,	package	and	test	groups.	See
following	example	how	this	works:

XML	Config

<citrus:after-test	id="defaultAfterTest"	test="*_Error_Test"	package="com.consol.citrus.error.*"
				<citrus:actions>
												<citrus-test:echo>
														<citrus-test:message>This	is	executed	after	each	test!</citrus-test:message>
												</citrus-test:echo>
				</citrus:actions>
</citrus:after-test>

Citrus	Reference	Guide

471Test-suite



The	above	after	test	component	is	obviously	only	executed	for	test	cases	that	match	the
name	pattern	*_Error_Test	and	that	match	the	package	com.consol.citrus.error.*	.
Also	we	could	just	use	the	test	name	pattern	or	the	package	name	pattern	exclusively.
And	the	execution	can	be	restricted	based	on	the	included	test	groups	in	our	test	suite
run.	This	enables	us	to	specify	after	test	actions	in	various	ways.	Of	course	you	can
have	multiple	after	test	configuration	components	at	the	same	time.	Citrus	will	pick	the
right	containers	and	put	it	to	execution	when	necessary.

When	using	the	Java	DSL	we	need	to	implement	the	after	test	logic	in	a	separate	class
that	extends	TestDesignerAfterTestSupport	or	TestRunnerAfterTestSupport

Java	DSL	designer

public	class	MyAfterTest	extends	TestDesignerAfterTestSupport	{
				@Override
				public	void	afterTest(TestDesigner	designer)	{
								designer.echo("This	action	should	be	executed	after	each	test");
				}
}

As	you	can	see	the	class	implements	the	method	afterTest	that	is	provided	with	a	test
designer	argument.	You	simply	add	the	after	test	actions	to	the	designer	instance	as
usual	by	calling	Java	DSL	methods	on	the	designer	object.	Citrus	will	automatically
execute	these	operations	after	each	test	is	executed.	The	same	logic	applies	to	the	test
runner	variation	that	extends	TestRunnerAfterTestSupport	:

Java	DSL	runner

public	class	MyAfterTest	extends	TestRunnerAfterTestSupport	{
				@Override
				public	void	afterTest(TestRunner	runner)	{
								runner.echo("This	action	should	be	executed	after	each	test");
				}
}

The	after	test	implementations	are	added	to	the	Spring	bean	application	context	for
general	activation.	You	can	do	this	either	as	explicit	Spring	bean	definition	or	via
package	component-scan.	Here	is	a	sample	for	adding	the	bean	implementation
explicitly	with	some	configuration

Citrus	Reference	Guide

472Test-suite



<bean	id="myAfterTest"	class="my.company.citrus.MyAfterTest">
		<property	name="packageNamePattern"	value="com.consol.citrus.e2e"></property>
</bean>

We	can	add	filter	properties	to	the	after	test	Java	DSL	actions	so	they	applied	to	specific
packages	or	test	name	patterns.	The	above	example	will	only	apply	to	tests	in	package
com.consol.citrus.e2e	.	Leave	these	properties	empty	for	default	actions	that	are
executed	after	all	tests.

Citrus	Reference	Guide

473Test-suite



Customize	meta	information
Test	cases	in	Citrus	are	usually	provided	with	some	meta	information	like	the	author’s
name	or	the	date	of	creation.	In	Citrus	you	are	able	to	extend	this	test	case	meta
information	with	your	own	very	specific	criteria.

By	default	a	test	case	comes	shipped	with	meta	information	that	looks	like	this:

<testcase	name="PwdChange_OK_1_Test">
				<meta-info>
								<author>Christoph</author>
								<creationdate>2010-01-18</creationdate>
								<status>FINAL</status>
								<last-updated-by>Christoph</last-updated-by>
								<last-updated-on>2010-01-18T15:00:00</last-updated-on>
				</meta-info>

				[...]
</testcase>

You	can	quite	easily	add	data	to	this	section	in	order	to	meet	your	individual	testing
strategy.	Let	us	have	a	simple	example	to	show	how	it	is	done.

First	of	all	we	define	a	custom	XSD	schema	describing	the	new	elements:

<?xml	version="1.0"	encoding="UTF-8"?>
<schema	xmlns="http://www.w3.org/2001/XMLSchema"		
								xmlns:tns="http://www.citrusframework.org/samples/my-testcase-info"	
								targetNamespace="http://www.citrusframework.org/samples/my-testcase-info"
								elementFormDefault="qualified">

				<element	name="requirement"	type="string"/>
				<element	name="pre-condition"	type="string"/>
				<element	name="result"	type="string"/>
				<element	name="classification"	type="string"/>
</schema>

We	have	four	simple	elements	(requirement,	pre-condition,	result	and	classification)
all	typed	as	string.	These	new	elements	later	go	into	the	test	case	meta	information
section.

Citrus	Reference	Guide

474Meta-info



After	we	added	the	new	XML	schema	file	to	the	classpath	of	our	project	we	need	to
announce	the	schema	to	Spring.	As	you	might	know	already	a	Citrus	test	case	is	nothing
else	but	a	simple	Spring	configuration	file	with	customized	XML	schema	support.	If	we
add	new	elements	to	a	test	case	Spring	needs	to	know	the	XML	schema	for	parsing	the
test	case	configuration	file.	See	the	spring.schemas	file	usually	placed	in	the	META-
INF/spring.schemas	in	your	project.

The	file	content	for	our	example	will	look	like	follows:

http://www.citrusframework.org/samples/my-testcase-info/my-testcase-info.xsd=com/consol/citrus/schemas/my-testcase-info.xsd

So	now	we	are	finally	ready	to	use	the	new	meta-info	elements	inside	the	test	case:

<?xml	version="1.0"	encoding="UTF-8"?>
<spring:beans	xmlns="http://www.citrusframework.org/schema/testcase"
				xmlns:spring="http://www.springframework.org/schema/beans"	
				xmlns:custom="http://www.citrusframework.org/samples/my-testcase-info"
				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
				xsi:schemaLocation="http://www.springframework.org/schema/beans	
						http://www.springframework.org/schema/beans/spring-beans.xsd
						http://www.citrusframework.org/schema/testcase	
						http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd	
						http://www.citrusframework.org/samples/my-testcase-info	
						http://www.citrusframework.org/samples/my-testcase-info/my-testcase-info.xsd">

				<testcase	name="PwdChange_OK_1_Test">
								<meta-info>
												<author>Christoph</author>
												<creationdate>2010-01-18</creationdate>
												<status>FINAL</status>
												<last-updated-by>Christoph</last-updated-by>
												<last-updated-on>2010-01-18T15:00:00</last-updated-on>
												<custom:requirement>REQ10001</custom:requirement>
												<custom:pre-condition>Existing	user,	sufficient	rights</custom:pre-condition>
												<custom:result>Password	reset	in	database</custom:result>
												<custom:classification>PasswordChange</custom:classification>
								</meta-info>

								[...]
				</testcase>
</spring:beans>

Note	We	use	a	separate	namespace	declaration	with	a	custom	namespace	prefix
“custom”	in	order	to	declare	the	new	XML	schema	to	our	test	case.	Of	course	you	can
pick	a	namespace	url	and	prefix	that	fits	best	for	your	project.As	you	see	it	is	quite	easy

Citrus	Reference	Guide

475Meta-info



to	add	custom	meta	information	to	your	Citrus	test	case.	The	customized	elements	may
be	precious	for	automatic	reporting.	XSL	transformations	for	instance	are	able	to	read
those	meta	information	elements	in	order	to	generate	automatic	test	reports	and
documentation.

You	can	also	declare	our	new	XML	schema	in	the	Eclipse	preferences	section	as	user
specific	XML	catalog	entry.	Then	even	the	schema	code	completion	in	your	Eclipse	XML
editor	will	be	available	for	our	customized	meta-info	elements.

Citrus	Reference	Guide

476Meta-info



Tracing	incoming/outgoing	messages
As	we	deal	with	message	based	interfaces	Citrus	will	send	and	receive	a	lot	of
messages	during	a	test	run.	Now	we	may	want	to	see	these	messages	in	chronological
order	as	they	were	processed	by	Citrus.	We	can	enable	message	tracing	in	Citrus	in
order	to	save	messages	to	the	file	system	for	further	investigations.

Citrus	offers	an	easy	way	to	debug	all	received	messages	to	the	file	system.	You	need
to	enable	some	specific	loggers	and	interceptors	in	the	Spring	application	context.

<bean	class="com.consol.citrus.report.MessageTracingTestListener"/>

Just	add	this	bean	to	the	Spring	configuration	and	Citrus	will	listen	for	sent	and	received
messages	for	saving	those	to	the	file	system.	You	will	find	files	like	these	in	the	default
test-output	folder	after	the	test	run:

For	example:

logs/trace/messages/MyTest.msgs	
logs/trace/messages/FooTest.msgs	
logs/trace/messages/SomeTest.msgs

Each	Citrus	test	writes	a	.msgs	file	containing	all	messages	that	went	over	the	wire
during	the	test.	By	default	the	debug	directory	is	set	to	logs/trace/messages/	relative	to
the	project	test	output	directory.	But	you	can	set	your	own	output	directory	in	the
configuration

<bean	class="com.consol.citrus.report.MessageTracingTestListener">
		<property	name="outputDirectory"	value="file:/path/to/folder"/>
</bean>

Note	As	the	file	names	do	not	change	with	each	test	run	message	tracing	files	may	be
overwritten.	So	you	eventually	need	to	save	the	generated	message	debug	files	before
running	another	group	of	test	cases.

Lets	see	some	sample	output	for	a	test	case	with	message	communication	over	SOAP
Http:

Citrus	Reference	Guide

477Message-tracing



Sending	SOAP	request:
<?xml	version="1.0"	encoding="UTF-8"?><SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
<SOAP-ENV:Header>
<Operation	xmlns="http://citrusframework.org/test">sayHello</Operation>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<ns0:HelloRequest	xmlns:ns0="http://www.consol.de/schemas/samples/sayHello.xsd">
				<ns0:MessageId>0857041782</ns0:MessageId>
				<ns0:CorrelationId>6915071793</ns0:CorrelationId>
				<ns0:User>Christoph</ns0:User>
				<ns0:Text>Hello	WebServer</ns0:Text>
</ns0:HelloRequest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

======================================================================

Received	SOAP	response:
<?xml	version="1.0"	encoding="UTF-8"?><SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<ns0:HelloResponse	xmlns:ns0="http://www.consol.de/schemas/samples/sayHello.xsd">
				<ns0:MessageId>0857041782</ns0:MessageId>
				<ns0:CorrelationId>6915071793</ns0:CorrelationId>
				<ns0:User>WebServer</ns0:User>
				<ns0:Text>Hello	Christoph</ns0:Text>
</ns0:HelloResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

For	this	message	tracing	to	work	we	need	to	add	logging	listeners	to	our	sender	and
receiver	components	accordingly.

<citrus-ws:client	id="webServiceClient"
				request-url="http://localhost:8071"
				message-factory="messageFactory"
				interceptors="clientInterceptors"/>

				<util:list	id="clientInterceptors">
								<bean	class="com.consol.citrus.ws.interceptor.LoggingClientInterceptor"/>
				</util:list>

Important	Be	aware	of	adding	the	Spring	util	XML	namespace	to	the	application	context
when	using	the	util:list	construct.

Citrus	Reference	Guide

478Message-tracing



Citrus	Reference	Guide

479Message-tracing



Reporting	and	test	results
The	framework	generates	different	reports	and	results	after	a	test	run	for	you.	These
report	and	result	pages	will	help	you	to	get	an	overview	of	the	test	cases	that	were
executed	and	which	one	were	failing.

Console	logging

During	the	test	run	the	framework	will	provide	a	huge	amount	of	information	that	is
printed	out	to	the	console.	This	includes	current	test	progress,	validation	results	and
error	information.	This	enables	the	user	to	quickly	supervise	the	test	run	progress.
Failures	in	tests	will	be	printed	to	the	console	just	the	time	the	error	occurred.	The
detailed	stack	trace	information	and	the	detailed	error	messages	are	helpful	to	get	the
idea	what	went	wrong.

As	the	console	output	might	be	limited	to	a	defined	buffer	limit,	the	user	may	not	be	able
to	follow	the	output	to	the	very	beginning	of	the	test	run.	Therefore	the	framework
additionally	prints	all	information	to	a	log	file	according	to	the	logging	configuration.

The	logging	mechanism	uses	the	SLF4J	logging	framework.	SLF4J	is	independent	of
logging	framework	implementations	on	the	market.	So	in	case	you	use	Log4J	logging
framework	the	specified	log	file	path	as	well	as	logging	levels	can	be	freely	configured	in
the	respective	log4j.xml	file	in	your	project.	At	the	end	of	a	test	run	the	combined	test
results	get	printed	to	both	console	and	log	file.	The	overall	test	results	look	like	following
example:

Citrus	Reference	Guide

480Reporting



CITRUS	TEST	RESULTS

		[...]
		HelloService_Ok_1													:	SUCCESS
		HelloService_Ok_2													:	SUCCESS
		EchoService_Ok_1														:	SUCCESS
		EchoService_Ok_2														:	SUCCESS
		EchoService_TempError_1							:	SUCCESS
		EchoService_AutomacticRetry_1	:	SUCCESS
		[...]

		Found	175	test	cases	to	execute
		Skipped	0	test	cases	(0.0%)
		Executed	175	test	cases
		Tests	failed:									0	(0.0%)
		Tests	successfully:	175	(100.0%)

Failed	tests	will	be	marked	as	failed	in	the	result	list.	The	framework	will	give	a	short
description	of	the	error	cause	while	the	detailed	stack	trace	information	can	be	found	in
the	log	messages	that	were	made	during	the	test	run.

HelloService_Ok_3	:	failed	-	Exception	is	Action	timed	out

JUnit	reports

As	tests	are	executed	as	TestNG	test	cases,	the	framework	will	also	generate	JUnit
compliant	XML	and	HTML	reports.	JUnit	test	reports	are	very	popular	and	find	support	in
many	build	management	and	development	tools.	In	general	the	Citrus	test	reports	give
you	an	overall	picture	of	all	tests	and	tell	you	which	of	them	were	failing.

Build	management	tools	like	Jenkins	can	easily	import	and	display	the	generated	JUnit
XML	results.	Please	have	a	look	at	the	TestNG	and	JUnit	documentation	for	more
information	about	this	topic	as	well	as	the	build	management	tools	(e.g.	Jenkins)	to	find
out	how	to	integrate	the	tests	results.

HTML	reports

Citrus	creates	HTML	reports	after	each	test	run.	The	report	provides	detailed	information
on	the	test	run	with	a	summary	of	all	test	results.	You	can	find	the	report	after	a	test	run
in	the	directory	${project.build.directory}/test-output/citrus-reports	.

Citrus	Reference	Guide

481Reporting



The	report	consists	of	two	parts.	The	test	summary	on	top	shows	the	total	number
executed	tests.	The	main	part	lists	all	test	cases	with	detailed	information.	With	this
report	you	immediately	identify	all	tests	that	were	failing.	Each	test	case	is	marked	in
color	according	to	its	result	outcome.

The	failed	tests	give	detailed	error	information	with	error	messages	and	Java	StackTrace
information.	In	addition	to	that	the	report	tries	to	find	the	test	action	inside	the	XML	test
part	that	failed	in	execution.	With	the	failing	code	snippet	you	can	see	where	the	test
stopped.

Note	JavaScript	should	be	active	in	your	web	browser.	This	is	to	enable	the	detailed
information	which	comes	to	you	in	form	of	tooltips	like	test	author	or	description.	If	you
want	to	access	the	tooltips	JavaScript	should	be	enabled	in	your	browser.

The	HTML	reports	are	customizable	by	system	properties.	Use	following	properties	e.g.
in	your	citrus.properties	file:

citrus.html.report.enabled	:	Enables/disables	HTML	report	generation	(default=
true).
citrus.html.report.directory	:	Output	directory	path	(default=
${project.build.directory}/test-output/citrus-reports).
citrus.html.report.file	:	File	name	for	the	report	file	(default=	citrus-test-
results.html).
citrus.html.report.template	:	Template	HTML	file	with	placeholders	for	report
results.
citrus.html.report.detail.template	:	Template	file	for	detailed	test	results.
citrus.html.report.logo	:	File	resource	path	pointing	to	a	image	that	is	added	to	top
of	HTML	report.

The	HTML	report	is	based	on	a	template	file	that	is	customizable	to	your	special	needs.
The	default	templates	can	be	found
inhttps://github.com/christophd/citrus/tree/master/modules/citrus-
core/src/main/resources/com/consol/citrus/report.

Citrus	Reference	Guide

482Reporting



Samples
This	chapter	gives	some	samples	where	you	can	see	Citrus	in	action.

samples-flightbooking

Citrus	Reference	Guide

483Samples



The	FlightBooking	sample

A	simple	project	example	should	give	you	the	idea	how	Citrus	works.	The	system	under
test	is	a	flight	booking	service	that	handles	travel	requests	from	a	travel	agency.	A	travel
request	consists	of	a	complete	travel	route	including	several	flights.	The
FlightBookingService	application	will	split	the	complete	travel	booking	into	separate	flight
bookings	that	are	sent	to	the	respective	airlines	in	charge.	The	booking	and	customer
data	is	persisted	in	a	database.

The	airlines	will	confirm	or	deny	the	flight	bookings.	The	FlightBookingService
application	consolidates	all	incoming	flight	confirmations	and	combines	them	to	a
complete	travel	confirmation	or	denial	that	is	sent	back	to	the	travel	agency.	Next	picture
tries	to	put	the	architecture	into	graphics:

In	our	example	two	different	airlines	are	connected	to	the	FlightBookingService
application:	the	SmartAriline	over	JMS	and	the	RoyalAirline	over	Http.

The	use	case

The	use	case	that	we	would	like	to	test	is	quite	simple.	The	test	should	handle	a	simple
travel	booking	and	expect	a	positive	processing	to	the	end.	The	test	case	neither
simulates	business	errors	nor	technical	problems.	Next	picture	shows	the	use	case	as	a
sequence	diagram.

Citrus	Reference	Guide

484Flight	Booking	Sample



The	travel	agency	puts	a	travel	booking	request	towards	the	system.	The	travel	booking
contains	two	separate	flights.	The	flight	requests	are	published	to	the	airlines
(SmartAirline	and	RoyalAirline).	Both	airlines	confirm	the	flight	bookings	with	a	positive
answer.	The	consolidated	travel	booking	response	is	then	sent	back	to	the	travel
agency.

Configure	the	simulated	systems

Citrus	simulates	all	surrounding	applications	in	their	behavior	during	the	test.	The
simulated	applications	are:	TravelAgency,	SmartAirline	and	RoyalAirline.	The	simulated
systems	have	to	be	configured	in	the	Citrus	configuration	first.	The	configuration	is	done
in	Spring	XML	configuration	files,	as	Citrus	uses	Spring	to	glue	all	its	services	together.

First	of	all	we	have	a	look	at	the	TravelAgency	configuration.	The	TravelAgency	is	using
JMS	to	connect	to	our	tested	system,	so	we	need	to	configure	this	JMS	connection	in
Citrus.

<bean	name="connectionFactory"	
									class="org.apache.activemq.ActiveMQConnectionFactory">
				<property	name="brokerURL"	value="tcp://localhost:61616"	/>
</bean>

<citrus-jms:endpoint	id="travelAgencyBookingRequestEndpoint"
																						destination-name="${travel.agency.request.queue}"/>

<citrus-jms:endpoint	id="travelAgencyBookingResponseEndpoint"
																						destination-name="${travel.agency.response.queue}"/>

Citrus	Reference	Guide

485Flight	Booking	Sample



This	is	all	Citrus	needs	to	send	and	receive	messages	over	JMS	in	order	to	simulate	the
TravelAgency.	By	default	all	JMS	message	senders	and	receivers	need	a	connection
factory.	Therefore	Citrus	is	searching	for	a	bean	named	"connectionFactory".	In	the
example	we	connect	to	a	ActiveMQ	message	broker.	A	connection	to	other	JMS	brokers
like	TIBCO	EMS	or	Apache	ActiveMQ	is	possible	too	by	simply	changing	the	connection
factory	implementation.

The	identifiers	of	the	message	senders	and	receivers	are	very	important.	We	should
think	of	suitable	ids	that	give	the	reader	a	first	hint	what	the	sender/receiver	is	used	for.
As	we	want	to	simulate	the	TravelAgency	in	combination	with	sending	booking	requests
our	id	is	"travelAgencyBookingRequestEndpoint"	for	example.

The	sender	and	receivers	do	also	need	a	JMS	destination.	Here	the	destination	names
are	provided	by	property	expressions.	The	Spring	IoC	container	resolves	the	properties
for	us.	All	we	need	to	do	is	publish	the	property	file	to	the	Spring	container	like	this.

<bean	name="propertyLoader"	
			class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
				<property	name="locations">
								<list>
												<value>citrus.properties</value>
								</list>
				</property>
				<property	name="ignoreUnresolvablePlaceholders"	value="true"/>
</bean>

The	citrus.properties	file	is	located	in	our	project's	resources	folder	and	defines	the
actual	queue	names	besides	other	properties	of	course:

#JMS	queues
travel.agency.request.queue=Travel.Agency.Request.Queue
travel.agency.response.queue=Travel.Agency.Response.Queue
smart.airline.request.queue=Smart.Airline.Request.Queue
smart.airline.response.queue=Smart.Airline.Response.Queue
royal.airline.request.queue=Royal.Airline.Request.Queue

What	else	do	we	need	in	our	Spring	configuration?	There	are	some	basic	beans	that	are
commonly	defined	in	a	Citrus	application	but	I	do	not	want	to	bore	you	with	these	details.
So	if	you	want	to	have	a	look	at	the	Spring	application	context	file	in	the	resources	folder
and	see	how	things	are	defined	there.

Citrus	Reference	Guide

486Flight	Booking	Sample



We	continue	with	the	first	airline	to	be	configured	the	SmartAirline.	The	SmartAirline	is
also	using	JMS	to	communicate	with	the	FlightBookingService.	So	there	is	nothing	new
for	us,	we	simply	define	additional	JMS	message	senders	and	receivers.

<citrus-jms:endpoint	id="smartAirlineBookingRequestEndpoint"
																						destination-name="${smart.airline.request.queue}"/>

<citrus-jms:endpoint	id="smartAirlineBookingResponseEndpoint"
																						destination-name="${smart.airline.response.queue}"/>

We	do	not	define	a	new	JMS	connection	factory	because	TravelAgency	and
SmartAirline	are	using	the	same	message	broker	instance.	In	case	you	need	to	handle
multiple	connection	factories	simply	define	the	connection	factory	with	the	attribute
"connection-factory".

<citrus-jms:endpoint	id="smartAirlineBookingRequestEndpoint"
																												destination-name="${smart.airline.request.queue}"
																												connection-factory="smartAirlineConnectionFactory"/>

<citrus-jms:endpoint	id="smartAirlineBookingResponseEndpoint"
																										destination-name="${smart.airline.response.queue}"
																										connection-factory="smartAirlineConnectionFactory"/>

Configure	the	Http	adapter

The	RoyalAirline	is	connected	to	our	system	using	Http	request/response
communication.	This	means	we	have	to	simulate	a	Http	server	in	the	test	that	accepts
client	requests	and	provides	proper	responses.	Citrus	offers	a	Http	server
implementation	that	will	listen	on	a	port	for	client	requests.	The	adapter	forwards
incoming	request	to	the	test	engine	over	JMS	and	receives	a	proper	response	that	is
forwarded	as	a	Http	response	to	the	client.	The	next	picture	shows	this	mechanism	in
detail.

The	RoyalAirline	adapter	receives	client	requests	over	Http	and	sends	them	over	JMS	to
a	message	receiver	as	we	already	know	it.	The	test	engine	validates	the	received
request	and	provides	a	proper	response	back	to	the	adapter.	The	adapter	will	transform

Citrus	Reference	Guide

487Flight	Booking	Sample



the	response	to	Http	again	and	publishes	it	to	the	calling	client.	Citrus	offers	these	kind
of	adapters	for	Http	and	SOAP	communication.	By	writing	your	own	adapters	like	this
you	will	be	able	to	extend	Citrus	so	it	works	with	protocols	that	are	not	supported	yet.

Let	us	define	the	Http	adapter	in	the	Spring	configuration:

<citrus-http:server	id="royalAirlineHttpServer"	
																							port="8091"	
																							uri="/flightbooking"	
																							endpoint-adapter="jmsEndpointAdapter"/>

<citrus-jms:endpoint-adapter	id="jmsEndpointAdapter
						destination-name="${royal.airline.request.queue}"/>
						connection-factory="connectionFactory"	/>
						timeout="2000"/>

<citrus-jms:sync-endpoint	id="royalAirlineBookingEndpoint"
																												destination-name="${royal.airline.request.queue}"/>

We	need	to	configure	a	Http	server	instance	with	a	port,	a	request	URI	and	the	endpoint
adapter.	We	define	the	JMS	endpoint	adapter	to	handle	request	as	described.	In
Addition	to	the	endpoint	adapter	we	also	need	synchronous	JMS	message	sender	and
receiver	instances.	That's	it!	We	are	able	to	receive	Http	request	in	order	to	simulate	the
RoyalAirline	application.	What	is	missing	now?	The	test	case	definition	itself.

The	test	case

The	test	case	definition	is	also	a	Spring	configuration	file.	Citrus	offers	a	customized
XML	syntax	to	define	a	test	case.	This	XML	test	defining	language	is	supposed	to	be
easy	to	understand	and	more	specific	to	the	domain	we	are	dealing	with.	Next	listing
shows	the	whole	test	case	definition.	Keep	in	mind	that	a	test	case	defines	every	step	in
the	use	case.	So	we	define	sending	and	receiving	actions	of	the	use	case	as	described
in	the	sequence	diagram	we	saw	earlier.

<?xml	version="1.0"	encoding="UTF-8"?>
<spring:beans	xmlns="http://www.citrusframework.org/schema/testcase"	
													xmlns:spring="http://www.springframework.org/schema/beans"	
													xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	
													xsi:schemaLocation="http://www.springframework.org/schema/beans	
													http://www.springframework.org/schema/beans/spring-beans.xsd	
													http://www.citrusframework.org/schema/testcase	
													http://www.citrusframework.org/schema/testcase/citrus-testcase.xsd">
				<testcase	name="FlightBookingTest">
								<meta-info>

Citrus	Reference	Guide

488Flight	Booking	Sample



												<author>Christoph	Deppisch</author>
												<creationdate>2009-04-15</creationdate>
												<status>FINAL</status>
												<last-updated-by>Christoph	Deppisch</last-updated-by>
												<last-updated-on>2009-04-15T00:00:00</last-updated-on>
								</meta-info>
								<description>
												Test	flight	booking	service.
								</description>
								<variables>
												<variable	name="correlationId"	
																value="citrus:concat('Lx1x',	'citrus:randomNumber(10)')"/>
												<variable	name="customerId"	
																value="citrus:concat('Mx1x',	citrus:randomNumber(10))"/>
								</variables>
								<actions>
												<send	endpoint="travelAgencyBookingRequestEndpoint">
																<message>
																				<data>
																						<![CDATA[
																								<TravelBookingRequestMessage	
																										xmlns="http://www.consol.com/schemas/TravelAgency">
																										<correlationId>${correlationId}</correlationId>
																										<customer>
																												<id>${customerId}</id>
																												<firstname>John</firstname>
																												<lastname>Doe</lastname>
																										</customer>
																										<flights>
																												<flight>
																														<flightId>SM	1269</flightId>
																														<airline>SmartAirline</airline>
																														<fromAirport>MUC</fromAirport>
																														<toAirport>FRA</toAirport>
																														<date>2009-04-15</date>
																														<scheduledDeparture>11:55:00</scheduledDeparture>
																														<scheduledArrival>13:00:00</scheduledArrival>
																												</flight>
																												<flight>
																														<flightId>RA	1780</flightId>
																														<airline>RoyalAirline</airline>
																														<fromAirport>FRA</fromAirport>
																														<toAirport>HAM</toAirport>
																														<date>2009-04-15</date>
																														<scheduledDeparture>16:00:00</scheduledDeparture>
																														<scheduledArrival>17:10:00</scheduledArrival>
																												</flight>
																										</flights>																																
																								</TravelBookingRequestMessage>
																						]]>
																				</data>
																</message>

Citrus	Reference	Guide

489Flight	Booking	Sample



																<header>
																				<element	name="correlationId"	value="${correlationId}"/>
																</header>
												</send>

												<receive	endpoint="smartAirlineBookingRequestEndpoint">
																<message>
																				<data>
																						<![CDATA[
																								<FlightBookingRequestMessage	
																										xmlns="http://www.consol.com/schemas/AirlineSchema">
																										<correlationId>${correlationId}</correlationId>
																										<bookingId>???</bookingId>
																										<customer>
																												<id>${customerId}</id>
																												<firstname>John</firstname>
																												<lastname>Doe</lastname>
																										</customer>
																										<flight>
																												<flightId>SM	1269</flightId>
																												<airline>SmartAirline</airline>
																												<fromAirport>MUC</fromAirport>
																												<toAirport>FRA</toAirport>
																												<date>2009-04-15</date>
																												<scheduledDeparture>11:55:00</scheduledDeparture>
																												<scheduledArrival>13:00:00</scheduledArrival>
																										</flight>
																								</FlightBookingRequestMessage>
																						]]>
																				</data>
																				<ignore	path="//:FlightBookingRequestMessage/:bookingId"/>
																</message>
																<header>
																				<element	name="correlationId"	value="${correlationId}"/>
																</header>
																<extract>
																				<message	path="//:FlightBookingRequestMessage/:bookingId"	
																																variable="${smartAirlineBookingId}"/>
																</extract>
												</receive>

												<send	endpoint="smartAirlineBookingResponseEndpoint">
																<message>
																				<data>
																						<![CDATA[
																								<FlightBookingConfirmationMessage	
																										xmlns="http://www.consol.com/schemas/AirlineSchema">
																										<correlationId>${correlationId}</correlationId>
																										<bookingId>${smartAirlineBookingId}</bookingId>
																										<success>true</success>
																										<flight>
																												<flightId>SM	1269</flightId>

Citrus	Reference	Guide

490Flight	Booking	Sample



																												<airline>SmartAirline</airline>
																												<fromAirport>MUC</fromAirport>
																												<toAirport>FRA</toAirport>
																												<date>2009-04-15</date>
																												<scheduledDeparture>11:55:00</scheduledDeparture>
																												<scheduledArrival>13:00:00</scheduledArrival>
																										</flight>
																								</FlightBookingConfirmationMessage>
																						]]>
																				</data>
																</message>
																<header>
																				<element	name="correlationId"	value="${correlationId}"/>
																</header>
												</send>

												<receive	endpoint="royalAirlineBookingEndpoint">
																<message>
																				<data>
																						<![CDATA[
																								<FlightBookingRequestMessage	
																										xmlns="http://www.consol.com/schemas/FlightBooking/AirlineSchema">
																										<correlationId>${correlationId}</correlationId>
																										<bookingId>???</bookingId>
																										<customer>
																														<id>${customerId}</id>
																														<firstname>John</firstname>
																														<lastname>Doe</lastname>
																										</customer>
																										<flight>
																												<flightId>RA	1780</flightId>
																												<airline>RoyalAirline</airline>
																												<fromAirport>FRA</fromAirport>
																												<toAirport>HAM</toAirport>
																												<date>2009-04-15</date>
																												<scheduledDeparture>16:00:00</scheduledDeparture>
																												<scheduledArrival>17:10:00</scheduledArrival>
																										</flight>
																								</FlightBookingRequestMessage>
																						]]>
																				</data>
																				<ignore	path="//:FlightBookingRequestMessage/:bookingId"/>
																</message>
																<header>
																				<element	name="correlationId"	value="${correlationId}"/>
																</header>
																<extract>
																				<message	path="//:FlightBookingRequestMessage/:bookingId"	
																																variable="${royalAirlineBookingId}"/>
																</extract>
												</receive>

Citrus	Reference	Guide

491Flight	Booking	Sample



												<send	endpoint="royalAirlineBookingEndpoint">
																<message>
																				<data>
																						<![CDATA[
																								<FlightBookingConfirmationMessage	
																										xmlns="http://www.consol.com/schemas/AirlineSchema">
																										<correlationId>${correlationId}</correlationId>
																										<bookingId>${royalAirlineBookingId}</bookingId>
																										<success>true</success>
																										<flight>
																												<flightId>RA	1780</flightId>
																												<airline>RoyalAirline</airline>
																												<fromAirport>FRA</fromAirport>
																												<toAirport>HAM</toAirport>
																												<date>2009-04-15</date>
																												<scheduledDeparture>16:00:00</scheduledDeparture>
																												<scheduledArrival>17:10:00</scheduledArrival>
																										</flight>
																								</FlightBookingConfirmationMessage>
																						]]>
																				</data>
																</message>
																<header>
																				<element	name="correlationid"	value="${correlationId}"/>
																</header>
												</send>

												<receive	endpoint="travelAgencyBookingResponseEndpoint">
																<message>
																				<data>
																						<![CDATA[
																								<TravelBookingResponseMessage	
																										xmlns="http://www.consol.com/schemas/TravelAgency">
																										<correlationId>${correlationId}</correlationId>
																										<success>true</success>
																										<flights>
																												<flight>
																														<flightId>SM	1269</flightId>
																														<airline>SmartAirline</airline>
																														<fromAirport>MUC</fromAirport>
																														<toAirport>FRA</toAirport>
																														<date>2009-04-15</date>
																														<scheduledDeparture>11:55:00</scheduledDeparture>
																														<scheduledArrival>13:00:00</scheduledArrival>
																												</flight>
																												<flight>
																														<flightId>RA	1780</flightId>
																														<airline>RoyalAirline</airline>
																														<fromAirport>FRA</fromAirport>
																														<toAirport>HAM</toAirport>
																														<date>2009-04-15</date>
																														<scheduledDeparture>16:00:00</scheduledDeparture>

Citrus	Reference	Guide

492Flight	Booking	Sample



																														<scheduledArrival>17:10:00</scheduledArrival>
																												</flight>
																										</flights>																																
																								</TravelBookingResponseMessage>
																						]]>
																				</data>
																</message>
																<header>
																				<element	name="correlationId"	value="${correlationId}"/>
																</header>
												</receive>

								</actions>
				</testcase>
</spring:beans>

Similar	to	a	sequence	diagram	the	test	case	describes	every	step	of	the	use	case.	At	the
very	beginning	the	test	case	gets	name	and	its	meta	information.	Following	with	the
variable	values	that	are	used	all	over	the	test.	Here	it	is	the	correlationId	and	the
customerId	that	are	used	as	test	variables.	Inside	message	templates	header	values	the
variables	are	referenced	several	times	in	the	test

<correlationId>${correlationId}</correlationId>	
<id>${customerId}</id>

The	sending/receiving	actions	use	a	previously	defined	message	sender/receiver.	This	is
the	link	between	test	case	and	basic	Spring	configuration	we	have	done	before.

The	sending	action	chooses	a	message	sender	to	actually	send	the	message	using	a
message	transport	(JMS,	Http,	SOAP,	etc.).	After	sending	this	first
"TravelBookingRequestMessage"	request	the	test	case	expects	the	first
"FlightBookingRequestMessage"	message	on	the	SmartAirline	JMS	destination.	In	case
this	message	is	not	arriving	in	time	the	test	will	fail	with	errors.	In	positive	case	our
FlightBookingService	works	well	and	the	message	arrives	in	time.	The	received
message	is	validated	against	a	defined	expected	message	template.	Only	in	case	all
content	validation	steps	are	successful	the	test	continues	with	the	action	chain.	And	so
the	test	case	proceeds	and	works	through	the	use	case	until	every	message	is	sent
respectively	received	and	validated.	The	use	case	is	done	automatically	without	human
interaction.	Citrus	simulates	all	surrounding	applications	and	provides	detailed	validation
possibilities	of	messages.

Citrus	Reference	Guide

493Flight	Booking	Sample



Citrus	Reference	Guide

494Flight	Booking	Sample



Appendix
This	chapter	gives	a	brief	overview	of	all	archived	changes.

Changes	2.5
Changes	2.4
Changes	2.3
Changes	2.2
Changes	2.1
Changes	2.0
Changes	1.4
Changes	1.3
Changes	1.2

Citrus	Reference	Guide

495Appendix



Changes	in	Citrus	2.5?!

We	have	added	lots	of	new	features	and	improvements	with	Citrus	2.5.	Namely	these
are	the	new	modules	for	RMI	and	JMX	support,	a	new	x-www-form-urlencoded	message
validator	and	new	functions	anc	test	actions.	Just	have	a	look	at	the	following	features
that	made	it	to	the	box.

Hamcrest	matcher	support

Hamcrest	is	a	very	powerful	matcher	library	that	provides	a	fantastic	set	of	matcher
implementations	for	message	validation	purpose.	Citrus	now	supports	these	matchers
coming	from	Hamcrest	library.	On	the	one	hand	you	can	use	Hamcrest	matchers	as	a
Citrus	validation	matcher	as	described	invalidation-matcher-hamcrest.	On	the	other	hand
you	can	use	Hamcrest	matchers	now	directly	using	the	Citrus	Java	DSL.	See	details	for
this	feature	injson-path-validate.

Binary	base64	message	validator

There	is	a	new	message	validator	implementation	that	automatically	converts	binary
message	content	to	a	base64	encoded	String	representation	for	comparison.	This	is	the
easiest	way	to	compare	binary	message	content	with	an	expected	message	payload.
Seevalidation-binaryhow	this	is	working	for	you.

RMI	support

Remote	method	invocation	is	a	standard	Java	technology	and	API	for	calling	methods
on	remote	objects	across	different	JVM	instances.	Although	RMI	has	lost	its	popularity	it
is	still	used	in	legacy	components.	Testing	RMI	bean	invocation	is	a	hard	thing	to	do.
Now	Citrus	provides	client	and	server	support	for	remote	interface	invocation.	See	rmi
for	details.

JMX	support

Similar	to	RMI	JMX	can	be	used	to	connect	to	remote	bean	invocation.	This	time	we
expose	some	beans	to	a	managed	bean	server	in	order	to	be	managed	by	JMX
operations	for	read	and	write.	With	Citrus	2.5	we	have	added	a	client	and	server	support
for	calling	and	providing	managed	beans	on	a	mbean	server.	See	jmx	for	details.

Citrus	Reference	Guide

496Changes	2.5



Resource	injection

With	2.5	we	have	added	mechanisms	for	injecting	Citrus	components	to	your	Java	DSL
test	methods.	This	is	very	useful	when	needing	access	to	the	Citrus	test	context	for
instance.	Also	we	are	able	to	use	new	injection	of	test	designer	and	runner	instances	in
order	to	support	parallel	test	execution	with	multiple	threads.	See	the	explanations
intestcase-resource-injectionandtestcase-context-injection.

Http	x-www-form-urlencoded	message	validator

HTML	form	data	can	be	transmitted	with	different	methods	and	content	types.	One	of	the
most	common	ways	is	to	use	x-www-form-urlencoded	form	data	content.	As	validation
can	be	tricky	we	have	added	a	special	message	validator	for	that.	Seehttp-www-form-
urlencodedfor	details.

Date	range	validation	matcher

Added	a	new	validation	matcher	implementation	that	is	able	to	check	that	a	date	value	is
between	a	certain	date	range	(from	and	to)	The	date	range	is	able	to	focus	on	days	as
well	as	additional	time	(hour,	minute,	second)	specifications.	Seevalidation-matcher-
daterangefor	details.

Read	file	resource	function

A	new	function	implementation	offers	you	the	possibilities	to	read	file	resource	contents
as	inline	data.	The	function	is	called	and	returns	the	file	content	as	return	value.	The	file
content	is	then	placed	right	where	the	function	was	called	e.g.	inside	of	a	message
paylaod	element	or	as	message	header	value.	Seefunctions-read-filefor	details.

Timer	container

The	new	timer	test	action	container	repeats	its	execution	based	on	a	time	expression
(e.g.	every	5	seconds).	With	this	timer	we	can	repeat	test	actions	with	a	fixed	time	delay
or	constantly	execute	test	actions	with	time	schedule.	Seecontainers-timerandactions-
stop-timerfor	details.

Upgrade	to	Vert.x	3.2.0

Citrus	Reference	Guide

497Changes	2.5



The	Vert.x	module	was	upgraded	to	use	Vert.x	3.2.0	version.	The	Citrus	module
implementation	was	updated	to	work	with	this	new	Vert.x	version.	Learn	more	about	the
Vert.x	integration	in	Citrus	with	vertx.

Bugfixes

Bugs	are	part	of	our	software	developers	world	and	fixing	them	is	part	of	your	daily
business,	too.	Finding	and	solving	issues	makes	Citrus	better	every	day.	For	a	detailed
listing	of	all	bugfixes	please	refer	to	the	complete	changes	log	of	each	release	in	JIRA
(http://www.citrusframework.org/changes-report.html).

Citrus	Reference	Guide

498Changes	2.5

http://www.citrusframework.org/changes-report.html


Changes	in	Citrus	2.4?!

Citrus	2.4	comes	with	a	set	of	new	features	especially	regarding	Apache	Camel	and
Docker	integrations.	Bugfixes	of	course	are	also	part	of	the	package.	See	the	following
overview	on	what	has	changed.

Docker	support

Docker	and	Microservices	are	frequent	topics	in	software	development	recently.	We
have	added	interaction	with	Docker	in	Citrus	so	the	user	can	manage	Docker	containers
within	a	test	case.	Citrus	now	provides	special	Docker	test	actions	for	building,	starting,
stopping	and	inspecting	Docker	images	and	containers	in	a	test.	See	docker	for	details.

Http	REST	actions

We	have	significantly	improved	the	Http	REST	support	in	Citrus.	The	focus	is	on
simplifying	the	Http	REST	usage	in	Citrus	test	cases.	With	new	Http	specific	test	actions
on	client	and	server	we	can	send	and	receive	Http	REST	messages	very	easy.	See	http
for	details.

Wait	test	action

With	the	new	wait	test	action	we	can	explicitly	wait	for	some	remote	condition	to	become
true	inside	of	a	test	case.	The	conditions	supported	at	the	moment	are	Http	url	requests
and	file	based	conditions.	A	user	can	invoke	a	Http	server	url	and	wait	for	it	to	return	a
success	Http	200	OK	response.	This	is	an	awesome	feature	when	waiting	for	a	server
to	start	up	before	the	test	continues.	We	can	also	think	of	waiting	for	a	Docker	container
to	start	up	before	continuing.	Or	you	can	wait	until	a	file	is	present	on	the	local	file
system.	Seeactions-waitfor	details.

Camel	actions

Citrus	has	already	had	support	for	Apache	Camel	routes	and	Camel	context	loading.
Now	with	2.4	version	we	have	added	some	special	Apache	Camel	test	actions	for
interacting	with	a	Camel	context	and	its	routes.	This	enables	the	tester	to	create	and	use
a	new	Camel	route	on	the	fly	inside	a	test	case.	Also	Citrus	is	now	able	to	interact	with

Citrus	Reference	Guide

499Changes	2.4



the	Camel	control	bus	accessing	route	statistics	and	status	information.	Also	possible
are	start,	stop,	suspend,	resume	operations	on	a	Camel	route.	Seecamel-
actionsandcamel-controlbusfor	details.

Purge	endpoints	action

Purging	JMS	queues	and	in	memory	channels	at	test	runtime	has	become	a	widely	used
feature	especially	when	aiming	to	make	tests	more	stable	in	terms	of	independent	tests.
We	have	added	a	purge	endpoint	test	action	that	works	on	any	consumer	endpoint.	So
you	do	not	need	to	separate	between	endpoint	implementations	anymore	and	more
important	you	can	purge	server	in	memory	channel	components	very	easy.	Seeactions-
purge-endpointsfor	details.

Release	to	Maven	Central

This	is	not	a	new	feature	but	also	worth	to	tell	here	as	it	is	a	significant	improvement	on
the	whole	framework	project.	We	can	now	release	the	Citrus	artifacts	to	Maven	central
repository.	So	you	do	not	need	the	additional	labs.consol.de	repository	in	your	Maven
POM	anymore.	The	labs.consol.de	repository	will	continue	to	exist	though	as	we	will
release	SNAPSHOT	versions	of	Citrus	here	in	future.

Citrus	Reference	Guide

500Changes	2.4



Changes	in	Citrus	2.3?!

We	want	to	give	you	a	short	overview	of	what	has	changed	in	Citrus	2.3.	The	release
adds	some	new	features	and	improvements	to	the	box.	Bugfixes	of	course	are	also	part
of	the	package.	See	the	following	overview	on	what	has	changed.

Test	runner	and	test	designer

One	of	the	biggest	issues	with	the	Citrus	Java	DSL	is	the	fact	that	the	Citrus	Java	DSL
methods	first	build	the	whole	test	case	together	before	the	actual	execution	takes	place.
So	calling	a	Java	DSL	method	send	for	instance	just	prepares	the	sending	test	action.
The	actual	sending	of	the	message	takes	place	to	a	later	time	when	all	test	actions	are
setup	and	the	test	case	is	ready	to	run.	This	separation	of	design	time	and	runtime	of	a
test	case	leads	to	misunderstandings	as	a	Java	developer	is	used	to	work	with
statements	and	method	calls	that	perform	immediately.	Based	on	that	the	mixture	of
Citrus	Java	DSL	method	calls	and	normal	Java	code	logic	in	your	test	may	have	lead	to
unexpected	behavior.	Following	from	that	we	decided	to	refactor	the	Java	DSL	method
execution.	The	result	is	a	new	TestRunner	concept	that	executes	all	Java	DSL	method
calls	immediately.	The	old	way	of	building	the	whole	test	case	before	execution	is
represented	with	TestDesigner	concept.	So	both	worlds	are	now	available	to	you.	See
testcase	for	details.

WebSocket	support

The	WebSocket	message	protocol	builds	on	top	of	Http	standard	and	brings	bidirectional
communication	to	the	Http	client-server	world.	With	this	release	Citrus	users	are	able	to
send	and	receive	messages	with	WebSocket	connections.	The	Http	server
implementation	is	now	able	to	define	multiple	WebSocket	endpoints.	The	new	Citrus
WebSocket	client	is	able	to	publish	messages	to	the	server	via	bidirectional	WebSocket
protocol.	Seehttp-websocketfor	details.

JSONPath	support

Citrus	is	able	to	work	with	Xpath	expressions	in	several	fields	within	the	testing	domain
(overwrite	elements,	ignore	elements,	extract	values	from	payloads).	Now	this	support	of
manipulating	message	payloads	via	expressions	is	extended	with	JSONPath.	Similar	to
Xpath	the	JSONPath	expression	statements	enable	you	to	find	elements	and	values

Citrus	Reference	Guide

501Changes	2.3



within	a	message	payload.	Not	very	surprising	the	JSONPath	expressions	work	with
Json	message	payloads.	With	the	new	release	you	can	overwrite,	ignore	and	manipulate
Json	elements	using	JSONPath	expressions.	Seejson-pathfor	details.

Customize	message	validators

The	framework	offers	several	message	validator	implementations	for	different	message
formats	like	XML,	JSON,	plaintext	and	so	on.	In	addition	to	that	Citrus	has	a	set	of
Groovy	script	message	validators.	All	these	validator	implementations	are	active	by
default	so	you	are	able	to	validate	incoming	messages	accordingly	in	Citrus.	Now	with
this	release	we	added	a	more	comfortable	way	of	changing	the	framework	validation
functionality,	particular	when	adding	new	customized	message	validator
implementations.	See	validation	for	details.

Library	upgrades

We	have	upgraded	the	versions	of	the	major	dependency	libraries	of	Citrus.	This
includes	TestNG,	JUnit,	Spring	Framework,	Spring	WS,	Spring	Integration,	Apache
Camel,	Arquillian,	Jetty	and	more.	So	Citrus	is	now	working	with	up-to-date	versions	of
the	whole	messaging	and	middleware	integration	gang.

Upgrade	from	Citrus	2.2

Along	with	new	features	and	improvements	we	refactored	and	changed	some	parts	of
Citrus	so	you	might	have	to	set	things	straight	when	upgrading	to	2.3.	See	the	following
list	of	things	that	might	be	brought	up	to	you:

@CitrusTest	annotation:	We	have	moved	the	@CitrusTest	annotation	to	a	more
common	package.	The	old	package	was
com.consol.citrus.dsl.annotations.CitrusTest	.	The	new	package	is
com.consol.citrus.annotations.CitrusTest	.	So	you	have	to	change	the	Java
import	statements	in	your	Test	classes	when	upgrading.

TestResult:	We	changed	the	TestResult	instantiation	when	generating	the	test
reports.	The	TestResult	class	now	works	with	static	instantiation	methods	for
success,	skipped	and	failed	tests.	This	only	affects	your	code	when	you	have
created	custom	test	reporters.

Citrus	Reference	Guide

502Changes	2.3



CitrusTestBuilder	deprecation:	A	major	refactoring	was	done	in	the	TestBuilder
Java	DSL	code.	com.consol.citrus.dsl.TestBuilder	and	all	its	subclasses	were
marked	as	deprecated	and	will	disappear	in	next	versions.	So	instead	we	now
support	com.consol.citrus.dsl.design.TestDesigner	which	basically	offers	the
same	functionality	as	former	TestBuilder.	In	addition	that	refactoring	brought	a	new
way	of	executing	the	Java	DSL	test	cases.	Instead	of	building	the	whole	test	case
before	execution	is	done	as	a	whole	you	can	now	use	the
com.consol.citrus.dsl.runner.TestRunner	implementation	in	order	to	execute
each	test	action	in	the	Java	DSL	immediately.	This	is	a	more	Java	like	way	of
writing	Citrus	test	cases	as	you	can	mix	Citrus	test	action	execution	with	normal
Java	statements	as	usual.	Read	more	about	the	new	approach	in	testcase

Bugfixes

Bugs	are	part	of	our	software	developers	world	and	fixing	them	is	part	of	your	daily
business,	too.	Finding	and	solving	issues	makes	Citrus	better	every	day.	For	a	detailed
listing	of	all	bugfixes	please	refer	to	the	complete	changes	log	of	each	release	in	JIRA
(http://www.citrusframework.org/changes-report.html).

Citrus	Reference	Guide

503Changes	2.3

http://www.citrusframework.org/changes-report.html


Changes	in	Citrus	2.2?!

Citrus	2.2	is	a	release	mostly	adding	new	features	as	well	as	improvements	to	given
Citrus	features.	Bugfixes	of	course	are	also	part	of	the	package.	See	the	following
overview	on	what	has	changed.

Arquillian	support

Arquillian	is	a	well	known	integration	test	framework	that	comes	with	a	great	feature	set
when	it	comes	to	Java	EE	testing	inside	of	a	full	qualified	application	server.	With
Arquiliian	you	can	deploy	your	Java	EE	services	in	a	real	application	server	of	your
choice	and	execute	the	tests	inside	the	application	server	boundaries.	This	makes	it	very
easy	to	test	your	Java	EE	services	in	scope	with	proper	JNDI	resource	allocation	and
other	resources	provided	by	the	application	server.	Citrus	is	able	to	connect	with	the
Arquillian	test	case.	Speaking	in	more	detail	your	Arquillian	test	is	able	to	use	a	Citrus
extension	in	order	to	use	the	Citrus	feature	set	inside	the	Arquillian	boundaries.	See
arquillian	for	details.

JUnit	support

Citrus	supports	both	major	players	in	unit	testing	TestNG	and	JUnit.	Unfortunately	we
did	not	offer	the	same	feature	support	for	JUnit	as	it	was	done	for	TestNG.	Now	with
Citrus	2.2	we	improved	the	JUnit	support	in	Citrus	so	you	are	able	to	use	all	features
with	both	frameworks.	This	is	especially	related	to	using	the	@CitrusTest	and
@CitrusXmlTest	method	annotations	in	test	classes.	Seerun-junithow	it	works.

Start/Stop	server	action

Citrus	was	missing	a	dedicated	test	action	to	start	and	stop	Citrus	server	components	at
tet	runtime.	With	the	newly	added	test	actions	you	are	able	to	start	and	stop	server
components	as	you	like	within	your	test	case.	Seeactions-manage-serverwith	a	detailed
description.

Citrus	Ant	tasks

We	discontinue	to	support	the	Citrus	Ant	tasks.	The	Ant	tasks	were	not	very	stable	an
lacked	full	feature	support	when	executing	test	cases	with	JUnit	in	Apache	Ant.	Instead
we	added	a	brief	description	on	how	to	execute	Citrus	tests	with	the	well	documented

Citrus	Reference	Guide

504Changes	2.2



and	stable	default	JUnit	and	TestNG	ant	tasks.	Seesetup-using-anthow	it	works.

Bugfixes

Bugs	are	part	of	our	software	developers	world	and	fixing	them	is	part	of	your	daily
business,	too.	Finding	and	solving	issues	makes	Citrus	better	every	day.	For	a	detailed
listing	of	all	bugfixes	please	refer	to	the	complete	changes	log	of	each	release	in	JIRA
(http://www.citrusframework.org/changes-report.html).

Citrus	Reference	Guide

505Changes	2.2

http://www.citrusframework.org/changes-report.html


Changes	in	Citrus	2.1

Citrus	2.1	adds	some	enhancements	to	the	Citrus	feature	set	as	well	as	bugfixes	and
improvements.	See	the	following	overview	on	what	has	changed.

SOAP	MTOM	support

SOAP	MTOM	stands	for	Message	Transmission	Optimization	Mechanism	which	allows
you	to	send	and	receive	large	SOAP	attachment	contents	streamed	with	optimized
resource	allocation	on	server	and	client.	Many	thanks	to	community	contributions
(github/stonator)	that	made	this	happen	with	Citrus	SOAP	client	and	server.	As	a	user
you	can	shoose	to	send	and	receive	SOAP	attachments	with	MTOM	optimization.
Seesoap-attachment-mtomfor	details.

SOAP	envelope	handling

In	its	default	behavior	Citrus	will	remove	the	SOAP	envelope	for	incoming	SOAP
requests	just	providing	the	SOAP	body	as	message	payload.	This	is	more	straight
forward	in	a	test	case	to	perform	further	validation	steps.	However	it	might	be	mandatory
to	see	the	whole	SOAP	envelope	inside	the	test	case	for	special	validation.	As	a	user
you	can	now	choose	how	to	handle	incoming	SOAP	envelope	by	definig	the	keep-soap-
envelope	setting	on	the	Citrus	SOAP	server	components.	See	soap-keep-envelope	for
details.

SOAP	1.2	message	factory

The	Citrus	SOAP	server	component	was	missing	a	setting	for	the	SOAP	message
factory	to	use.	The	SOAP	message	factory	implementation	decides	which	SOAP	version
to	use	1.1	or	1.2.	Now	you	can	set	the	message	factory	on	the	server	component	and
define	the	SOAP	version	to	use.	Seesoap-12for	details.

TestNG	data	provider	handling

We	improved	the	TestNG	data	provider	handling	in	Citrus.	Now	you	can	use	the	usual
TestNG	data	provider	annotations	in	your	test	methods.	TestNG	will	call	the	Citrus	test
case	several	times	with	respective	parameters	provided	as	test	variables.	This	replaces

Citrus	Reference	Guide

506Changes	2.1



the	old	citrusDataProvider	mechanism	that	tried	to	make	things	working	in	a	kind	of
workaround.	The	new	provider	handling	also	supports	multiple	data	providers	in	a	test
class.run-testng-data-providers	describes	how	this	is	working	for	you.

Mail	message	namespace

The	Citrus	mail	components	enable	message	exchange	as	mail	client	and	server.	For
validation	purpose	the	components	offer	a	XML	mail	message	representation.	We	have
added	a	target	namespace
xmlns="http://www.citrusframework.org/schema/mail/message"	and	a	XSD	schema
for	this	XML	mail	message	representation.	From	now	on	you	have	to	use	the
namespace	accordingly	in	your	mail	message	payloads	when	sending	and	receiving
mail	messages	in	Citrus.	See	mail	how	to	use	the	new	XML	mail	message	namespace.

Ssh	message	namespace

When	sending	and	receiving	messages	via	ssh	Citrus	provides	a	XML	representation	for
request	and	response	data.	These	ssh	messages	follow	a	new	target	namespace
xmlns="http://www.citrusframework.org/schema/ssh/message"	and	a	XSD	schema.
This	means	you	have	to	use	the	namespace	accordingly	in	your	ssh	message	payloads
when	sending	and	receiving	ssh	messages	in	Citrus.	See	ssh	for	further	details.

Citrus	Reference	Guide

507Changes	2.1

http://www.citrusframework.org/schema/mail/message
http://www.citrusframework.org/schema/ssh/message


Changes	in	Citrus	2.0

Citrus	2.0	is	a	major	version	upgrade	and	therefore	big	things	should	be	happening.	In
the	following	sections	we	shortly	describe	the	Citrus	evolution.	We	want	you	to	get	a
quick	overview	of	what	has	happened	and	all	the	new	things	in	Citrus.	So	hopefully	you
can	spot	your	favorite	new	feature.

Refactoring

In	Citrus	1.4	we	began	to	refactor	the	configuration	components	in	Citrus.	This
refactoring	was	finalized	in	Citrus	2.0	which	means	that	all	deprecated	classes	and	api
are	no	longer	supported.	The	classes	were	removed	so	you	get	compilation	errors	when
using	those	old	stuff.	If	you	still	use	the	old	configuration	see
thishttp://citrusframework.org/migration-sheet.htmlin	order	to	learn	how	to	upgrade	to	the
new	configuration.	It	is	worth	to	do	so!	In	addition	to	that	we	did	refactoring	in	following
fields:

Reply	message	correlation	In	synchronous	communication	scenarios	Citrus
optionally	correlated	messages	across	send	and	receive	test	actions.	In	default
setting	the	message	correlation	was	disabled.	With	2.0	release	we	changed	this
behavior	to	the	opposite.	Now	message	correlation	is	done	by	default	with	a	default
correlation	algorithm.	So	in	case	you	used	the	DefaultReplyMessageCorrelator	in
Citrus	before	you	will	not	have	to	do	so	in	future	as	this	is	done	by	default.	The
message	correlation	gives	us	more	robust	tests	especially	when	executing	tests	in
parallel.	In	the	test	case	you	do	not	have	to	do	anything	for	proper	message
correlation.

Citrus	message	API	We	have	refactored	the	Citrus	message	API	to	use	custom
message	objects	in	endpoints,	consumers	and	producers.	This	has	no	affect	on
your	tests	or	configuration	unless	you	have	written	endpoint	extensions	or	custom
endpoints	on	your	own.	You	might	have	to	refector	your	code	accordingly.	Have	a
look	at	the	Citrus	endpoint	implementations	in	order	to	see	how	the	new	message
API	works	for	you.

Sleep	time	in	milliseconds	This	is	something	that	we	definitely	carry	around	since
the	beginning	of	Citrus.	The	time	values	in	sleep	test	action	were	done	in	seconds,
which	is	inconvenient	when	using	time	periods	below	one	second	or	non	natural
numbers.	Now	you	can	choose	to	use	milliseconds	which	is	more	likely	how	you
should	configure	time	periods	anyway.	Seeactions-sleepfor	details

Citrus	Reference	Guide

508Changes	2.0



Auto	sleep	time	in	milliseconds	We	used	seconds	when	using	auto	sleep	in
repeat	on	error	container.	This	led	to	the	fact	that	we	were	not	able	to	sleep	time
periods	below	one	second.	Also	it	was	not	possible	to	specify	non	natural	numbers
such	as	1.5	seconds	auto	sleep	time.	We	changed	to	milliseconds	which	is	more
likely	how	you	are	used	to	configure	time	periods	anyway.	Seecontainers-repeat-
onerrorfor	details

Message	handler	vs.	endpoint	adapter	In	previous	releases	prior	to	1.4	we	had
message	handlers	on	server	side	that	were	able	to	forward	in	coming	requests	to
message	channels	or	jms	destinations.	The	old	message	handler	implementations
were	removed	in	2.0.	Instead	you	should	use	the	endpoint-adapter
implementations.	Seeendpoint-adapterhow	that	works.

XML	endpoint	reference	attribute	In	a	XML	test	case	you	reference	the	message
endpoint	in	the	send	and	receive	actions	with	a	special	attribute	called	with	.	This
attribute	is	no	longer	supported	and	was	removed.	Instead	you	should	use	the
endpoint	attribute	which	was	introduced	in	Citrus	1.4	and	has	the	exact	same
functionality.

Removed	citrus-adapter	module	The	Maven	module	citrus-adapter	was
removed.	Classes	and	API	moved	to	citrus-core	module.	For	endpoint	adapters	do
use	the	new	configuration	components	that	were	introduced	in	Citrus	1.4.
Seeendpoint-adapterfor	details.

WebServiceEndpoint	class	renamed	In	terms	of	package	refactoring	the
com.consol.citrus.ws.WebServiceEndpoint	was	renamed	to
com.consol.citrus.ws.server.WebServiceEndpoint

Spring	framework	4.x

In	terms	of	upgrading	the	Citrus	API	dependencies	we	introduced	Spring	4.x	versions.
This	includes	the	core	Spring	framework	libraries	as	well	as	the	Spring	Integration	and
Spring	WebService	project	artifacts.	So	with	the	major	version	upgrade	lots	of	API
changes	were	also	done	in	Citrus	code	in	order	to	meet	the	new	Spring	4.x	API.	So	we
recommend	for	you	to	also	use	Spring	4.x	version	in	your	Citrus	projects.

FTP	support

Citrus	Reference	Guide

509Changes	2.0



New	member	of	the	Citrus	family	deals	with	FTP	connectivity.	The	new	citrus-ftp
module	provides	a	neat	ftp	server	and	client	implementation	so	you	can	send	and
receive	messages	vie	FTP	message	transport.	ftp	describes	the	new	functionality	in
detail.

Functions	with	test	context	access

Functions	are	now	able	to	access	the	test	context.	This	enables	you	to	access	all	test
variables	and	other	central	test	related	components	in	a	function	implementation.
Therefore	the	function	Java	interface	has	now	an	additional	test	context	parameter.
Refactor	your	custom	written	functions	accordingly	to	meet	the	new	interface	rules.
Seehttp://www.citrusframework.org/tutorials-functions.htmlfor	details.

Validation	matcher	with	test	context	access

Just	like	functions	now	validation	matchers	are	able	to	access	the	test	context.	This
enables	you	to	access	all	test	variables	and	other	central	test	related	components	in	a
validation	matcher	implementation.	The	validation	matcher	Java	interface	has	changed
accordingly	with	an	additional	test	context	parameter.	Refactor	your	custom	written
matcher	implementation	accordingly	to	meet	the	new	interface	rules.

Message	listener	with	test	context	access

Message	listeners	do	now	also	have	access	to	the	test	context.	This	is	more	powerful	as
you	can	access	test	variables	and	other	central	components	within	the	test	context.

SOAP	over	JMS

SOAP	over	JMS	was	supported	in	Citrus	from	the	very	beginning.	Unfortunately	you	had
to	always	specify	the	whole	SOAP	envelope	in	your	test	case.	SOAP	envelope	handling
is	now	done	automatically	by	Citrus	when	using	the	new	SoapJmsMessageConverter	.
The	converter	takes	care	on	constructing	a	proper	SOAP	envelope	message.	Seejms-
soapfor	details.

Multiple	SOAP	attachments

When	sending	and	receiving	SOAP	messages	with	Citrus	as	client	or	server	you	can
add	one	to	many	attachments	to	the	message.	Before	it	was	only	possible	to	have	one
single	attachment	in	a	message.	Now	you	have	no	limits	in	defining	SOAP	attachments.

Citrus	Reference	Guide

510Changes	2.0



Seesoap-webservicesfor	details.

Multiple	SOAP	XML	header	fragments

The	SOAP	header	can	hold	multiple	XML	header	fragments	with	different	namespaces
and	content.	With	Citrus	2.0	you	are	able	to	construct	such	a	SOAP	message	with
multiple	header	contents.	Seesoap-webservicesfor	details.

Create	variable	validation	matcher

A	new	validation	matcher	implementation	is	able	to	create	a	new	variable	on	the	fly.	The
actual	field	name	is	used	as	variable	name	and	the	element	value	as	variable	value.	The
variable	name	can	slo	be	customized	with	optional	validation	matcher	parameter.	This	is
a	great	alternative	to	the	XPath	expression	evaluating	variable	extraction.	Also	very
handsome	to	use	this	validation	matcher	in	Json	message	payloads.	Seevalidation-
matcher-variablefor	details.

New	configuration	components

A	major	part	of	the	Citrus	configuration	is	done	in	a	Spring	bean	application	context.
Central	Citrus	components	and	features	are	added	as	Spring	beans	to	the	application
context.	Now	with	Citrus	2.0	we	have	added	special	configuration	components	for	almost
all	features.	This	means	that	you	can	easily	add	configuration	using	the	new	XML
schema	components.	See	which	components	are	available:

Function	library	Custom	function	libraries	with	custom	function	implementations
are	now	configured	with	the	function-library	XML	schema	components	in	the
Spring	application	context	configuration.	See	functions	for	details.

Validation	matcher	library	Custom	validation	matcher	implementations	are	now
configured	with	the	validation-matcher-library	XML	schema	components	in	the
Spring	application	context	configuration.	See	validation-matchersfor	details.

Data	dictionary	Data	dictionaries	apply	to	all	messages	send	and	received	in	test
cases.	You	can	define	multiple	dictionaries	using	the	data-dictionary	XML	schema
components	in	the	Spring	application	context	configuration.	See	data-dictionary	for
details.

Citrus	Reference	Guide

511Changes	2.0



Namespace	context	Configuration	of	a	global	namespace	context	is	necessary	for
XML	message	payloads	and	XPath	expressions	used	in	the	test	cases.	The
namespace-context	XML	schema	component	is	used	in	the	Spring	application
context	configuration	and	simplifies	the	configuration.	See	xpath	for	details.

Before/after	suite	components

When	executing	test	actions	before	the	actual	test	run	you	can	use	the	sequence	before
suite	components.	We	have	improved	these	components	to	use	a	special	XML	schema.
This	enables	easy	configuration	of	both	before	and	after	suite	actions.	In	addition	to	that
you	can	bind	the	suite	actions	to	special	packages,	test	names	or	suite	names.	So	you
can	now	have	more	than	one	sequence	before	suite	at	the	same	time.	According	to	the
environment	settings	the	before	suite	actions	are	executed	or	left	out.	Last	not	least	we
have	done	the	same	improvement	to	the	before	test	actions	and	we	have	introduced	a
after	test	sequence	component	for	execution	after	each	test.	See	how	this	is	done	in
testsuite.

Citrus	JMS	module

JMS	support	has	been	a	major	part	of	Citrus	from	the	very	beginning.	Up	to	now	the
JMS	features	were	located	in	citrus-core	Maven	module.	With	Citrus	2.0	we	introduced
a	separate	citrus-jms	Maven	module.	This	means	that	you	might	have	to	add	proper
Maven	dependency	of	this	new	module	in	your	existing	project	when	using	JMS.	See
how	this	is	done	in	jms.

Citrus	Reference	Guide

512Changes	2.0



Changes	in	Citrus	1.4.x

Refactoring

It	was	time	for	us	to	do	some	code	refactoring	in	Citrus.	Many	users	struggled	with	the
configuration	of	the	Citrus	components	and	project	setup	was	too	verbose	in	some
areas.	This	is	why	we	tried	to	improve	things	with	working	over	the	basic	concepts	and
components	in	Citrus.

The	outcome	is	a	new	Citrus	1.4	which	has	new	configuration	components	for	sending
and	receiving	messages.	Also	the	client	and	server	components	for	HTTP	and	SOAP
have	changed	in	terms	of	simplification.	Unfortunately	refactoring	comes	along	with	code
deprecation.	This	is	why	you	have	to	also	change	your	project	code	and	configuration	in
the	future.	This	is	especially	when	you	have	made	code	adjustments	and	extensions	to
the	Citrus	API.

The	good	news	now	is	that	with	Citrus	1.4	both	old	and	new	configuration	works	fine,	so
you	do	not	have	to	change	your	existing	project	configuration	when	coming	from	Citrus
1.3.x	and	earlier	versions.	But	there	is	a	lot	of	code	marked	as	deprecated	in	Citrus	1.4.
Have	a	look	at	what	has	been	marked	as	deprecated	and	update	your	code	to	use	the
new	API.

We	have	set	up	a	migration	sheet	for	users	coming	from	Citrus	1.3.x	and	earlier	versions
in	order	to	find	a	quick	overview	of	what	has	changed	and	how	to	use	the	new
configuration	components:http://citrusframework.org/migration-sheet.html

Data	dictionaries

Data	dictionaries	define	dynamic	placeholders	for	message	payload	element	values	in
general	manner.	In	terms	of	setting	the	same	message	element	across	all	test	cases
and	all	test	actions	the	dictionary	provides	an	easy	key-value	approach.

When	dealing	with	any	kind	of	message	payload	Citrus	will	ask	the	data	dictionary	for
possible	translation	of	the	message	elements	contained.	The	dictionary	keys	do	match
to	a	specific	message	element	defined	by	XPath	expression	or	document	path
expression	for	instance.	The	respective	value	is	then	set	on	all	messages	in	Citrus
(inbound	and	outbound).

Dictionaries	do	apply	to	XML	or	JSON	message	data	and	can	be	defined	in	global	or
specific	scope.	Find	out	more	detailed	information	about	this	topic	indata-dictionary

Citrus	Reference	Guide

513Changes	1.4



Mail	adapter

With	the	new	mail	adapter	you	are	able	to	both	send	and	receive	mail	messages	within	a
test	case.	The	new	Citrus	mail	client	produces	a	mail	mime	part	message	with	usual	mail
headers	and	a	text	body	part.	Optional	attachment	parts	are	supported,	too.

On	the	server	side	Citrus	provides	a	SMTP	server	to	accept	client	mail	messages.	The
incoming	mail	messages	can	have	multiple	text	parts	and	attachment	parts.	As	usual
you	can	validate	the	incoming	mail	messages	regarding	headers	and	payload	with	the
well	known	validation	capabilities	in	Citrus.

Read	more	about	the	new	mail	module	in	mail

Endpoint	adapter

Endpoint	adapters	help	to	customize	the	behavior	of	a	Citrus	server	such	as	HTTP	or
SOAP	web	servers.	The	endpoint	adapter	is	responsible	of	creating	an	endpoint	that
responds	to	inbound	requests.	You	can	customize	the	behavior	so	the	Citrus	server
handles	incoming	requests	as	you	like.

By	default	the	Citrus	server	uses	a	channel	endpoint	adapter	so	incoming	messages	get
forwarded	to	an	in	memory	message	channel.	There	are	several	other	implementations
available	as	endpoint	adapter.	Read	more	about	that	inendpoint-adapter

Global	variables	component

We	added	a	global	variables	XML	configuration	component	for	more	comfortable	usage
in	basic	Spring	application	context	configuration.	The	component	is	able	to	create	new
global	variables	that	are	valid	across	all	Citrus	test	cases.	This	can	also	be	done	by
loading	a	property	file	from	an	external	file	resource.	Find	out	how	to	us	it	intestcase-
global-variables

Json	text	validator	mode

The	Json	text	validator	is	now	able	to	operate	in	two	different	modes.	The	strict	mode	is
the	default	mode	and	validation	includes	also	a	strict	check	on	all	sub-objects	and	JSON
array	elements.	So	if	there	is	an	object	missing	the	validation	will	fail	immediately.
Sometimes	it	may	be	accurate	to	only	validate	a	subset	of	all	JSON	objects	in	the	data
structure.	Therefore	the	non-strict	mode	does	not	check	on	object	attribute	counts.	See
more	description	invalidation-json

Citrus	Reference	Guide

514Changes	1.4



HTTP	REST	specific	Java	DSL	options

When	sending	and	receiving	HTTP	messages	on	REST	APIs	you	can	now	use	interface
specific	options	in	the	Java	DSL.	This	refers	to	request	uri,	context	path,	query
parameters	and	HTTP	status	codes	for	instance.	With	this	enhancement	you	are	now
more	comfortable	in	handling	REST	API	calls	in	Citrus.	Find	out	how	to	us	it	in	http

SOAP	HTTP	validation

While	receiving	SOAP	messages	over	HTTP	we	are	now	able	to	also	verify	the	used
HTTP	uri,	context-path	and	query	parameters.	You	can	expect	clients	to	use	those
values	in	your	receive	action	as	you	would	do	in	normal	HTTP	communication	within
Citrus.	This	completes	the	HTTP	server	validation	when	using	SOAP	over	HTTP.	Read
more	about	it	insoap-webservices

Apache	Camel	integration

Apache	Camel	is	a	great	enterprise	integration	platform	that	implements	the	enterprise
integration	patterns	for	building	powerful	mediation	and	routing	rules	for	message	based
integration	applications.	With	the	new	support	for	camel	endpoints	in	Citrus	you	can
interact	with	Apache	Camel	components	for	sending	and	receiving	messages.	Apache
Camel	offers	a	fine	support	for	different	message	transports	that	now	can	be	used	in
Citrus	also.	In	addition	to	that	you	can	put	your	Camel	application	to	the	test	with	loading
of	the	Apache	Camel	context	with	all	your	route	definitions.	Citrus	is	able	to	interact	with
these	routes	in	asynchronous	and	synchronous	communication	scenarios.	Read	about	it
in	camel.

Vert.x	integration

Vert.x	is	a	very	powerful	application	platform	that	provides	scalable	messaging	for
several	message	transports	such	as	HTTP,	WebSockets,	TCP	and	more.	Vert.x	also
has	a	distributed	event	bus	that	connects	multiple	Vert.x	instances	across	the	network.
With	Citrus	1.4	the	Vert.x	platform	is	integrated	with	Citrus	event	bus	endpoints.	So	you
can	participate	in	communicating	to	the	Vert.x	event	bus	from	Citrus	test	case.	This
enables	you	to	add	automated	integration	tests	to	the	Vert.x	platform.	Read	about	that	in
vertx.

Dynamic	endpoint	components

Citrus	Reference	Guide

515Changes	1.4



Endpoints	represent	the	base	component	in	Citrus	for	sending	and	receiving	messages.
The	endpoint	usually	is	defined	inside	the	Citrus	Spring	application	context	as	Spring
bean	component.	Now	it	is	also	possible	to	create	dynamic	endpoint	definitions	at	test
runtime.	This	comes	in	very	handy	when	you	just	want	to	send	or	receive	a	message
with	Citrus	as	is.	You	do	not	need	to	add	the	complete	endpoint	configuration	but	only
use	a	special	endpoint	uri	pattern.	Citrus	will	create	the	endpoint	at	runtime
automatically.	Learn	how	to	use	the	dynamic	endpoint	pattern	inendpoint-components.

Citrus	Reference	Guide

516Changes	1.4



Changes	in	Citrus	1.3.x

@CitrusTest	and	@CitrusXmlTest	annotations

With	the	new	Java	DSL	capabilities	Citrus	created	new	ways	of	executing	test	cases
within	a	TestNG	or	JUnit	test	class.	Now	we	even	improved	the	usage	here	with	two	new
annotations	@CitrusTest	and	CitrusXmlTest	.	The	integration	into	the	unit	test	class
has	never	been	easier	for	you.

The	new	Citrus	annotations	go	directly	to	your	unit	test	methods.	With	this	enhancement
you	can	have	multiple	Citrus	test	cases	in	one	single	Java	class	and	the	Citrus	tests	now
are	able	to	coexist	with	other	unit	test	methods.	You	can	even	mix	Java	DSL	and	XML
Citrus	test	cases	in	a	single	Java	class.

The	XML	Citrus	tests	can	be	grouped	to	a	single	Java	class	with	multiple	XML	files
loaded	during	execution.	There	is	even	a	package	scan	for	all	Citrus	XML	files	within	a
directory	structure	so	you	do	not	have	to	create	a	Java	class	for	each	test	case
anymore.

We	have	changed	the	documentation	in	this	guide	so	you	can	see	how	to	use	the	new
annotations.	For	detailed	overview	seerun-config-testng.	Also	see	our	Citrus	blog	where
we	continuously	describe	the	many	possibilities	that	you	have	with	the	new	annotations.

@CitrusParameters	annotation

Citrus	is	able	to	use	the	fabulous	TestNG	data	provider	capabilities	in	order	to	execute	a
test	case	several	times	with	different	data	provided	form	external	resources.	The	new
@CitrusParameters	annotation	helps	to	set	parameter	names	which	are	used	as	test
variable	names	in	the	test	case.

Schema	repository	configuration	components

Defining	schema	repositories	and	schemas	(xsd,	wsdl)	is	common	use	in	Citrus.	We
have	added	XML	bean	definition	parsers	so	defining	those	components	is	less	verbose.
You	can	use	the	Citrus	citrus:schema-repository	and	citrus:schema	components	in
your	Spring	application	context	configuration.	The	components	do	receive	several
attributes	for	further	configuration.	XSD,	WSDL	and	schema	collections	are	supported
here.

Citrus	Reference	Guide

517Changes	1.3



Checkoutxsd-validationfor	examples	how	to	use	the	new	configuration	components.

Change	date	function

We	have	added	a	new	Citrus	function	citrus:changeDate()	that	is	available	for	you	by
default.	The	function	changes	a	given	date	value	adding	or	removing	a	datetime	offset
(e.g.	year,	month,	day,	hour,	minute,	second).	So	you	can	manipulate	each	date	value
also	those	of	dynamic	nature	coming	with	some	message.

Seefunctions-changedatefor	examples	and	detailed	syntax	usage	of	this	function.

Weekday	validation	matcher

The	new	weekday	validation	matcher	also	works	on	date	values.	The	matcher	checks
that	a	given	date	value	evaluates	to	a	expected	day	of	the	week.	So	the	user	can	check
that	a	date	field	is	always	a	saturday	for	instance.	This	is	very	helpful	when	checking	that
a	given	date	value	is	not	a	working	day	for	example.

Seevalidation-matcher-weekdayfor	some	more	detailed	description	of	the	matcher's
capabilities.

Java	DSL

Citrus	users,	in	particular	those	with	development	experience,	do	often	tell	me	about	the
nasty	XML	code	they	have	to	deal	with	for	writing	Citrus	test	definitions.	Developers
want	to	write	Java	code	rather	than	XML.	Although	I	personally	do	like	the	Citrus	XML
test	syntax	we	have	introduced	a	Java	DSL	language	for	writing	Citrus	tests	with	Java
only.

We	have	introduced	the	Java	DSL	to	all	major	test	action	features	in	Citrus	so	you	can
switch	without	having	to	worry	about	loosing	functionality.	Details	can	be	seen	in	the	test
action	section	where	we	added	Java	DSL	examples	almost	everywhere	(actions).	The
basic	Java	DSL	setup	is	described	in	testcase.

XHTML	message	validation

Message	validation	for	Html	code	was	not	really	comfortable	as	Html	does	not	confirm	to
be	wellformed	and	valid	XML	syntax.	XHTML	tries	to	close	this	gap	by	automatically
resolving	all	Html	specific	XML	syntax	rule	violations.	With	Citrus	1.3	we	introduced	a
XHTML	message	validator	which	does	the	magic	for	converting	Html	code	to	proper

Citrus	Reference	Guide

518Changes	1.3



wellformed	and	valid	XML.	In	a	test	case	you	can	then	use	the	full	XML	validation	power
in	Citrus	in	order	to	validate	incoming	Html	messages.	Sectionvalidation-xhtmldeals	with
the	new	validation	capabilities	for	Html.

Multiple	SOAP	fault	detail	support

SOAP	fault	messages	can	hold	many	SOAP	fault	detail	elements.	Citrus	was	able	to
handle	a	single	SOAP	fault	detail	on	sending	and	receiving	test	actions	from	the	very
beginning	but	multiple	SOAP	fault	detail	elements	were	not	supported.	Fortunately
things	are	getting	better	and	you	can	send	and	receive	as	many	fault	detail	elements	as
you	like	in	Citrus	1.3.	For	each	SOAP	fault	detail	you	can	specify	individual	validation
rules	and	expectations.	Seesoap-faultsfor	detailed	description.

Jetty	server	security	handler

With	our	Jetty	server	component	you	can	set	up	Http	mock	servers	very	easy.	The
server	is	automatically	configured	to	accept	Http	client	connections	and	to	load	a	Spring
application	context	on	startup.	Now	you	can	also	set	some	more	details	on	this
automatic	server	configuration	(e.g.	server	context	path,	servlet	names	or	servlet
mappings).	In	addition	to	that	you	can	access	the	security	context	of	the	web	container.
This	enables	you	to	set	up	security	constraints	such	as	basic	authentication	on	server
resources.	Clients	are	then	forced	to	authenticate	properly	when	accessing	the	server.
Unauthorized	users	will	get	401	access	denied	errors	immediately.	Seehttp-basic-auth-
serverfor	details.	Of	course	this	also	applies	to	our	SOAP	WebService	Jetty	server
components	(soap-basic-auth-server).

Test	actors

We	introduced	a	new	concept	of	test	actors	for	sending	and	receiving	test	actions.	This
enables	you	to	link	a	test	actor	(e.g.	interface	partner	application,	backend	application)	to
a	test	action	in	your	test.	Following	from	that	you	can	enable/disable	test	actors	and	all
linked	test	actions	very	easy.	This	enables	us	to	reuse	Citrus	test	cases	in	end-to-end
test	scenarios	where	not	all	interface	partners	get	simulated	by	Citrus.	If	you	like	to	read
more	about	this	concept	follow	the	detailed	instruction	intest-actors.

Simulate	Http	error	codes	with	SOAP

Citrus	Reference	Guide

519Changes	1.3



Citrus	provides	SOAP	WebServices	server	simulation	with	clients	connecting	to	the
server	sending	SOAP	requests.	As	a	server	Citrus	is	now	able	to	simulate	Http	error
codes	like	404	Not	found	and	500	Internal	server	error	.	Before	that	the	Citrus	SOAP
server	had	to	always	respond	with	a	proper	SOAP	response	or	SOAP	fault.	Seesoap-
http-errorsfor	details.

SSH	server	and	client

The	Citrus	family	has	raised	a	new	member	in	adding	SSH	connectivity.	With	the	new
SSH	module	you	are	able	to	provide	a	full	stack	SSH	server.	The	SSH	server	accepts
client	connections	and	you	as	a	tester	can	simulate	any	SSH	server	functionality	with
proper	validation	as	it	is	known	to	Citrus	SOAP	and	HTTP	modules.	In	addition	to	that
you	can	also	use	the	Citrus	SSH	client	in	order	to	connect	to	an	external	SSH	server.
You	can	execute	SSH	commands	on	the	SSH	server	and	validate	the	respective
response	data.	The	full	description	is	provided	in	ssh.

ANT	run	test	action

With	this	new	test	action	you	can	call	ANT	builds	from	your	test	case.	The	action
executes	one	or	more	ANT	build	targets	on	a	build.xml	file.	You	can	specify	build
properties	that	get	passed	to	the	ANT	build	and	you	can	add	a	custom	build	listener.	In
case	the	ANT	build	run	fails	the	test	fails	accordingly	with	the	build	exception.
Seeactions-antrunfor	details.

Polling	interval	for	reply	handlers

With	synchronous	communication	in	Citrus	we	always	have	a	combination	of	a
synchronous	message	sender	and	a	reply	handler	component.	These	two	perform	a
handshake	when	passing	synchronous	reply	messages	to	the	test	for	further	processing
such	as	message	validation.	While	the	sender	is	waiting	for	the	synchronous	response
to	arrive	the	reply	handler	polls	for	the	reply	message.	This	polling	for	reply	messages
was	done	in	a	static	way	which	often	led	to	time	delays	according	to	long	polling
intervals.	Now	with	Citrus	1.3	you	can	set	the	polling-interval	for	the	reply	handler	as	you
like.	This	setting	is	valid	for	all	reply	handler	components	in	Citrus	(citrus-jms,	citrus-http,
citrus-ws,	citrus-channel,	citrus-shh,	and	so	on).

Upgrading	from	version	1.2

Citrus	Reference	Guide

520Changes	1.3



If	you	are	coming	from	Citrus	1.2	you	may	have	to	look	at	the	following	points	in	order	to
have	a	smooth	upgrade	to	the	new	release	version.

Jetty	version	upgrade	We	are	using	Jetty	a	lot	for	starting	Http	server	mocks
within	Citrus.	In	order	to	stay	up	to	date	we	upgraded	to	Jetty	8.1.7	version	with	this
Citrus	release.	This	implies	that	package	names	did	change	for	Jetty	API.	In	general
there	is	no	conflict	for	you	as	a	Citrus	user,	but	you	may	want	to	adjust	your	logging
configuration	according	to	new	Jetty	packages.	Jetty	package	names	did	change
from	ord.mortbay	to	org.eclipse.jetty	.

Spring	version	upgrade	Staying	up	to	date	with	the	versions	of	3rd	library
dependencies	is	quite	important	for	us.	So	we	upgrade	our	dependencies	to	newer
versions	with	each	release.	As	we	did	only	upgrade	minor	versions	there	is	no
significant	change	or	problems	to	be	expected.	However	you	may	take	care	on
versions	and	release	changes	in	the	Spring	world	for	details	and	migration.

TIBCO	module	We	decided	to	put	the	TIBCO	module	separately	as	it	is	a	very
special	connectivity	adapter	for	TIBCO	software	only.	So	you	will	not	find	the	TIBCO
module	within	the	Citrus	distribution	anymore.	We	will	maintain	a	TIBCO
connectivity	adapter	separately	in	the	future.

Citrus	Reference	Guide

521Changes	1.3



Changes	in	Citrus	1.2

Spring	version	update

We	have	some	major	version	upgrades	in	our	Spring	dependencies.	We	are	now	using
Spring	3.1.1,	Spring	Integration	2.1.2	and	SpringWS	2.1.0.	This	upgrade	was	overdue
for	some	time	and	is	definitely	worth	it.	With	these	upgrades	we	had	to	apply	some
changes	in	our	API,	too.	This	is	because	we	are	using	the	Spring	classes	a	lot	in	our
code.	See	the	upgrade	guide	in	this	chapter	for	all	significant	changes	that	might	affect
your	project.

New	groovy	features

Citrus	extended	the	possibilities	to	work	with	script	languages	like	Groovy.	You	can	use
Groovy's	MarkupBuilder	to	create	XML	message	payloads.	Your	Groovy	code	goes	right
into	the	test	case	or	comes	from	external	file.	With	MarkupBuilder	you	do	not	need	to
care	about	XML	message	syntax	and	overhead.	Just	focus	on	the	pure	message
content.	You	can	read	the	details	ingroovy-markupbuilder.

Further	Groovy	feature	goes	to	the	validation	capabilities.	Instead	of	working	with	XML
DOM	tree	comparison	and	XPath	expression	validation	you	can	use	Groovy
XMLSlurper.	This	is	very	useful	for	those	of	you	who	need	to	do	complex	message
validation	and	do	not	like	the	XML/XPath	syntax	at	all.	With	XMLSlurper	you	can	access
the	XML	DOM	tree	via	named	closure	operations	which	feels	great.	This	especially
comes	in	handy	for	complex	generic	XML	structures	as	you	can	search	for	elements,
sort	element	list	and	use	the	powerful	contains	operation.	This	is	all	described	ingroovy-
xmlslurper.

Some	other	Groovy	support	extension	comes	in	SQL	result	set	validation	(actions-
database-groovy).	When	reading	data	from	the	database	someone	is	able	to	validation
the	resulting	data	row	set	with	Groovy	script.	The	script	code	easily	accesses	the	rows
and	columns	with	Groovy's	out-of-the-box	list	and	map	handling.	This	adds	very	powerful
validation	to	multi-row	data	sets	from	the	database.

SQL	multi-line	result	set	validation

Citrus	Reference	Guide

522Changes	1.2



In	this	new	Citrus	version	the	tester	can	validate	SQL	Query	results	that	have	multiple
rows.	In	the	past	Citrus	could	only	handle	a	single	row	in	the	result	set.	Now	this	new
release	brings	light	into	the	dark.	See	also	the	new	Groovy	SQL	result	set	validation
which	fits	brilliant	for	complex	multi-row	SQL	result	set	validation.	The	details	can	be
found	inactions-database-query

Extended	message	format	support

In	previous	versions	Citrus	was	primary	designed	to	handle	XML	message	payloads.
With	this	new	release	Citrus	is	also	able	to	work	with	other	message	formats	such	as
JSON,	CSV,	PLAINTEXT.	This	applies	to	sending	messages	as	well	as	receiving	and
particularly	validating	message	payloads.	The	tester	can	specify	several	message
validators	in	Citrus	for	different	message	formats.	According	to	the	expected	message
format	the	proper	validator	is	chosen	to	perform	the	message	validation.

We	have	implemented	a	JSON	message	validator	capable	of	ignoring	specific	JSON
entries	and	handling	JSONArrays.	We	also	provide	a	plain	text	message	validator	which
is	very	basic	to	be	honest.	The	framework	is	ready	to	receive	new	validator
implementations	so	you	can	add	custom	validators	for	your	specific	needs.

New	XML	features

XML	namespace	handling	is	tedious	expecially	if	you	have	to	deal	with	a	lot	of	XPath
expressions	in	your	tests.	Before	you	had	need	to	specify	a	namespace	context	for	the
XPath	expression	every	time	you	use	them	in	your	test	-	now	you	can	have	a	central
namespace	context	which	declares	namespaces	you	use	in	your	project.	These
namespaces	identified	by	some	prefix	are	available	throughout	the	test	project	which	is
much	more	maintainable	and	easy	to	use.	See	how	it	works	inxpath-namespace.

SOAP	support	improvements

WsAddressing	standard	is	now	supported	in	Citrus	(soap-ws-adressing).	This	means
you	can	declare	the	specific	WsAddressing	message	headers	on	message	sender	level
in	order	to	send	messages	with	WsAddressing	feature.	The	header	is	constructed
automatically	for	all	SOAP	messages	that	are	sent	over	the	message	sender.

Dynamic	SOAP	endpoint	uri	resolver	enables	you	to	dynamically	address	SOAP
endpoints	during	a	test.	Sometimes	a	message	sender	may	dynamically	have	to	change
the	SOAP	url	for	each	call	(e.g.	address	different	request	uri	parts).	With	a	endpoint	uri

Citrus	Reference	Guide

523Changes	1.2



resolver	set	on	the	message	sender	you	can	handle	this	requirement	very	easy.	The	tip
for	dynamic	endpoint	resolving	was	added	tosoap-sender

We	also	simplified	the	synchronous	SOAP	HTTP	communication	within	test	cases.	In
previous	versions	you	had	to	build	complex	parallel	and	sequential	container	constructs
in	order	to	continue	with	test	execution	while	the	SOAP	message	sender	is	waiting	for
the	synchronous	response	to	arrive.	Now	you	can	simply	fork	the	message	sending
action	and	continue	with	further	test	actions	while	synchronous	SOAP	communication
takes	place.	See	thesoap-fork-modefor	details

Some	really	small	change	introduced	with	this	release	is	the	fact	that	Citrus	now	logs
SOAP	messages	in	their	pure	nature.	This	means	that	you	can	see	the	complete	SOAP
envelope	of	messages	in	the	Citrus	log	files.	This	is	more	than	helpful	when	searching
for	errors	inside	your	test	case.

Http	and	RESTful	WebServices

We	have	changed	Http	communication	components	for	full	support	of	RESTful
WebServices	on	client	and	server	side.	The	Http	client	now	uses	Spring's	REST	support
for	Http	requests	(GET,	PUT,	DELETE,	POST,	etc.).	The	server	side	has	changed,	too.
The	Http	server	now	provides	RESTful	WebServices	and	is	compliant	to	the	existing
SOAP	Jetty	server	implementation	in	Citrus.	If	you	want	to	upgrade	existing	projects	to
this	version	you	may	have	to	adjust	the	Spring	application	context	configuration	to	some
extent.

For	details	have	a	look	at	the	upgrade	guide	(history-upgrading)	in	this	chapter	or	find
detailed	explanations	to	the	new	Http	components	in	http.

HTML	reporting

Citrus	provides	HTML	reports	after	each	test	run	with	detailed	information	on	the	failed
tests.	You	can	immediately	see	which	tests	failed	in	execution	and	where	the	test
stopped.reporting-htmlprovides	details	on	this	new	feature.

Validation	matchers

The	new	validation	matchers	will	put	the	message	validation	mechanisms	to	a	new	level.
With	validation	matchers	you	are	able	to	execute	powerful	assertions	on	each	message
content	element.	For	instance	you	can	use	the	isNumber	validation	matcher	for	checking

Citrus	Reference	Guide

524Changes	1.2



that	a	message	value	is	of	numeric	nature.	We	added	several	matcher	implementations
that	are	ready	for	usage	in	your	test	but	you	can	also	write	your	custom	validation
matchers.	Have	a	look	atvalidation-matchersfor	details.

Conditional	container

The	new	conditional	test	action	container	enables	you	to	execute	test	actions	only	in
case	a	boolean	expression	evaluates	to	true.	So	the	nested	test	actions	inside	the
container	may	be	not	executed	at	all	in	case	a	condition	is	not	met.	Seecontainers-
conditionalfor	details.

Support	for	message	selectors	on	message	channels

Spring	Integration	message	channels	do	not	support	message	selectors	like	JMS
queues	do	for	example.	With	Citrus	1.2	we	implemented	a	solution	for	this	issue	with	a
special	message	channel	implementation.	So	you	can	use	the	message	selector	feature
also	when	using	message	channels.	Go	tomessage-channel-selector-supportfor	details.

New	test	actions

We	introduced	some	completely	new	test	actions	in	this	release	for	you.	The	new
actions	are	listed	below:

Purge	message	channel	action	()

See	actions	for	detailed	instructions	how	to	use	the	new	actions.

New	functions

We	introduced	some	new	default	Citrus	functions	that	will	ease	the	testers	life.	This
includes	commonly	used	functions	like	encoding/decoding	base64	bindary	data,
escaping	XML	and	generating	random	Java	UUID	values.	These	are	the	new	functions
in	this	release:

citrus:randomUUID()
citrus:cdataSection()
citrus:encodeBase64()
citrus:decodeBase64()
citrus:digestAuthHeader()
citrus:localHostAddress()

Citrus	Reference	Guide

525Changes	1.2



See	functions	for	detail	descriptions	of	each	function.

Upgrading	from	version	1.1

If	you	are	coming	from	Citrus	1.1	final	you	may	have	to	look	at	the	following	points.

Spring	version	update	We	did	some	major	version	upgrades	on	our	Spring
dependencies.	We	are	now	using	Spring	3.1.1,	Spring	Integration	2.1.2	and
SpringWS	2.1.0.	These	new	major	releases	bring	some	code	changes	in	our	Citrus
API	which	might	affect	your	code	and	configuration,	too.	So	please	update	your
configuration,	it	is	definitely	worth	it!

Spring	Integration	headers:	With	2.0.x	version	Spring	Integration	has	removed	the
internal	header	prefix	("springintegration_").	So	in	some	cases	you	might	use	those
internal	header	names	in	your	test	cases	in	order	to	synchronize	synchronous
communication	with	internal	message	ids.	Your	test	case	will	fail	as	long	as	you	use
the	old	Spring	internal	header	prefix	in	the	test.	Simply	remove	the	header	prefix
wherever	used	and	your	test	is	up	and	running	again.

Message	validator:	You	need	to	specify	at	least	one	message	validator	in	the
Spring	application	context.	Before	this	was	internally	a	static	XML	message
validator,	but	now	we	offer	different	validators	for	several	message	formats	like	XML
and	JSON.	Please	see	the	Java	API	doc	on	MessageValidator	interface	for
available	implementations.	If	you	just	like	to	keep	it	as	it	was	before	add	this	bean	to
the	Spring	application	context:

<bean	id="xmlMessageValidator"	class="com.consol.citrus.validation.xml.DomXmlMessageValidator"

Test	suite:	We	have	eliminated/changed	the	Citrus	test	suite	logic	because	it
duplicates	those	test	suites	defined	in	TestNG	or	JUnit.	In	older	versions	the	tester
had	to	define	a	Citrus	test	suite	in	Spring	application	context	in	order	to	execute	test
actions	before/after	the	test	run.	Now	these	tasks	before	and	after	the	test	run	are
decoupled	from	a	test	suite.	You	define	test	suites	exclusively	in	TestNG	or	JUnit.
The	test	actions	before/after	the	test	run	are	separately	defined	in	Spring	application
context	so	you	have	to	change	this	configuration	in	your	Citrus	project.

See	testsuite	for	details	on	this	configuration	changes.

JUnit	vs.	TestNG:	We	support	both	famous	unit	testing	frameworks	JUnit	and
TestNG.	With	this	release	you	are	free	to	choose	your	prefered	one.	In	this	manner

Citrus	Reference	Guide

526Changes	1.2



you	need	to	add	either	a	JUnit	dependency	or	a	TestNG	dependency	to	your	project
on	your	own.	We	do	not	have	static	dependencies	in	our	Maven	POM	to	neither	of
those	two.	On	our	side	these	dependencies	are	declared	optional	so	you	feel	free	to
add	the	one	you	like	best	to	your	Maven	POM.	Just	add	a	JUnit	or	TestNG
dependency	to	your	Maven	project	or	add	the	respective	jar	file	to	your	project	if	you
use	ANT	instead.

Citrus	Reference	Guide

527Changes	1.2


	Introduction
	Preface
	Changes-new
	Introduction
	Setup
	Test-case
	Test-variables
	Run
	Configuration
	Endpoints
	Validation
	Xml
	Schema
	Json
	Xhtml
	Plaintext
	Binary

	Xpath
	Json-path
	Actions
	Send
	Receive
	Database
	Sleep
	Java
	Timeout
	Echo
	Stop-time
	Create-variables
	Trace
	Transform
	Groovy
	Fail
	Input
	Load
	Wait
	Purge-jms
	Purge-channels
	Purge-endpoints
	Assert
	Catch
	Antrun
	Manage-server
	Generic-action
	Stop-timer

	Templates
	Containers
	Sequential
	Conditional
	Parallel
	Iterate
	Repeat
	Repeat-onerror
	Timer
	Custom

	Finally-section
	Jms
	Http
	Http-websocket
	Soap
	Ftp
	Message-channel
	File
	Camel
	Vertx
	Mail
	Arquillian
	Docker
	Ssh
	Rmi
	Jmx
	Cucumber
	Zookeeper
	Restdocs
	Endpoint-component
	Endpoint-adapter
	Functions
	Validation Matchers
	Data-dictionary
	Test-actors
	Test-suite
	Meta-info
	Message-tracing
	Reporting
	Samples
	Flight Booking Sample

	Appendix
	Changes 2.5
	Changes 2.4
	Changes 2.3
	Changes 2.2
	Changes 2.1
	Changes 2.0
	Changes 1.4
	Changes 1.3
	Changes 1.2


