CITRUS

Citrus Framework - Reference
Documentation

Version 2.5.2

Copyright © 2016 ConSol* Software GmbH

Preface X

1. What's new in Citrus 2.5 . 1
1.1. Hamcrest matCher SUPPOIto 1

1.2. Binary base64 message validator 1

1.3 RMI SUPPOIt 1

14 IMX SUPPOIT oot oot e e e e e e 1

1.5, RESOUICE INJBCHION . ..ttt et ettt ettt 1

1.6. Http x-www-form-urlencoded message validator 1

1.7. Date range validation matcher 2

1.8. Read file resource function 2

1.9, TImMer CONtAINETo e e 2
1.10. Upgrade to Vert.X 3.2.0ot e 2
1.0, BUGMIXES .ot 2

2. INtrodUCTiON 3
2.0 OVBIVIBW . . .ttt 3

2.2. USAQE SCENAIIOS . . . ottt ittt e e e e e e 3

B S U oot e e 5
3.1 USINg MaVen 5
3.1.1. Use Citrus Maven archetype 5

3.1.2. Add Citrus to existing Maven projectt 6

3.2, USINg ANt ..o 7
3.2.1. Preconditions oo 7
3.2.2.Download e e 8

323, Installation 8

IS A o= 1= = 10
4.1. Writingtestcases in XML i 10

4.2. Writing teSt CaseS IN JAVA oot 12
4.2.1. Java DSL test designer 12
4.2.2.Java DSLIESLIUNNENo 14

4.2.3. Designer/Runner injeCctiont 15

4.2.4. Test context iNJECHION e 16

4.2.5. Java DSL testbehaviors 17

4.3, DESCIIPHON ..ttt 18

A4, TeSt ACHIONS . ..o e 18

4.5. Finally teSt SECHON 18

4.6. Test metainformation 19

5. Testvariables 21
5.1. Global variables 21

5.2. Create variables with CDATA e 22

5.3. Create variables with Groovy i e i e 22

6. RUNNING 1B . . . e e 24
6.1 RUNWith TeStNG e e e e 24
6.1.1. Using TestNG DataProviders 26

6.2. RUN With JUNIt 26

6.3. RUNNING XML teStSo 28

7. CoNfiguration 30
7.1. Citrus Spring XML applicationcontext i 30

7.2. Citrus Spring Java configt 30

7.3. Citrus application properties e 31

8. ENApPOiNtS 33
8.1. Send messages with endpoints i 33

Citrus Framework (2.5.2)

Citrus Framework - Reference Documentation

8.2. Receive messages with endpoints i i 35
9. Message validation 37
9.1. Xmlmessage validation 37
9.1.1. XML payload validation 37
9.1.2. XML header validation 38
9.1.3.Ignore XML elements 39
9.1.4. Groovy XML validation 39

9.2. XML schema validation i e 41
9.2.1. XSD schema repositorieso e 42
9.2.2. WSDL SChemas e 43
9.2.3. Schema location patterns 43
9.2.4. Schema ColleCtions i e 43
9.2.5. Schema mapping Strategy oot 44
9.2.6. Schema definition overruling 46
9.2.7. DTD validation 47

9.3. JSON message validation i 47
9.4. XHTML message validationt 51
9.5. Plain text message validation 52
9.6. Binary message validation 53
9.7.Java DSL validation callbacks 53
9.8. Customize message validatorst 54
10. Using XPath 57
10.1. Manipulate with XPath 57
10.2. Validate with XPath 58
10.3. Extract variables with XPath 60
10.4. XML namespacesin XPath 61
10.5. Default namespaces in XPath 62
11. Using JSONPath 64
11.1. Manipulate with JSONPath i 64
11.2. Validate with JSONPath e 65
11.3. Extract variables with JSONPath 67
11.4. Ignore with JISONPath e 67
12, TeSt ACHIONS .. e 69
12.1. Sending MESSATES . . . oo ittt et 69
12.2. RECEIVING MESSAGES . . o ot ettt ettt e et e e e e e 74
12.2.1. Validate message payloads 75
12.2.2. Validate message headers 77
12.2.3. Message SeleCtorso 78
12.2.4. Groovy MarkupBuilder 79
12.3. Database aCtions 80
12.3.1. SQL update, insert, delete 81
12.3.2. SQL QUEBIY .t 82
12.3.3. Groovy SQL result set validation 84
12.3.4. Saveresultsetvalues i 85
12,4, SlEEP .ot 86
12, 5. JaVa . 86
12.6. Receive timeout 87
12,7, ECNO .o 89
12,8, StOP HIME . .o 89
12.9. Create variables 90
12.10. Trace variables 91

Citrus Framework (2.5.2)

Citrus Framework - Reference Documentation

12,00, TransSiOrmM . .. 92
12.12. Groovy SCHPt €XECULION . . . oottt et e e e e 94
12.13. Failing the test 96
12,0, INPUL . e 97
12,05, Load ... e 99
12,06, Walt ... e 100
12.17. Purging IMS destinations 101
12.18. Purging message channels i i 104
12.19. Purging endpoints 107
12.20. Assertfailure 110
12.21. Catch eXCeplions i 111
12.22. Running Apache Antbuild targets 112
12.23. Start/Stop SErver iNStanCeSottt e 114
12.24. Including custom test actionst 115
12,25, StOP TIMEr . 117
1. TempPlates . .o 119
14, CONtaINEIS . 122
14.1. Sequential e 122
14.2. Conditional 122
14.3. Parallel 123
14,4, Herate 124
14.5. Repeat until true 125
14.6. Repeatonerroruntil true i 126
I I 0= 128
15. Finally Section 130
16. IMS SUP PO .. e e e 132
16.1. IMS endpOintsSttt 132
16.2. JMS synchronous endpointsttt e 134
16.3. IMS tOPICS . o vttt et ettt 136
16.4. IMS message headers e 136
16.5. SOAP OVEr JMS . .. 137
17. HTTP REST SUPPOIt .ottt e e e e e e 138
170 HTTP REST Client e e e e 138
17. 2. HTTP REST SerIVer . . oo e e e 141
17. 3. HTTP headers e e e e e e 144
17.4. HTTP formurlencoded data e 146
175 . HTTP errorhandling e e 148
17.6. HTTP client basic authentication 148
17.7. HTTP server basic authentication 150
17.8. HTTP servlet context customization 151
18. WebSocCKet SUPPOIt . ..o e 152
18.1. WebSocket Client e 152
18.2. WebSocket server endpoints 154
18.3. WebSocket headers e 155
19. SOAP WED SEIVICES ..ot 156
19.1. SOAP ClieNnt 156
19.2. SOAP SBIVEI . . e 158
19.3. SOAP haTEIS ...ttt 159
19.4. SOAP HTTP mime headers e 161
19.5. SOAP Envelope handling 162
10.6. SOAP L. 2 o 162

Citrus Framework (2.5.2)

Citrus Framework - Reference Documentation

20.

21.

22.

23.

24,

25.

26.

27.

28.

10.7. SOAP faUlts e 163
19.7.1.Send SOAP faults 163
19.7.2. Receive SOAP faults e e 164
19.7.3. Multiple SOAP faultdetails i, 168

19.8. Send HTTP error codes with SOAP e 169

19.9. SOAP attaChment SUPPOItot e e e 170
19.9.1. Send SOAP attachments 170
19.9.2. Receive SOAP attachments 170
19.9.3. SOAP MTOM SUPPOM .o i i ettt e e e e et e et e et 171

19.10. SOAP client basic authentication 173

19.11. SOAP server basic authentication 174

19.12. WS-Addressing SUPPOItot 175

19.13. SOAP clientfork made i 176

19.14. SOAP servlet context customization 177

FT P SUPPOIt o e 179
20.1. FTP Client . ..o e 179
20.2. FTP SeIVeI ..o 180

Message channel support 182

21.1. Channel endpoint 182

21.2. Synchronous channel endpoints i 184

21.3. Message selectorsonchannels 185
21.3.1. Root QName Message Selector 185
21.3.2. XPath Evaluating Message Selector 186

File SUPPOIT .o 188
22. 1. Write files 188
22.2. Read files 188

Apache Camel SUPPOIt 190

23.1. Camel endpoint 190

23.2. Synchronous Camelendpoint, 192

23.3. Camelexchange headers i e 193

23.4. Camel exception handling 193

23.5. Camel contexthandling 194

23.6. Camel route aCtionst 195

23.7. Camel controlbus actionst 196

Vert.X eVent BUS SUPPOITt e e 198

24.1. Vert.x endpoint 198

24.2. Synchronous Vert.x endpoint e 199

24.3. Vert.Xx instance factoryt 201

Mail SUP PO .o 202
25. 1. Mail client 202
25.2. Mall SBIVEI .o 204

Arquillian SUPPOIt . .. 208

26.1. Citrus Arquillian extension 208

26.2. Client side testingot e e 209

26.3. Container side testing oottt 210

26.4. TESLTUNNEISo 211

DOCKEr SUP POt .ot e e 215
27.1. DoCKer Client 215
27.2. DOCKEr COMMANASot e e 216

SSH SUP PO o 219
28.1. SSH Client ... 219

Citrus Framework (2.5.2)

Citrus Framework - Reference Documentation

28.2. SSH Server 221
29, RMI SUP POt oo 223
29.1. RMI Client 223
29.2. RMI SeIVEl . .o 225
30, IMX SUP POt oot e e 228
30.0. IMX ClieNt ... 228
30.2. IMX SBIVEI . oottt 231
31. Dynamic endpoint COMPONENtS i e e 235
32. Endpoint adapter e 239
32.1. Empty response endpoint adapter 239
32.2. Static response endpointadapter 239
32.3. Request dispatching endpointadapter i . 240
32.4. Channel endpoint adaptert 241
32.5. IMS endpoint adapter 241
33 FUNCHIONS .. 243
33,1 CItTUSICONCAL() . . oot 243
33.2. CItrusS:SUDSTING() - . .« oo 244
33.3. citrus:stringLength() 244
334, citrusitranslate() 244
33.5. citrus:substringBefore() 245
33.6. citrus:substringAfter() 245
33.7. CITUSITOUNA() . . . ot 245
33.8.citrus:floor() 246
33.9. CItrus:CeIING() .+ - o v et 246
33.10. citrus:randomNumber() 246
33.11. citrus:randomsString() 247
33.12. citrusirandomEnumValue() oo 247
33.13. citrus:currentDate()o 248
33.14. CItrUSIUPPEICaSE() « v vt 248
33.15. CItruS:IIOWerCase() vt 249
33.16. CItruS:aVerage() - « « « v o vt et e e 249
33.17. CitruSImMINIMUMI() .« . oot e e e e e e 249
33.18. Citrus:maximum()ttt 249
33.19. CItTUSISUM() . .o oot e e 249
33.20. Citrus:absolute()t 249
33.21. citrusimapValue()t 250
33.22. citrus:randomUUID()o oo 250
33.23. Citrus:encodeBaseB4() 250
33.24. citrus:decodeBaseb4() 250
33.25. citrus:escapeXml() 251
33.26. citrus:cdataSection()o 251
33.27. citrus:digestAuthHeader() 251
33.28. citrus:localHOStAdAress()ot 252
33.29. citrus:changeDate()c. i e 252
33.30. citrusireadFile()o 252
34. Validation matcher 254
34. 1. matchesXml() 255
34.2. equalsignoreCase() 256
34.3. CONAINS() - . vt et 256
34.4.startSWIth()o 256
34.5. endsWith() 256

Citrus Framework (2.5.2)

Vi

Citrus Framework - Reference Documentation

34.6. MAatChes() . ..o it e 256
34.7. matchesDatePattern() 257
34.8.ISNUMDbEr() . ..o 257
34.9. lowerThan() 257
34.10. greaterThan()ot e e 257
34.11.0sWeekday() v o 257
34.12.variable() 258
34.13. dateRange()o 258
34.14. assertThat()o e 258

35, Data dictionaries 260
35.1. XML data diCtionaries 260
35.2. JSON data diCtionariesot 261
35.3. DICHIONANY SCOPES . . ot vttt e et e e e e e e 262
35.4. Path mapping strategies 263

36. TS ACIOIS . ..o 265
36.1. Define teSt ACtOrSttt 265
36.2. LINK teSt @CtOrS 265
36.3. Disable test actors 266

37. TeSt SUItE ACLIONS . ..o e 267
37.1. Before sUiteo 267
37, 2. AtEr SUItE 268
37.3. Before testo 269
BT A, AR St . o 270

38. Customize metainformation 272
39. Tracing incoming/outgoing MESSAJESttt ettt e e e 274
40. Reporting and test resUltS e 276
40.1. CoNns0le 10ggingottt 276
40.2. JUNIETEPOITS . o oottt it e e e e e e e e e e e 276
40.3. HTML rePOItS . ..ottt e e e e e e 277

A. CItruUS SamPles 278
A.l. The FlightBooking sample 278
AL L ThE USE CASE . ..ottt e e e 278

A.1.2. Configure the simulated systems 278

A.1.3. Configure the Http adapter 280

A L4 TheteSt CaSEttt e e 280

B. Change History e 285
B.1. Changes in Citrus 2.4 285
B.1.1. DOCKEr SUPPOIt . .\ttt e e 285

B.1.2. Hitp REST @CliONSottt e e e s 285

B.1.3. Waittest action 285

B.1.4. Camel aCliOnsot 285

B.1.5. Purge endpointS actiont 285

B.1.6. Releaseto Maven Central 286

B.2. Changes in Citrus 2.3 i e e 286
B.2.1. Testrunner and test designert 286

B.2.2. WebSocCKet SUPPOITot 286

B.2.3. JSONPath SUPPOrt . ..o e 286

B.2.4. Customize message validators 287

B.2.5. Library upgrades 287

B.2.6. Upgrade from Citrus 2.2 e 287

B.2.7. BUGfIXES . ..o 287

Citrus Framework (2.5.2)

vii

Citrus Framework - Reference Documentation

B.3. Changes in Citrus 2.2 i e e 288
B.3.1. Arquillian support 288
B.3.2. JUNIt SUPPOIT . . oo e 288
B.3.3. Start/Stop server action i 288
B.3.4. Citrus ANt tasks i 288
B.3. 5. BUGMIXES . . oo 288

B.4. Changes in Citrus 2.1t 288
B.4.1. SOAP MTOM SUPPOItttt e e e e 289
B.4.2. SOAP envelope handling 289
B.4.3. SOAP 1.2 message faCtoryt 289
B.4.4. TestNG data providerhandling 289
B.4.5. Mail message NamespacCettt 289
B.4.6. SSh message NameSPaCeo vttt e e 289

B.5.Changes in Citrus 2.0ot 290
B.5.1. Refactoring 290
B.5.2. Spring framework 4.X 291
B.5.3. FTP SUPPOItottt e e 291
B.5.4. Functions with test contextaccess 291
B.5.5. Validation matcher with test contextaccess 291
B.5.6. Message listener with test contextaccess 291
B.5.7. SOAP over IMS 291
B.5.8. Multiple SOAP attachments i, 292
B.5.9. Multiple SOAP XML headerfragments 292
B.5.10. Create variable validation matcher 292
B.5.11. New configuration components i 292
B.5.12. Before/after suite components 293
B.5.13. Citrus IMS module 293

B.6. Changes in CitruS 1.4.Xottt e 293
B.6.1. Refactoring 293
B.6.2. Data diCtionariest e 293
B.6.3. Mail @adapter 294
B.6.4. Endpoint adapter 294
B.6.5. Global variables component 294
B.6.6. Json text validator mode 294
B.6.7. HTTP REST specific Java DSL optionsc. i, 294
B.6.8. SOAP HTTP validationt 295
B.6.9. Apache Camelintegration 295
B.6.10. Vert.x integrationt e 295
B.6.11. Dynamic endpoint COMPONENTSottt e i e s 295

B.7. Changes in Citrus 1.3.X . ..ttt ittt et et e ettt e 295
B.7.1. @CitrusTest and @CitrusXmlITest annotations 295
B.7.2. @CitrusParameters annotation 296
B.7.3. Schema repository configuration components 296
B.7.4. Change date function i . 296
B.7.5. Weekday validation matcher 296
B.7.6. Java DSL 296
B.7.7. XHTML message validation iiiiiiiiiiinnnnnn 297
B.7.8. Multiple SOAP fault detail support 297
B.7.9. Jetty server security handler 297
B.7.10. TeSt AClOrS o 297
B.7.11. Simulate Http error codes with SOAP 297

Citrus Framework (2.5.2) viii

Citrus Framework - Reference Documentation

B.7.12. SSHserverand client 298
B.7.13. ANT runtestaction it 298
B.7.14. Polling interval for reply handlers 298
B.7.15. Upgrading fromversion 1.2 i 298
B.8.Changesin Citrus 1.2 i e e e e e 299
B.8.1. Spring version update 299
B.8.2. New groovy featurest 299
B.8.3. SQL multi-line result setvalidation, 299
B.8.4. Extended message format support 299
B.8.5. New XML features 300
B.8.6. SOAP support improvementsttt 300
B.8.7. Http and RESTful WebServices 300
B.8.8. HTML reportingottt 300
B.8.9. Validation matchers 301
B.8.10. Conditional container i 301
B.8.11. Support for message selectors on message channels 301
B.8.12. New test actions i e e 301
B.8.13. New fuNnCliONS 301
B.8.14. Upgrading fromversion 1.1 i 302

Citrus Framework (2.5.2)

Preface

Integration testing can be very hard, especially when there is no sufficient tool support. Unit testing is
flavored with fantastic tools and APIs like JUnit, TestNG, EasyMock, Mockito and so on. These tools
support you in writing automated tests. A tester who is in charge of integration testing may lack of
tool support for automated testing especially when it comes to simulate messaging interfaces.

In a typical enterprise application scenario the test team has to deal with different messaging
interfaces and various transport protocols. Without sufficient tool support the automated integration
testing of message-based interactions between interface partners is exhausting and sometimes
barely possible.

The tester is forced to simulate several interface partners in an end-to-end integration test. The first
thing that comes to our mind is manual testing. No doubt manual testing is fast. In long term
perspective manual testing is time consuming and causes severe problems regarding maintainability
as they are error prone and not repeatable.

The Citrus framework gives a complete test automation tool for integration testing of enterprise
applications. You can test your message interfaces to other applications as client and server. Every
time a code change applies all automated Citrus tests ensure the stability of interfaces and message
communication.

Regression testing and continuous integration is very easy as Citrus fits into your build lifecylce as
usual Java unit test. You can use Citrus with JUnit or TestNG in order to integrate with your
application build.

With powerful validation capabilities for various message formats like XML, CSV or JSON Citrus is
designed to provide fully automated integration tests for end-to-end use cases. Citrus effectively
composes complex messaging use cases with response generation, error simulation, database
interaction and more.

This documentation provides a reference guide to all features of the Citrus test framework. It gives a
detailed picture of effective integration testing with automated integration test environments. Since
this document is considered to be under construction, please do not hesitate to give any comments
or requests to us using our user or support mailing lists.

Citrus Framework (2.5.2) X

Chapter 1. What's new in Citrus 2.57?!

We have added lots of new features and improvements with Citrus 2.5. Namely these are the new
modules for RMI and JMX support, a new x-www-form-urlencoded message validator and new
functions anc test actions. Just have a look at the following features that made it to the box.

1.1. Hamcrest matcher support

Hamcrest is a very powerful matcher library that provides a fantastic set of matcher implementations
for message validation purpose. Citrus now supports these matchers coming from Hamcrest library.
On the one hand you can use Hamcrest matchers as a Citrus validation matcher as described in
Section 34.14, “assertThat()". On the other hand you can use Hamcrest matchers now directly using
the Citrus Java DSL. See details for this feature in Section 11.2, “Validate with JSONPath”.

1.2. Binary base64 message validator

There is a new message validator implementation that automatically converts binary message
content to a base64 encoded String representation for comparison. This is the easiest way to
compare binary message content with an expected message payload. See Section 9.6, “Binary
message validation” how this is working for you.

1.3. RMI support

Remote method invocation is a standard Java technology and API for calling methods on remote
objects across different JVM instances. Although RMI has lost its popularity it is still used in legacy
components. Testing RMI bean invocation is a hard thing to do. Now Citrus provides client and
server support for remote interface invocation. See Chapter 29, RMI support for details.

1.4. IMX support

Similar to RMI JMX can be used to connect to remote bean invocation. This time we expose some
beans to a managed bean server in order to be managed by JMX operations for read and write. With
Citrus 2.5 we have added a client and server support for calling and providing managed beans on a
mbean server. See Chapter 30, JMX support for details.

1.5. Resource injection

With 2.5 we have added mechanisms for injecting Citrus components to your Java DSL test
methods. This is very useful when needing access to the Citrus test context for instance. Also we are
able to use new injection of test designer and runner instances in order to support parallel test
execution with multiple threads. See the explanations in Section 4.2.3, “Designer/Runner injection”
and Section 4.2.4, “Test context injection”.

1.6. Http x-www-form-urlencoded message validator

Citrus Framework (2.5.2) 1

What's new in Citrus 2.57?!

HTML form data can be transmitted with different methods and content types. One of the most
common ways is to use x-www-form-urlencoded form data content. As validation can be tricky we
have added a special message validator for that. See Section 17.4, “HTTP form urlencoded data” for
details.

1.7. Date range validation matcher

Added a new validation matcher implementation that is able to check that a date value is between a
certain date range (from and to) The date range is able to focus on days as well as additional time
(hour, minute, second) specifications. See Section 34.13, “dateRange()” for details.

1.8. Read file resource function

A new function implementation offers you the possibilities to read file resource contents as inline
data. The function is called and returns the file content as return value. The file content is then placed
right where the function was called e.g. inside of a message paylaod element or as message header
value. See Section 33.30, “citrus:readFile()” for details.

1.9. Timer container

The new timer test action container repeats its execution based on a time expression (e.g. every 5
seconds). With this timer we can repeat test actions with a fixed time delay or constantly execute test
actions with time schedule. See Section 14.7, “Timer” and Section 12.25, “Stop Timer” for details.

1.10. Upgrade to Vert.x 3.2.0

The Vert.x module was upgraded to use Vert.x 3.2.0 version. The Citrus module implementation was
updated to work with this new Vert.x version. Learn more about the Vert.x integration in Citrus with
Chapter 24, Vert.x event bus support.

1.11. Bugfixes

Bugs are part of our software developers world and fixing them is part of your daily business, too.
Finding and solving issues makes Citrus better every day. For a detailed listing of all bugfixes please
refer to the complete changes log of each release in JIRA
(http://www.citrusframework.org/changes-report.html).

Citrus Framework (2.5.2) 2

http://www.citrusframework.org/changes-report.html

Chapter 2. Introduction

Nowadays enterprise applications usually communicate with different partners over loosely coupled
messaging interfaces. The interaction and the interface contract needs to be tested in integration
testing.

In a typical integration test scenario we need to simulate the communication partners over various
transports. How can we test use case scenarios that include several interface partners interacting
with each other? How can somebody ensure that the software components work correctly regarding
the interface contract? How can somebody run integration test cases in an automated reproducible
way? Citrus tries to answer these questions!

2.1. Overview

Citrus aims to strongly support you in simulating interface partners across different messaging
transports. You can easily produce and consume messages with a wide range of protocols like
HTTP, JMS, TCP/IP, FTP, SMTP and more. The framework is able to both act as a client and server.
In each communication step Citrus is able to validate message contents towards syntax and
semantics.

In addition to that the Citrus offers a wide range of test actions to take control of the process flow
during a test (e.g. iterations, system availability checks, database connectivity, parallelism, delaying,
error simulation, scripting and many more).

The basic goal in Citrus test cases is to describe a whole use case scenario including several
interface partners that exchange many messages with each other. The composition of complex
message flows in a single test case with several test steps is one of the major features in Citrus.

The test case description is either done in XML or Java and can be executed multiple times as
automated integration test. With JUnit and TestNG integration Citrus can easily be integrated into
your build lifecycle process. During a test Citrus simulates all surrounding interface partners (client or
server) without any coding effort. With easy definition of expected message content (header and
payload) for XML, CSV, SOAP, JSON or plaintext messages Citrus is able to validate the incoming
data towards syntax and semantics.

2.2. Usage scenarios

If you are in charge of an enterprise application in a message based solution with message interfaces
to other software components you should use Citrus. In case your project interacts with other
software over different messaging transports and in case you need to simulate these interface
partners on client or server side you should use Citrus. In case you need to continuously check the
software stability not only on a unit testing basis but also in an end-to-end integration scenario you
should use Citrus. Bug fixing, release or regression testing is very easy with Citrus. In case you are
struggling with code stability and feel uncomfortable regarding your next software release you should
definitely use Citrus.

This test set up is typical for a Citrus use case. In such a test scenario we have a system under test
(SUT) with several message interfaces to other applications like you would have with an enterprise

Citrus Framework (2.5.2) 3

Introduction

service bus for instance. A client application invokes services on the SUT application. The SUT is
linked to several backend applications over various messaging transports (here SOAP, JMS, and
Http). Interim message notifications and final responses are sent back to the client application. This
generates a bunch of messages that are exchanged throughout the applications involved.

In the automated integration test Citrus needs to send and receive those messages over different
transports. Citrus takes care of all interface partners (ClientApplication, Backendl, Backend2,
Backend3) and simulates their behavior by sending proper response messages in order to keep the
message flow alive.

Each communication step comes with message validation and comparison against an expected
message template (e.g. XML or JSON data). Besides messaging actions Citrus is also able to
perform arbitrary other test actions. Citrus is able to perform a database query between requests as
an example.

The Citrus test case runs fully automated as a Java application. In fact a Citrus test case is nothing
but a JUnit or TestNG test case. Step by step the whole use case scenario is performed like in a real
production environment. The Citrus test is repeatable and is included into the software build process
(e.g. using Maven or ANT) like a normal unit test case would do. This gives you fully automated
integration tests to ensure interface stability.

The following reference guide walks through all Citrus capabilities and shows how to set up a great
integration test with Citrus.

Citrus Framework (2.5.2) 4

Chapter 3. Setup

This chapter discusses how to get started with Citrus. It deals with the installation and set up of the
framework, so you are ready to start writing test cases after reading this chapter.

Usually you would use Citrus as a dependency library in your project. In Maven you would just add
Citrus as a test-scoped dependency in your POM. When using ANT you can also run Citrus as
normal Java application from your build.xml. As Citrus tests are nothing but normal unit tests you
could also use JUnit or TestNG ant tasks to execute the Citrus test cases.

This chapter describes the Citrus project setup possibilities, choose one of them that fits best to
include Citrus into your project.

3.1. Using Maven

Citrus uses Maven internally as a project build tool and provides extended support for Maven
projects. Maven will ease up your life as it manages project dependencies and provides extended
build life cycles and conventions for compiling, testing, packaging and installing your Java project.
Therefore it is recommended to use the Citrus Maven project setup. In case you already use Maven it
is most suitable for you to include Citrus as a test-scoped dependency.

As Maven handles all project dependencies automatically you do not need to download any Citrus
project artifacts in advance. If you are new to Maven please refer to the official Maven documentation
to find out how to set up a Maven project.

3.1.1. Use Citrus Maven archetype

If you start from scratch or in case you would like to have Citrus operating in a separate Maven
module you can use the Citrus Maven archetype to create a new Maven project. The archetype will
setup a basic Citrus project structure with basic settings and files.

m/n archet ype: generat e - Dar chet ypeCat al og=http://citrusfranework. org

Choose archetype:
1: http://citrusfranework.org -> citrus-archetype (Basic archetype for Citrus integration test project)
Choose a nunber: 1

Define value for groupld: com consol.citrus. sanpl es
Define value for artifactld: citrus-sanple

Define value for version: 1.0- SNAPSHOT

Define val ue for package: com consol.citrus. sanpl es

In the sample above we used the Citrus archetype catalog located on the Citrus homepage. Citrus
archetypes are also available in Maven central repository. So can also just use "mvn
archetype:generate”. As the list of default archetypes available in Maven central is very long you
might want to filter the list with "citrus" and you will get just a few possibilities to choose from.

We load the archetype information from "http://citrusframework.org" and choose the Citrus basic
archetype. Now you have to define several values for your project. the groupld, the artifactld, the
package and the project version. After that we are done! Maven created a Citrus project structure for
us which is ready for testing. You should see the following basic project folder structure.

citrus-sanpl e
| + src
| | + main

Citrus Framework (2.5.2) 5

http://maven.apache.org/

Setup

[| +java

| | | + resources
| | + citrus

[| +java

| | | + resources
| | | + tests

The Citrus project is absolutely ready for testing. With Maven we can build, package, install and test
our project right away without any adjustments. Try to execute the following commands:

mvn integration-test
mvn integration-test -Dtest=M/FirstC trusTest

Note

If you need additional assistance in setting up a Citrus Maven project please visit our
Maven setup tutorial on http://www.citfrusframework.org.

3.1.2. Add Citrus to existing Maven project

In case you already have a proper Maven project you can also integrate Citrus with it. Just add the
Citrus project dependencies in your Maven pom.xml as a dependency like follows.

* We add Citrus as test-scoped project dependency to the project POM (pom.xml)

<dependency>
<gr oupl d>com consol . ci trus</ gr oupl d>
<artifactld>citrus-core</artifactld>
<versi on>2. 5. 2</ ver si on>
<scope>t est </ scope>

</ dependency>

« Add the citrus Maven plugin to your project

<pl ugi n>
<groupl d>com consol . ci t rus. nvn</ gr oupl d>
<artifactld>citrus-maven-plugin</artifactld>
<versi on>2. 5. 2</ ver si on>
<confi gurati on>
<aut hor >Donal d Duck</ aut hor >
<t ar get Package>com consol . ci t rus</t ar get Package>
</ configuration>
</ pl ugi n>

Now that we have added Citrus to our Maven project we can start writing new test cases with the
Citrus Maven plugin:

m/n citrus:create-test

Once you have written the Citrus test cases you can execute them automatically in your Maven
software build lifecylce. The tests will be included into your projects integration-test phase using the
Maven surefire plugin. Here is a sample surefire configuration for Citrus.

<pl ugi n>
<artifact|d>maven-surefire-plugin</artifactld>
<ver si on>2. 4. 3</ ver si on>
<configuration>
<ski p>t rue</ ski p>

Citrus Framework (2.5.2) 6

http://www.citrusframework.org/tutorials.html

Setup

</ confi guration>
<executions>
<execution>
<id>citrus-tests</id>
<phase>i ntegrati on-test </ phase>
<goal s>
<goal >t est </ goal >
</ goal s>
<confi gurati on>
<ski p>f al se</ ski p>
</ confi guration>
</ execution>
</ executi ons>
</ pl ugi n>

The Citrus source directories are defined as test sources like follows:

<t est SourceDi rectory>src/it/java</test SourceDirectory>
<t est Resour ces>
<t est Resour ce>
<directory>src/it/java</directory>
<i ncl udes>
<i ncl ude>**</i ncl ude>
</incl udes>
<excl udes>
<excl ude>*. j ava</ excl ude>
</ excl udes>
</t est Resour ce>
<t est Resour ce>
<directory>src/it/tests</directory>
<i ncl udes>
<i ncl ude>**/*</ i ncl ude>
</ i ncl udes>
<excl udes>
</ excl udes>
</t est Resour ce>
</t est Resour ces>

Now everything is set up and you can call the usual Maven install goal (mvn clean install) in order to
build your project. The Citrus integration tests are executed automatically during the build process.
Besides that you can call the Maven integration-test phase explicitly to execute all Citrus tests or a
specific test by its name:

mvn integration-test
mvn integration-test -Dtest=MyFirstC trusTest

Note

If you need additional assistance in setting up a Citrus Maven project please visit our
Maven setup tutorial on http://www.citfrusframework.org.

3.2. Using Ant

Ant is a very popular way to compile, test, package and execute Java projects. The Apache project
has effectively become a standard in building Java projects. You can run Citrus test cases with Ant
as Citrus is nothing but a Java application. This section describes the steps to setup a proper Citrus
Ant project.

3.2.1. Preconditions

Before we start with the Citrus setup be sure to meet the following preconditions. The following

Citrus Framework (2.5.2) 7

http://www.citrusframework.org/tutorials.html

Setup

software should be installed on your computer, in order to use the Citrus framework:

» Java 7 or higher

Installed JDK plus JAVA_HOME environment variable set up and pointing to your Java installation
directory

» Java IDE (optional)

A Java IDE will help you to manage your Citrus project (e.g. creating and executing test cases).
You can use the any Java IDE (e.g. Eclipse or IntelliJ IDEA) but also any convenient XML Editor to
write new test cases.

e Ant 1.8 or higher

Ant (http://ant.apache.org/) will run tests and compile your Citrus code extensions if necessary.

3.2.2. Download

First of all we need to download the latest Citrus release archive from the official website
http://www.citrusframework.org

Citrus comes to you as a zipped archive in one of the following packages:

e citrus-x.x-release
* Citrus-Xx.x-src

The release package includes the Citrus binaries as well as the reference documentation and some
sample applications.

In case you want to get in touch with developing and debugging Citrus you can also go with the
source archive which gives you the complete Citrus Java code sources. The whole Citrus project is
also accessible for you on http://github.com/christophd/citrus. This open git repository on GitHub
enables you to build Citrus from scratch with Maven and contribute code changes.

3.2.3. Installation

After downloading the Citrus archives we extract those into an appropriate location on the local
storage. We are seeking for the Citrus project artifacts coming as normal Java archives (e.g.
citrus-core.jar, citrus-ws.jar, etc.)

You have to include those Citrus Java archives as well as all dependency libraries to your Apache
Ant Java classpath. Usually you would copy all libraries into your project's lib directory and declare
those libraries in the Ant build file. As this approach can be very time consuming | recommend to use
a dependency management APl such as Apache Ivy which gives you automatic dependency
resolution like that from Maven. In particular this comes in handy with all the 3rd party dependencies
that would be resolved automatically.

No matter what approach you are using to set up the Apache Ant classpath see the following sample
Ant build script which uses the Citrus project artifacts in combination with the TestNG Ant tasks to run
the tests.

Citrus Framework (2.5.2) 8

http://ant.apache.org/
http://www.citrusframework.org
http://github.com/christophd/citrus

Setup

<proj ect nane="citrus-sanple" basedir="." default="citrus.run.tests" xmns:artifact="antlib:org.apache. naven. artifac
<property file="src/it/resources/citrus.properties"/>

<pat h i d="maven- ant -t asks. cl asspath" path="li b/ maven-ant-tasks-2.1.3.jar" />
<typedef resource="org/apache/ naven/artifact/ant/antlib.xm"
uri="antlib: org. apache. maven. artifact.ant"
cl asspat hr ef =" maven- ant - t asks. cl asspath" />

<artifact:pomid="citrus-pont file="pomxm" />
<artifact: dependencies filesetld="citrus-dependenci es" ponRefld="citrus-pont />

<path id="citrus-classpath">
<pat hel ement pat h="src/it/java"/>
<pat hel ement pat h="src/it/resources"/>
<pat hel ement path="src/it/tests"/>
<fileset refid="citrus-dependencies"/>
</ pat h>

<t askdef resource="testngtasks" classpath="lib/testng-6.8.8.jar"/>

<target name="conpile.tests">
<javac srcdir="src/it/java" classpathref="citrus-classpath"/>
<javac srcdir="src/it/tests" classpathref="citrus-classpath"/>
</target>

<target name="create.test" description="Creates a new enpty test case">
<i nput nessage="Enter test nane:" addproperty="test.nanme"/>
<i nput nessage="Enter test description:" addproperty="test.description"/>
<i nput nessage="Enter author's nane:" addproperty="test.author" defaultval ue="${default.test.author}?/>
<i nput nessage="Enter package:" addproperty="test.package" defaul tval ue="${default.test.package}"/>
<i nput nessage="Enter framework:" addproperty="test.framework" defaultval ue="testng"/>

<j ava cl assnanme="com consol .citrus. util.Test CaseCreator">
<cl asspath refid="citrus-classpath"/>
<arg line="-nane ${test.nane} -author ${test.author} -description ${test.description} -package ${test.package}
</java>
</target>

<target name="citrus.run.tests" depends="conpile.tests" description="Runs all Citrus tests">
<testng cl asspat href="ci trus-cl asspat h">
<cl assfileset dir="src/it/java" includes="**/* class" />
</testng>
</target>

<target name="citrus.run.single.test" depends="conpile.tests" description="Runs a single test by nane">
<touch file="test.history"/>
<l oadproperties srcfile="test.history"/>

<echo nessage="Last test executed: ${last.test.executed}"/>
<input nessage="Enter test name or |eave enpty for |last test executed:" addproperty="testclass" defaultval ue="${

<propertyfile file="test.history">
<entry key="last.test.executed" type="string" value="${testclass}"/>
</ propertyfile>

<testng cl asspat href ="ci trus-cl asspat h">
<cl assfileset dir="src/it/java" includes="**/${testclass}.class" />
</testng>
</target>

</ proj ect >

Note

If you need detailed assistance for building Citrus with Ant do also visit our tutorials
section on http://www.citrusframework.org. There you can find a tutorial which describes
the Citrus Java project set up with Ant from scratch.

Citrus Framework (2.5.2) 9

http://www.citrusframework.org

Chapter 4. Test cases

Now let us start writing test cases! A test case in Citrus describes all steps for a certain use case in
one single file. The Citrus test holds a sequence of test actions. Each action represents a very
special purpose such as sending or receiving a message. Typically with message-based enterprise
applications the sending and receiving of messages represent the main actions inside a test.

However you will learn that Citrus is more than just a simple SOAP client for instance. Each test case
can hold complex actions such as connecting to the database, transforming data, adding loops and
conditional steps. With the default Citrus action set you can accomplish very complex use case
integration tests. Later in this guide we will briefly discuss all available test actions and learn how to
use various message transports within the test. For now we will concentrate on the basic test case
structure.

The figure above describes a typical test action sequence in Citrus. A list of sending and receiving
test actions composing a typical test case here. Each action references a predefined Citrus endpoint
component that we are going to talk about later on.

So how do we define those test cases? In general Citrus specifies test cases as Java classes. With
TestNG or JUnit you can execute the Citrus tests within your Java runtime as you would do within
unit testing. You can code the Citrus test in a single Java class doing assertions and using Spring's
dependency injection mechanisms.

If you are not familiar to writing Java code you can also write Citrus tests as XML files. Whatever test
language you choose for Citrus the whole test case description takes place in one single file (Java or
XML). This chapter will introduce the custom XML schema language as well as the Java domain
specific language so you will be able to write Citrus test cases no matter what knowledge base you
belong to.

4.1. Writing test cases in XML

Put simply, a Citrus test case is nothing but a simple Spring XML configuration file. The Spring
framework has become a state of the art development framework for enterprise Java applications. As
you work with Citrus you will also learn how to use the Spring loc (Inversion of control) container and
the concepts of dependency injection. So let us have a look at the pure Spring XML configuration
syntax first. You are free to write fully compatible test cases for the Citrus framework just using this
syntax.

Spring bean definition syntax

<beans
xm ns="http://ww. springframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean name="MFirstTest"
cl ass="com consol . ci trus. Test Case" >
<property nanme="vari abl eDefinitions">
<I-- variables of this test go here -->
</ property>
<property nane="actions">
<l-- actions of this test go here -->
</ property>
</ bean>
</ beans>

Citrus Framework (2.5.2) 10

Test cases

Citrus can execute these Spring bean definitions as normal test cases - no problem, but the pure
Spring XML syntax is very verbose and probably not the best way to describe a test case in Citrus. In
particular you have to know a lot of Citrus internals such as Java class names and property names.
In addition to that as test scenarios get more complex the test cases grow in size. So we need a
more effective and comfortable way of writing tests. Therefore Citrus provides a custom XML schema
definition for writing test cases which is much more adequate for our testing purpose.

The custom XML schema aims to reach the convenience of domain specific languages (DSL). Let us
have a look at the Citrus test describing XML language by introducing a first very simple test case
definition:

XML DSL

<spring: beans
xm ns="http://ww. citrusframework. org/ schena/testcase"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns: spring="http://ww.springfranework. org/ schema/ beans"
xsi : schenalLocati on="
http://ww. spri ngfranmework. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. ci trusfranmework. or g/ schena/t est case
http://ww. ci trusfranmework. org/ schena/t est case/ citrus-testcase. xsd">

<t est case nanme="MFirst Test">
<descri pti on>
Fi rst exanple showi ng the basic test case definition el enments!
</ descri ption>
<vari abl es>
<variabl e name="text" value="Hello Test Framework"/>
</vari abl es>
<actions>
<echo>
<nessage>${t ext } </ nessage>
</ echo>
</ actions>
</testcase>
</ spring: beans>

We do need the <spring: beans> root element as the XML file is read by the Spring loC container.
Inside this root element the Citrus specific namespace definitions take place.

The test case itself gets a mandatory name that must be unique throughout all test cases in a project.
You will receive errors when using duplicate test names. The test name has to follow the common
Java naming conventions and rules for Java classes. This means names must not contain any

whitespace characters but characters like -, '.", '_' are supported. For example, Test Feat ure_1 is valid

but Test Feature 1 is not as it contains whitespace characters like spaces.

Now that we have an XML definition that describes the steps of our test we need a Java executable
for the test. The Java executable is needed for the framework in order to run the test. See the
following sample Java class that represents a simple Citrus Java test:

import org.testng.annotations. Test;
import com consol . citrus. annotations. CtrusTest;
inmport com consol.citrus.testng. Abstract Test NGG t rusTest

@est
public class M/FirstTest extends Abstract Test NGCi trusTest {

@i trusXm Test (name = "MFirstTest")

public void nmyFirstTest() {
}

The sample above is a Java class that represents a valid Citrus Java executable. The Java class has

Citrus Framework (2.5.2) 11

Test cases

no programming logic as we use a XML test case here. The Java class can also be generated using
the Citrus Maven plugin. The Java class extends from basic superclass AbstractTestNGCitrusTest
and therefore uses TestNG as unit test framework. Citrus also supports JUnit as unit test framework.
Read more about this in Section 6.1, “Run with TestNG” and Section 6.2, “Run with JUnit".

Up to now it is important to understand that Citrus always needs a Java executable test class. In
case we use the XML test representation the Java part is generic, can be generated and contains no
programming logic. The XML test defines all steps and is our primary test case definition.

4.2. Writing test cases in Java

Before we go into more details on the attributes and actions that take place within a test case we just
have a look at how to write test cases with pure Java code. Citrus works with Java and uses the well
known JUnit and TestNG framework benefits that you may be used to as a tester. Many users may
prefer to write Java code instead of the verbose XML syntax. Therefore you have another possibility
for writing Citrus tests in pure Java.

Citrus in general differences between two ways of test cases in Java. These are test-designers and
test-runners that we deal with each in the next two sections.

4.2.1. Java DSL test designer

The first way of defining a Citrus test in Java is the test-designer. The Java DSL for a test designer
works similar to the XML approach. The whole test case is built with all test actions first. Then the
whole test case is executed as a whole Citrus test. This is how to define a Citrus test with designer
Java DSL methods:

Java DSL designer

import org.testng.annotations. Test;
import com consol . citrus. annotations. CtrusTest;
i mport com consol . citrus. dsl.testng. Test NGCG t rusTest Desi gner ;

@est
public class MFirstTestDesigner extends Test NGC trusTest Desi gner {

@i trusTest (nane = "MyFirstTest")
public void nmyFirstTest() {
description("First exanple showing the basic test case definition elenents!");

variable("text", "Hello Test Franmework");

echo("${text}");

Citrus provides a base Java class com.consol.citrus.dsl.testng. TestNGCitrusTestDesigner that
provides all capabilities for you in form of builder pattern methods. Just use the @CitrusTest
annotation on top of the test method. Citrus will use the method name as the test name by default. As
you can see in the example above you can also customize the test name within the @CitrusTest
annotation. The test method builds all test actions using the test builder pattern. The defined test
actions will then be called later on during test runtime.

The design time runtime difference in test-designer is really important to be understood. You can mix
the Citrus Java DSL execution with other Java code with certain limitations. We will explain this later
on when introducing the test-runner.

Citrus Framework (2.5.2) 12

Test cases

This is the basic test Java class pattern used in Citrus. You as a tester with development background
can easily extend this pattern for customized logic. Again if you are coming without coding
experience do not worry this Java code is optional. You can do exactly the same with the XML syntax
only as shown before. The test designer Java DSL is much more powerful though as you can use the
full Java programming language with class inheritance and method delegation.

We have mentioned that the test-designer will build the complete test case in design time with all
actions first before execution of the whole test case takes place at runtime of the test. This approach
has the advantage that Citrus knows all test actions in a test before execution. On the other hand you
are limited in mixing Java DSL method calls and normal Java code. The following example should
clarify things a little bit.

Java DSL designer

inport org.testng.annotations. Test;
inport com consol . citrus. annotations. CitrusTest;
i mport com consol . citrus. dsl.testng. Test NGG t rusTest Desi gner ;

@est
public class Loggi ngTest Desi gner extends Test NGCi t rusTest Desi gner {
private Loggi ngService |oggi ngServi ce = new Loggi ngService();

@i trusTest (nane = "Loggi ngTest")
public void |oggingTest() {
echo("Before | oggi ngService call");

| oggi ngServi ce.l og("Now cal | ed custom | oggi ng service");

echo("After |oggingService call");

In this example test case above we use an instance of a custom LoggingService and call some
operation log() in the middle of our Java DSL test. Now developers might expect the logging service
call to be done in the middle of the Java Citrus test case but if we have a look at the logging output of
the test we get a total different result:

Expected output

I NFO Citrus| STARTING TEST Loggi ngTest

I NFO EchoActi on| Before |oggingService call

I NFO Loggi ngServi ce| Now call ed custom | oggi ng service
I NFO EchoAction| After |oggingService call

I NFO Citrus| TEST SUCCESS Loggi ngTest

Actual output

I NFO Loggi ngServi ce| Now cal | ed custom | oggi ng service
I NFO Citrus| STARTING TEST Loggi ngTest

I NFO EchoActi on| Before |oggingService call

I NFO EchoAction| After |oggingService call

I NFO Citrus| TEST SUCCESS Loggi ngTest

So if we analyse the actual logging output we see that the logging service was called even before the
Citrus test case did start its action. This is the result of test-designer building up the whole test case
first. The designer collects all test actions first in internal memory cache and the executes the whole
test case. So the custom service call on the LoggingService is not part of the Citrus Java DSL test
and therefore is executed immediately at design time.

We can fix this with the following test-designer code:

Citrus Framework (2.5.2) 13

Test cases

Java DSL designer

inport org.testng.annotations. Test;
i nport com consol . citrus. annotations. CitrusTest;
import com consol .citrus.dsl.testng. Test NGG t rusTest Desi gner ;

@est
public class Loggi ngTest Desi gner extends Test NGCi t rusTest Desi gner {
private Loggi ngService |oggi ngService = new Loggi ngService();

@Ci trusTest (nane = "Loggi ngTest")
public void |oggingTest() {
echo("Before | oggi ngService call");

action(new Abstract Test Action() {
doExecut e(Test Cont ext context) {
| oggi ngServi ce.l og("Now cal | ed custom | oggi ng service");
}

1)

echo("After |oggingService call");

Now we placed the loggingService call inside a custom TestAction implementation and therefore this
piece of code is part of the Citrus Java DSL and following from that part of the Citrus test execution.
Now with that fix we get the expected logging output:

I NFO Citrus| STARTING TEST Loggi ngTest
I NFO EchoActi on| Before | oggi ngService call
I NFO Loggi ngServi ce| Now cal |l ed custom | oggi ng service
I NFO EchoAction| After |oggingService call
I NFO Citrus| TEST SUCCESS Loggi ngTest

Now this is not easy to understand and people did struggle with this separation of designtime and
runtime of a Citrus Java DSL test. This is why we have implemented a new Java DSL base class
called test-runner that we deal with in the next section. Before we continue we have to mention that
the test-designer approach does also work for JUnit. Although we have only seen TestNG sample
code in this section everything is working exactly the same way with JUnit framework. Just use the
base class com.consol.citrus.dsl.junit.JUnit4CitrusTestDesigner instead.

Important

Neither TestNGCitrusTestDesigner nor JUnit4CitrusTestDesigner implementation is
thread safe for parallel test execution. This is simply because the base class is holding
state to the current test designer instance in order to delegate method calls to this
instance. Therefore parallel test method execution is not available. Fortunately we have
added a threadsafe base class implementation that uses resource injection. Read more
about this in Section 4.2.3, “Designer/Runner injection”.

4.2.2. Java DSL test runner

The new test runner concept solves the issues that may come along when working with the test
designer. We have already seen a simple example where the test designer requires strict separation
of designtime and runtime. The test runner implementation executes each test action immediately.
This changes the prerequisites in such that the test action Java DSL method calls can be mixed with
usual Java code statements. The the example that we have seen before in a test runner
implementation:

Citrus Framework (2.5.2) 14

Test cases

Java DSL runner

inport org.testng.annotations. Test;
i nport com consol . citrus. annotations. CitrusTest;
i nport com consol . citrus.dsl.testng. Test NGC trusTest Runner;

@est
public class Loggi ngTest Runner extends Test NGC trusTest Runner {
private Loggi ngService | oggi ngService = new Loggi ngService();

@Ci trusTest (name = "Loggi ngTest")
public void |oggingTest() {
echo("Before | oggingService call");

| oggi ngServi ce. |l og("Now cal | ed custom | oggi ng service");

echo("After |oggingService call");

With the new test runner implementation as base class we are able to mix Java DSL method calls
and normal Java code statement in our test in an unlimited way. This example above will also create
the expected logging output as all Java DSL method calls are executed immediately.

I NFO Citrus| STARTING TEST Loggi ngTest

I NFO EchoActi on| Before | oggi ngService call

I NFO Loggi ngServi ce| Now cal | ed custom | oggi ng service
I NFO EchoAction| After |oggingService call

I NFO Citrus| TEST SUCCESS Loggi ngTest

In contrary to the test designer the test runner implementation will not build the complete test case
before execution. Each test action is executed immediately as it is called with Java DSL builder
methods. This creates a more natural way of coding test cases as you are also able to use iterations,
try catch blocks, finally sections and so on.

In the examples here TestNG was used as unit framework. Of course the exact same approach can
also apply to JUnit framework. Just use the base class
com.consol.citrus.dsl.junit.JUnit4CitrusTestRunner instead. Feel free to choose the base class for
test-designer or test-runner as you like. You can also mix those two approaches in your project.
Citrus is able to handle both ways of Java DSL code in a project.

Important

The TestNGCitrusTestRunner and JUnit4CitrusTestRunner implementation is not thread
safe for parallel test execution. This is simply because the base class is holding state to
the current test runner instance in order to delegate method calls to this instance.
Therefore parallel test method execution is not available. Fortunately we have added a
threadsafe base class implementation that uses resource injection. Read more about this
in Section 4.2.3, “Designer/Runner injection”.

4.2.3. Designer/Runner injection
In the previous sections we have seen the different approaches for test designer and runner

implementations. Up to now the decision which implementation to use was made by extending one of
the base classes:

» com.consol.citrus.dsl.testng. TestNGCitrusTestRunner

Citrus Framework (2.5.2) 15

Test cases

e com.consol.citrus.dsl.testng. TestNGCitrusTestDesigner
» com.consol.citrus.dsl.junit.JUnit4CitrusTestRunner

e com.consol.citrus.dsl.junit.JUnit4CitrusTestDesigner

These four classes represent the different designer and runner implementations for TestNG or JUnit.
Now Citrus also provides a resource injection mechanism for both designer and runner
implementations. The classes using this feature are:

e com.consol.citrus.dsl.testng. TestNGCitrusTest

e com.consol.citrus.dsl.junit. JUnit4CitrusTest

So what is the deal with that? It is simple when looking at a first example using resource injection:

@est
public class InjectionTest extends JUnit4C trusTest {

@i trusTest (nanme = "JUnit 4Desi gner Test ")

public void designerTest (@ trusResource TestDesigner designer) {
desi gner. echo(" Now wor ki ng on desi gner instance");

}

@i trusTest (name = "JUni t 4Runner Test ")

public void runnerTest (@ trusResource Test Runner runner) {
runner . echo(" Now wor ki ng on runner instance");

}

The designer or runner instance is injected as Citrus resource to the test method as parameter. This
way we can mix designer and runner in a single test. But this is not the real motivation for the
resource injection. The clear advantage of this approach with injected designer and runner instances
is support for multi threading. In case you want to execute the Citrus tests in parallel using multiple
threads you need to use this approach. This is because the usual designer and runner base classes
are not thread safe. This JUnit4CitrusTest base class is because the resources injected are not kept
as state in the base class.

This is our first Citrus resource injection use case. The framework is able to inject other resources,
too. Find out more about this in the next sections.

4.2.4. Test context injection

When running a test case in Citrus we make use of basic framework components and capabilities.
One of these capabilities is to use test variables, functions and validation matchers. Up to this point
we have not learned about these things. They will be described in the upcoming chapters and
sections in more detail. Right now | want to talk about resource injection in Citrus.

All these feature mentioned above are bound to some important Citrus component: the Citrus test
context. The test context holds all variables and is able to resolve functions and matchers. In general
you as a tester will not need explicit access to this component as the framework is working with it
behind the scenes. In case you need some access for advanced operations with the framework
Citrus provides a resource injection. Lets have a look at this so things are getting more clear.

public class Resourcelnjectionl T extends JUnit4GitrusTest Designer {

@rest
@Ti trusTest

Citrus Framework (2.5.2) 16

Test cases

public void resourcelnjectionl T(@CDtrusResource Test Context context) {
cont ext.setVari abl e("nyVari abl e", "sone val ue");
echo("${nyVariable}");

As you can see we have added a method parameter of type com.consol.citrus.context. TestContext to
the test method. The annotation @CitrusResource tells Citrus to inject this parameter with the
according instance of the object for this test. Now we have easy access to the context and all its
capabilities such as variable management.

Of course the same approach works with TestNG, too. As TestNG also provides resource injection
mechanisms we have to make sure that the different resource injection approaches do not interfere
with each other. So we tell TestNG to not inject this parameter by declaring it as @Optional for
TestNG. In addition to that we need to introduce the parameter to TestNG with the @Parameters
annotation. Otherwise TestNG would complain about not knowing this parameter. The final test
method with Citrus resource injection looks like follows:

public class Resourcelnjectionl T extends Test NGCi t rusTest Desi gner {

@est @Paraneters("context")

@i t rusTest
public void resourcelnjectionl T(@ptional @trusResource Test Context context) {
cont ext . setVari abl e("nmyVari abl e", "some val ue");

echo("${nyVari abl e}");

Some more annotations needed but the result is the same. We have access to the Citrus test
context. Of course you can combine the resource injection for different Citrus components. Just add
more some @CitrusResource annotated method parameters to the test method.

4.2.5. Java DSL test behaviors

When using the Java DSL the concept of behaviors is a good way to reuse test action blocks. By
putting test actions to a test behavior we can instantiate and apply the behavior to different test cases
multiple times. The mechanism is explained best when having a simple sample:

public class FooBehavi or extends Abstract Test Behavi or {

public void apply() {
variabl e("foo", "test");

echo("fooBehavior");

}

public class BarBehavi or extends Abstract Test Behavior {
public void apply() {
variabl e("bar", "test");

echo("bar Behavi or");

The listing above shows two test behaviors that add very specific test actions and test variables to
the test case. As you can see the test behavior is able to use the same Java DSL action methods as
a normal test case would do. Inside the apply method block we define the behaviors test logic. Now
once this is done we can use the behaviors in a test case like this:

@@ trusTest
public void behaviorTest () {
description("This is a behavior Test");

Citrus Framework (2.5.2) 17

Test cases

aut hor (" Chri st oph");
st at us(Test CaseMet al nfo. St at us. FI NAL) ;

variable("var", "test");

appl yBehavi or (new FooBehavi or());
echo("Successful Iy applied bar behavior");
appl yBehavi or (new Bar Behavi or ());

echo("Successfully applied bar behavior");

The behavior is applied to the test case by calling the applyBehavior method. As a result the behavior
is called adding its logic at this point of the test execution. The same behavior can now be called in
multiple test cases so we have a reusable set of test actions.

4.3. Description

In the test examples that we have seen so far you may have noticed that a tester can give a detailed
test description. The test case description clarifies the testing purpose and perspectives. The
description should give a short introduction to the intended use case scenario that will be tested. The
user should get a first impression what the test case is all about as well as special information to
understand the test scenario. You can use free text in your test description no limit to the number of
characters. But be aware of the XML validation rules of well formed XML when using the XML test
syntax (e.g. special character escaping, use of CDATA sections may be required)

4.4. Test Actions

Now we get close to the main part of writing an integration test. A Citrus test case defines a
sequence of actions that will take place during the test. Actions by default are executed sequentially
in the same order as they are defined in the test case definition.

XML DSL

<actions>
<action>[...]</action>
<action>[...]</action>

</ actions>

All actions have individual names and properties that define the respective behavior. Citrus offers a
wide range of test actions from scratch, but you are also able to write your own test actions in Java or
Groovy and execute them during a test. Chapter 12, Test actions gives you a brief description of all
available actions that can be part of a test case execution.

The actions are combined in free sequence to each other so that the tester is able to declare a
special action chain inside the test. These actions can be sending or receiving messages, delaying
the test, validating the database and so on. Step-by-step the test proceeds through the action chain.
In case one single action fails by reason the whole test case is red and declared not successful.

4.5. Finally test section

Java developers might be familiar with the concept of doing something in the finally code section.

Citrus Framework (2.5.2) 18

Test cases

The final I y section contains a list of test actions that will be executed guaranteed at the very end of
the test case even if errors did occur during the execution before. This is the right place to tidy up
things that were previously created by the test like cleaning up the database for instance. The
final |y section is described in more detail in Chapter 15, Finally section. However here is the basic
syntax inside a test.

XML DSL
<finally>
<echo>
<nessage>Do finally - regardl ess of what has happened before</ nessage>
</ echo>

</finally>

Java DSL designer

@z trusTest
public void sanpl eTest () {
echo("Hell o Test Franmework");

doFi nal I y(
echo("Do finally - regardl ess of any error before")

DE

Java DSL runner

@i trusTest
public void sanpl eTest () {
echo("Hell o Test Franmework");

doFi nal 1'y()
.actions(
echo("Do finally - regardl ess of any error before")

DE

4.6. Test meta information

The user can provide some additional information about the test case. The meta-info section at the
very beginning of the test case holds information like author, status or creation date. In detail the
meta information is specified like this:

XML DSL

<t est case nanme="net al nfoTest" >
<net a- i nf 0>
<aut hor >Chri st oph Deppi sch</ aut hor >
<creat i ondat e>2008- 01- 11</ cr eat i ondat e>
<st at us>FI NAL</ st at us>
<l ast - updat ed- by>Chri st oph Deppi sch</| ast - updat ed- by>
<l ast - updat ed- on>2008- 01- 11T10: 00: 00</ | ast - updat ed- on>
</ et a-i nf o>
<descri ption>

</ descri ption>
<actions>

</ actions>
</testcase>

Java DSL designer and runner

Citrus Framework (2.5.2) 19

Test cases

@i trusTest

public void sanpl eTest () {
description("This is a Test");
aut hor (" Chri st oph");
status(Status. FI NAL);

echo("Hello Citrus!");

The status allows following values: DRAFT, READY_FOR_REVIEW, DISABLED, FINAL. The
meta-data information to a test is quite important to give the reader a first information about the test.
It is also possible to generate test documentation using this meta-data information. The built-in Citrus
documentation generates HTML or Excel documents that list all tests with their metadata information
and description.

Note

Tests with the status DISABLED will not be executed during a test suite run. So someone
can just start adding planned test cases that are not finished yet in status DRAFT. In case
a test is not runnable yet because it is not finished, someone may disable a test
temporarily to avoid causing failures during a test run. Using these different statuses one
can easily set up test plans and review the progress of test coverage by comparing the
number of DRAFT tests to those in the FINAL state.

Now you know the possibilities how to write Citrus test cases in XML or Java. Please choose
whatever code language type you want (Java, XML, Spring bean syntax) in order to write Citrus test
cases. Developers may choose Java, testers without coding experience may run best with the XML
syntax. We are constantly working on even more test writing language support such as Groovy,
Scala, Xtext, and so on. In general you can mix the different language types just as you like within
your Citrus project which gives you the best of flexibility.

Citrus Framework (2.5.2) 20

Chapter 5. Test variables

The usage of test variables is a core concept when writing good maintainable tests. The key
identifiers of a test case should be exposed as test variables at the very beginning of a test. This way
hard coded identifiers and multiple redundant values inside the test can be avoided from scratch. As
a tester you define all test variables at the very beginning of your test.

XML DSL

<vari abl es>
<vari abl e nanme="text" val ue="Hell o Test Franmework"/>
<vari abl e name="custoner!d" val ue="123456789"/>
</vari abl es>

Java DSL designer and runner

variable("text", "Hello Test Framework");
vari abl e("custonerld", "123456789");

The concept of test variables is essential when writing complex tests with lots of identifiers and
semantic data. Test variables are valid for the whole test case. You can reference them several times
using a common variable expression " ${vari abl e- nane}". It is good practice to provide all important
entities as test variables. This makes the test easier to maintain and more flexible. All essential
entities and identifiers are present right at the beginning of the test, which may also give the
opportunity to easily create test variants by simply changing the variable values for other test
scenarios.

The name of the variable is arbitrary. Feel free to specify any name you can think of. Of course you
need to be careful with special characters and reserved XML entities like '&', '<', '>". If you are familiar
with Java or any other programming language simply think of the naming rules there and you will be
fine with working on Citrus variables, too. The value of a variable can be any character sequence.
But again be aware of special XML characters like "<" that need to be escaped ("<") when used in
variable values.

The advantage of variables is obvious. Once declared the variables can be referenced many times in
the test. This makes it very easy to vary different test cases by adjusting the variables for different
means (e.g. use different error codes in test cases).

5.1. Global variables

The last section told us to use variables as they are very useful and extend the maintainability of test
cases. Now that every test case defines local variables you can also define global variables. The
global variables are valid in all tests by default. This is a good opportunity to declare constant values
for all tests. As these variables are global we need to add those to the basic Spring application
context file. The following example demonstrates how to add global variables in Citrus:

<ci trus: gl obal -vari abl es>
<citrus:variabl e name="proj ect Name" val ue="Citrus Integration Testing"/>

<citrus:variabl e nane="user Name" val ue="Test User"/>
</citrus: gl obal -vari abl es>

We add the Spring bean component to the application context file. The component receives a list of

Citrus Framework (2.5.2) 21

Test variables

name-value variable elements. You can reference the global variables in your test cases as usual.

Another possibility to set global variables is to load those from external property files. This may give
you more powerful global variables with user specific properties for instance. See how to load
property files as global variables in this example:

<ci trus: gl obal -vari abl es>
<citrus:file path="cl asspat h: gl obal -vari abl e. properties"/>
</citrus: gl obal -vari abl es>

We have just added a file path reference to the global variables component. Citrus loads the property
file content as global test variables. You can mix property file and name-value pair variable definitions
in the global variables component.

Note

The global variables can have variable expressions and Citrus functions. It is possible to
use previously defined global variables as values of new variables, like in this example:

user =Ci trus
greeting=Hel |l o ${user}!
date=citrus:currentDate('yyyy-Mtdd')

5.2. Create variables with CDATA

When using th XML test case DSL we can not have XML variable values out of the box. This would
interfere with the XML DSL elements defined in the Citrus testcase XSD schema. You can use
CDATA sections within the variable value element in order to do this though.

<vari abl es>
<vari abl e nanme="persons">
<val ue>
<dat a>
<! [CDATA]
<per sons>
<per son>
<name>Theodor </ nanme>
<age>10</ age>
</ person>
<per son>
<name>Al vi n</ name>
<age>9</ age>
</ per son>
</ per sons>
11>
</ dat a>
</ val ue>
</vari abl e>
</vari abl es>

That is how you can use XML variable values in the XML DSL. In the Java DSL we do not have these
problems.

5.3. Create variables with Groovy

You can also use a script to create variable values. This is extremely handy when you have very
complex variable values. Just code a small Groovy script for instance in order to define the variable

Citrus Framework (2.5.2) 22

Test variables

value. A small sample should give you the idea how that works:

<vari abl es>
<vari abl e name="avg">

<val ue>
<script type="groovy">
<! [CDATA[
a=4
b =6
return (a + b) / 2
11>
</script>
</ val ue>

</vari abl e>
<vari abl e name="suni >
<val ue>
<script type="groovy">
<! [CDATA]
5 + 5
11>
</script>
</ val ue>
</vari abl e>
</vari abl es>

We use the script code right inside the variable value definition. The value of the variable is the result
of the last operation performed within the script. For longer script code the use of <! [CDATA] 1]>
sections is recommended.

Citrus uses the javax ScriptEngine mechanism in order to evaluate the script code. By default Groovy
is supported in any Citrus project. So you can add additional ScriptEngine implementations to your
project and support other script types, too.

Citrus Framework (2.5.2) 23

Chapter 6. Running tests

Citrus test cases are nothing but Java classes that get executed within a Java runtime environment.
Each Citrus test therefore relates to a Java class representing a JUnit or TestNG unit test. As
optional add on a Citrus test can have a XML test declaration file. This is for those of you that do not
want to code in Java. In this case the XML part holds all actions to tell Citrus what should happen in
the test case. The Java part will then just be responsible for test execution and is not likely to be
changed at all. In the following sections we concentrate on the Java part and the test execution
mechanism.

If you create new test cases in Citrus - for instance via Maven plugin or ANT build script - Citrus
generates both parts in your test directory. For example: if you create a new test named
MyFirstCitrusTest you will find these two files as a result:

src/it/tests/com consol/citrus/ MFirstC trusTest.xm

src/it/javal conmlconsol/citrus/ MFirstCitrusTest.java

Note

If you prefer to just write Java code you can throw away the XML part immediately and
continue working with the Java part only. In case you are familiar with writing Java code
you may just skip the test template generation via Maven or ANT and preferably just
create new Citrus Java test classes on your own.

With the creation of this test we have already made a very important decision. During creation, Citrus
asks you which execution framework should be used for this test. There are basically three options
available: testng and j unit.

So why is Citrus related to Unit tests although it is intended to be a framework for integration testing?
The answer to this question is quite simple: This is because Citrus wants to benefit from both JUnit
and TestNG for Java test execution. Both the JUnit and TestNG Java APIs offer various ways of
execution and both frameworks are widely supported by other tools (e.g. continuous build, build
lifecycle, development IDE).

Users might already know one of these frameworks and the chances are good that they are familiar
with at least one of them. Everything you can do with JUnit and TestNG test cases you can do with
Citrus tests also. Include them into your Maven build lifecycle. Execute tests from your IDE (Eclipse,
IDEA or NetBeans). Include them into a continuous build tool (e.g. Jenkins). Generate test execution
reports and test coverage reports with Sonar, Cobertura and so on. The possibilities with JUnit and
TestNG are amazing.

So let us have a closer look at the Citrus TestNG and JUnit integration.

6.1. Run with TestNG

TestNG stands for next generation testing and has had a great influence in adding Java annotations
to the unit test community. Citrus is able to generate TestNG Java classes that are executable as test
cases. See the following standard template that Citrus will generate when having new test cases:

package com consol . citrus. sanpl es;

Citrus Framework (2.5.2) 24

Running tests

i mport org.testng.annotations. Test;

i nport com consol . citrus. annotations. G trusXn Test;
import com consol .citrus.testng. Abstract Test NGGi trusTest;

[**

* TODO Description

*

* @ut hor Unknown
*/
@rest
public class Sanplel T extends Abstract Test NGCi trusTest {
@i trusXm Test (nanme = "Sanpl el T")
public void sanpl eTest () {}

If you are familiar with TestNG you will see that the generated Java class is nothing but a normal
TestNG test class. We just extend a basic Citrus TestNG class which enables the Citrus test
execution features for us. Besides that we have a usual TestNG @Test annotation placed on our
class so all methods inside the class will be executed as separate test case.

The good news is that we can still use the fantastic TestNG features in our test class. You can think
of parallel test execution, test groups, setup and tear down operations and so on. Just to give an
example we can simply add a test group to our test like this:

@est(groups = {"long-running"})

For more information on TestNG please visit the official homepage, where you find a complete
reference documentation.

You might have noticed that the example above loads test cases from XML. This is why we are using
the @CitrusXmlTest annotation. Again this approach is for people that want to write no Java code.
The test logic is then provided in the XML test definition. We discuss XML tests in Citrus in more
detail in Section 6.3, “Running XML tests”. Next lets have a look at a TestNG Java DSL test.

When writing tests in pure Java we have pretty much the exact same logic that applies to executing
Citrus test cases. The Citrus test extends from a TestNG base class and uses the normal @Test
annotations on method or class level. Here is a short sample TestNG Java class for this:

inmport org.testng.annotations. Test;
import com consol.citrus.annotations.CtrusTest;
i mport com consol .citrus. dsl.testng. Test NGG t rusTest Desi gner ;

@est
public class M/FirstTest Desi gner extends Test NGCi trusTest Desi gner {
@CitrusTest(nane = "MyFirstIT")
public void nmyFirstTest() {
description("First exanple showi ng the basic test case definition elenents!");

variable("text", "Hello Test Franmework");

echo("${test}");

You see the class is quite similar to the XML test variation. Now we extend a Citrus test designer
class which enables the Java DSL features in addition to the TestNG test execution for us. The basic
@Test annotation for TestNG has not changed. We still have a usual TestNG class with the
possibility of several methods each representing a separate unit test.

Now what has changed is the @CitrusTest annotation. Now the Citrus test logic is placed directly as
the method body with using the Java domain specific language features. The XML Citrus test part is

Citrus Framework (2.5.2) 25

Running tests

not necessary anymore. If you are wondering about the designer super class and the Java DSL
methods for adding the test logic to your test please be patient we will learn more about the Java
DSL features in this reference guide later on.

Up to now we just concentrate on the TestNG integration that is quite easy isn't it.

6.1.1. Using TestNG DataProviders

TestNG as a framework comes with lots of great features such as data providers. Data providers
execute a test case several times. Each test execution gets a specific parameter value. With Citrus
you can use those data provider parameters inside the test as variables. See the next listing on how
to use TestNG data providers in Citrus:

public class DataProviderl T extends Abstract Test NGCitrusTest {

@i trusXm Test

@Ci trusParaneters("nessage")

@est (dat aProvi der = "nessageDat aProvi der")

public void DataProviderl T(I Test Context testContext) {

}

@at aPr ovi der
public Cbject[][] messageDat aProvider() {
return new Object[][] {
{ "Hello World!" },
{ "Hallo welt!" },
{ "H Citrus!" },
b
}
}

Above test case method is annotated with TestNG data provider called messageDataProvider. In the
same class you can write the data provider that returns a list of parameter values. TestNG will
execute the test case several times according to the provided parameter list. Each execution is
shipped with the respective parameter value. According to the @CitrusParameter annotation the test
will have a test variable called message that is accessible as usual.

6.2. Run with JUnit

JUnit is a very popular unit test framework for Java applications widely accepted and widely
supported by many tools. In general Citrus supports both JUnit and TestNG as test execution
frameworks. Although the TestNG customization features are slightly more powerful than those
offered by JUnit you as a Citrus user should be able to use the framework of your choice. The
complete support for executing test cases with package scans and multiple annotated methods is
given for both frameworks. If you choose junit as execution framework Citrus generates a Java file
that looks like this:

package com consol . citrus. sanpl es;

inmport org.junit. Test;
i mport com consol.citrus. annotations. G trusXm Test;
import comconsol.citrus.junit.AbstractJUnit4G trusTest;

/**
* TODO Description
*
* @ut hor Unknown
*/
public class Sanplel T extends AbstractJUnit4C trusTest {
@est
@i trusXm Test (nanme = "Sanpl el T")
public void sanpl eTest() {}

Citrus Framework (2.5.2) 26

Running tests

JUnit and TestNG as frameworks reveal slight differences, but the idea is the same. We extend a
base JUnit Citrus test class and have one to many test methods that load the XML Citrus test cases
for execution. As you can see the test class can hold several annotated test methods that get
executed as JUnit tests. The fine thing here is that we are still able to use all JUnit features such as
before/after test actions or enable/disable tests.

The Java JUnit classes are simply responsible for loading and executing the Citrus test cases. Citrus
takes care on loading the XML test as a file system resource and to set up the Spring application
context. The test is executed and success/failure state is reported exactly like a usual JUnit unit test
would do. This also means that you can execute this Citrus JUnit class like every other JUnit test,
especially out of any Java IDE, with Maven, with ANT and so on. This means that you can easily
include the Citrus test execution into you software building lifecycle and continuous build.

Tip

So now we know both TestNG and JUnit support in Citrus. Which framework should
someone choose? To be honest, there is no easy answer to this question. The basic
features are equivalent, but TestNG offers better possibilities for designing more complex
test setup with test groups and tasks before and after a group of tests. This is why TestNG
is the default option in Citrus. But in the end you have to decide on your own which
framework fits best for your project.

The first example seen here is using @CitrusXmlTest annotation in order to load a XML file as test.
The Java part is then just an empty envelope for executing the test with JUnit. This approach is for
those of you that are not familiar with Java at all. You can find more information on loading XML files
as Citrus tests in Section 6.3, “Running XML tests”. Secondly of course we also have the possibility
to use the Citrus Java DSL with JUnit. See the following example on how this looks like:

package com consol . citrus. sanpl es;

import com consol .citrus. annotations. CtrusTest;
import com consol .citrus.dsl.JUnit4GC trusTestDesigner;
inmport org.junit. Test;

/**
* TODO: Description
*
* @ut hor Unknown
*/
public class Sanplel T extends JUnit4CitrusTest Designer {

@est
@i trusTest
public void EchoSanplel T() {
variable("tine", "citrus:currentDate()");

echo("Hello Citrus!");
echo("CurrentTine is: ${time}");
}

@est

@Ti trusTest (nane = "Echol T")

public void echoTest() {
echo("Hello Citrus!");

}

The Java DSL test case looks quite familiar as we also use the JUnit4 @Test annotation in order to
mark our test for unit test execution. In addition to that we add a @CitrusTest annotation and extend
from a basic JUnit4 Citrus test designer which enables the Java domain specific language features.
The Citrus test logic goes directly to the method block. There is no need for a XML test file anymore.

Citrus Framework (2.5.2) 27

Running tests

As you can see the @CitrusTest annotation supports multiple test methods in one single class. Each
test is prepared and executed separately just as you know it from JUnit. You can define an explicit
Citrus test name that is used in Citrus test reports. If no explicit test name is given the test method
name will be used as a test name.

If you need to know more details about the test designer and on how to use the Citrus Java DSL just
continue with this reference guide. We will describe the capabilities in detail later on.

6.3. Running XML tests

Now we also use the @CitrusXmlTest annotation in the Java class. This annotation makes Citrus
search for a XML file that represents the Citrus test within your classpath. Later on we will also
discuss another Citrus annotation (@CitrusTest) which stands for defining the Citrus test just with
Java domain specific language features. For now we continue to deal with the XML Citrus test
execution.

The default naming convention requires a XML file with the tests name in the same package that the
Java class is placed in. In the basic example above this means that Citrus searches for a XML test
file in com/consol/citrus/samples/SamplelT.xml. You tell Citrus to search for another XML file by
using the @CitrusXmlTest annotation properties. Following annotation properties are valid:

* name: List of test case names to execute. Names also define XML file names to look for (.xml file
extension is not needed here).

« packageName: Custom package location for the XML files to load

* packageScan: List of packages that are automatically scanned for XML test files to execute. For
each XML file found separate test is executed. Note that this performs a Java Classpath package
scan so all XML files in package are assumed to be valid Citrus XML test cases. In order to
minimize the amount of accidentally loaded XML files the scan will only load XML files with
**[*Test.xml and **/*IT.xml file name pattern.

You can also mix the various CitrusXmlITest annotation patterns in a single Java class. So we are
able to have several test cases in one single Java class. Each annotated method represents one or
more Citrus XML test cases. Se the following example to see what this is about.

@est

public class Sanplel T extends Abstract Test NGC trusTest {
@i trusXm Test (nanme = "Sanpl el T")
public void sanpl eTest() {}

@i trusXm Test (name = { "Sanplel T", "AnotherlT" })
public void multipleTests() {}

@i trusXm Test (name = "Qther| T", packageNane = "com ot her.t est package")
public void otherPackageTest () {}

@Ci trusXm Test (packageScan = { "com sone.testpackage", "com other.testpackage" })
public void packageScanTest () {}

You are free to combine these test annotations as you like in your class. As the whole Java class is
annotated with the TestNG @Test annotation each method gets executed automatically. Citrus will
also take care on executing each XML test case as a separate unit test. So the test reports will have
the exact number of executed tests and the JUnit/TestNG test reports do have the exact test outline

Citrus Framework (2.5.2) 28

Running tests

for further usage (e.g. in continuous build reports).

Note

When test execution takes place each test method annotation is evaluated in sequence.
XML test cases that match several times, for instance by explicit name reference and a
package scan will be executed several times respectively.

The best thing about using the @CitrusXmlITest annotation is that you can continue to use the
fabulous TestNG capabilities (e.g. test groups, invocation count, thread pools, data providers, and so

on).

So now we have seen how to execute a Citrus XML test with TestNG.

Citrus Framework (2.5.2) 29

Chapter 7. Configuration

You have several options in customizing the Citrus project configuration. Citrus uses default settings
that can be overwritten to some extend. As a framework Citrus internally works with the Spring 1oC
container. So Citrus will start a Spring application context and register several components as Spring
beans. You can customize the behavior of these beans and you can add custom settings by setting
system properties.

7.1. Citrus Spring XML application context

Citrus starts a Spring application context and adds some default Spring bean components. By default
Citrus will load some internal Spring Java config classes defining those bean components. At some
point you might add some custom beans to that basic application context. This is why Citrus will
search for custom Spring application context files in your project. These are automatically loaded.

By default Citrus looks for custom XML Spring application context files in this location:
classpath*:citrus-context.xml. So you can add a file named citrus-context.xml to your project
classpath and Citrus will load all Spring beans automatically.

The location of this file can be customized by setting a System property
citrus.spring.application.context. So you can customize the XML Spring application context file
location. The System property is settable with Maven surefire and failsafe plugin for instance or via
Java before the Citrus framework gets loaded.

See the following sample XML configuration which is a normal Spring bean XML configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframework. or g/ schema/ beans”
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:citrus="http://ww. citrusframework. org/schema/ config"
xm ns: context="http://wwm. springframework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngframework. org/ schenma/ beans http://ww. springfranework. org/ schena/ beans/ s
http://ww. citrusfranework. org/ schena/ config http://ww.citrusframework. org/schenma/ config/citrus-config.xsd
http://ww. springfranework. or g/ schena/ cont ext http://ww. springfranmework. org/ schema/ cont ext/spri ng-cont ext. xsd">

<ci trus: schema-repository id="schemaRepository" />

</ beans>

Now you can add some Spring beans and you can use the Citrus XML components such as
schema-repository for adding custom beans and components to your Citrus project. Citrus provides
several namespaces for custom Spring XML components. These are described in more detail in the
respective chapters and sections in this reference guide.

Tip

You can also use import statements in this Spring application context in order to load
other configuration files. So you are free to modularize your configuration in several files
that get loaded by Citrus.

7.2. Citrus Spring Java config

Citrus Framework (2.5.2) 30

Configuration

Using XML Spring application context configuration is the default behavior of Citrus. However some
people might prefer pure Java code configuration. You can do that by adding a System property
citrus.spring.java.config with a custom Spring Java config class as value.

Syst em set Property("citrus.spring.java.config", MCustonConfig.class.getNane())

Citrus will load the Spring bean configurations in MyCustomConfig.class as Java config then. See the
following example for custom Spring Java configuration:

i mport com consol . citrus. Test Case;

inport com consol .citrus.report.*;

import org.slf4j.Logger;

inport org.slf4j.LoggerFactory;

i nport org.springframework. cont ext. annot ati on. Bean;

i mport org.springfranework. cont ext. annot ati on. Confi gurati on;

@Configuration
public class MyCustonConfig {

@Bean(name = "custonirestLi stener")

public TestListener custonilestListener() {
return new Pl usM nusTest Reporter();

}

private static class PlusM nusTest Reporter extends Abstract TestListener inplenments Test Reporter {

/** Logger */
private Logger |og = Logger Factory. get Logger (Cust onBeanConfi g. cl ass);

private StringBuilder testReport = new StringBuilder();

@verride

public void onTest Success(Test Case test) {
test Report. append("+");

}

@verride

public void onTestFail ure(Test Case test, Throwabl e cause) {
test Report. append("-");

}

@wverride

public void generateTestResults() {
log.info(testReport.toString());

}

@verride
public void clearTestResults() {

test Report = new StringBuilder();
}

You can also mix XML and Java configuration so Citrus will load both configuration to the Spring
bean application context on startup.

7.3. Citrus application properties

The Citrus framework references some basic System properties that can be overwritten. The
properties are loaded from Java System and are also settable via property file. Just add a property
file named citrus-application.properties to your project classpath. This property file contains
customized settings such as:

citrus.spring. application.context=classpath*:citrus-custom context.xnl
citrus.spring.java.config=com consol . citrus.config. M/Cust onConfig
citrus.file.encodi ng=UTF-8

citrus.xm .file.nane.pattern=/**/*Test.xm ,/**/*| T.xn

Citrus Framework (2.5.2) 31

Configuration

Citrus loads these application properties at startup. All properties are also settable with Java System
properties. The location of the citrus-application.properties is customizable with the System property
citrus.application.config.

Syst em set Property("citrus. application.config", "custom path/to/citrus-application.properties")

At the moment you can use these properties for customization:

« citrus.spring.application.context: File location for Spring XML configurations
« citrus.spring.java.config: Class hame for Spring Java config
« citrus.file.encoding: Default file encoding used in Citrus when reading and writing file content

« citrus.xml.file.name.pattern: File name patterns used for XML test file package scan

Citrus Framework (2.5.2) 32

Chapter 8. Endpoints

In one of the previous chapters we have discussed the basic test case structure as we introduced
variables and test actions. The <actions> section contains a list of test actions that take place during
the test case. Each test action is executed in sequential order by default. Citrus offers several built-in
test actions that the user can choose from to construct a complex testing workflow without having to
code everything from scratch. In particular Citrus aims to provide all the test actions that you need as
predefined components ready for you to use. The goal is to minimize the coding effort for you so you
can concentrate on the test logic itself.

Exactly the same approach is used in Citrus to provide ready-to-use endpoint component for
connecting to different message transports. There are several ways in an enterprise application to
exchange messages with some other application. We have synchronous interfaces like Http and
SOAP WebServices. We have asynchronous messaging with JMS or file transfer FTP interfaces.

Citrus provides endpoint components as client and server to connect with these typical message
transports. So you as a tester must not care about how to send a message to a JMS queue. The
Citrus endpoints are configured in the Spring application context and receive endpoint specific
properties like endpoint uri or ports or message timeouts as configuration.

The next figure shows a typical message sending endpoint component in Citrus:

The endpoint producer publishes messages to a destination. This destination can be a JMS
queue/topic, a SOAP WebService endpoint, a Http URL, a FTP folder destination and so on. The
producer just takes a previously defined message definition (header and payload) and sends it to the
message destination.

Similar to that Citrus defines the several endpoint consumer components to consume messages from
destinations. This can be a simple subscription on message channels and JMS queues/topics. In
case of SOAP WebServices and Http GET/POST things are more complicated as we have to provide
a server component that clients can connect to. We will handle server related communication in more
detail later on. For now the endpoint consumer component in its most simple way is defined like this:

This is all you need to know about Citrus endpoints. We have mentioned that the endpoints are
defined in the Spring application context. Let's have a simple example that shows the basic idea:

<citrus-j ms: endpoi nt id="hel |l oServi ceEndpoi nt"
destination-nanme="Citrus. Hel | oServi ce. Request . Queue"
connection-factory="nyConnecti onFacotry"/>

This is a simple JMS endpoint component in Citrus. The endpoint XML bean definition follows a
custom XML namespace and defines endpoint specific properties like the JMS destination name and
the JMS connection factory. The endpoint id is a significant property as the test cases will reference
this endpoint when sending and receiving messages by its identifier.

In the next sections you will learn how a test case uses those endpoint components for producing
and consuming messages.

8.1. Send messages with endpoints

The <send> action in a test case publishes messages to a destination. The actual message transport
connection is defined with the endpoint component. The test case simply defines the message

Citrus Framework (2.5.2) 33

Endpoints

contents and references a predefined message endpoint component by its identifier. Endpoint
specific configurations are centralized in the Spring bean application context while multiple test cases
can reference the endpoint to actually publish the constructed message to a destination. There are
several message endpoint implementations in Citrus available representing different transport
protocols like IMS, SOAP, HTTP, TCP/IP and many more.

Again the type of transport to use is not specified inside the test case but in the message endpoint
definition. The separation of concerns (test case/message sender transport) gives us a good
flexibility of our test cases. The test case does not know anything about connection factories, queue
names or endpoint uri, connection timeouts and so on. The transport internals underneath a sending
test action can change easily without affecting the test case definition. We will see later in this
document how to create different message endpoints for various transports in Citrus. For now we
concentrate on constructing the message content to be sent.

We assume that the message's payload will be plain XML format. Citrus uses XML as the default
data format for message payload data. But Citrus is not limited to XML message format though; you
can always define other message data formats such as JSON, plain text, CSV. As XML is still a very
popular message format in enterprise applications and message-based solution architectures we
have this as a default format. Anyway Citrus works best on XML payloads and you will see a lot of
example code in this document using XML. Finally let us have a look at a first example how a
sending action is defined in the test.

XML DSL

<t est case nanme="SendMessageTest">
<descri ption>Basi ¢ send nessage exanpl e</description>

<acti ons>
<send endpoi nt ="hel | oSer vi ceEndpoi nt ">
<nessage>
<payl oad>
<Test Message>
<Text >Hel | o! </ Text >
</ Test Message>
</ payl oad>
</ nessage>
<header >
<el ement nanme="Qperation" val ue="sayHel |l 0"/ >
</ header >
</ send>
</ actions>
</testcase>

Now lets have a closer look at the sending action. The ‘endpoint' attribute might catch your attention
first. This attribute references the message endpoint in Citrus configuration by its identifier. As
previously mentioned the message endpoint definition lives in a separate configuration file and
contains the actual message transport settings. In this example the "helloServiceEndpoint" is
referenced which is a JMS endpoint for sending out messages to a JMS queue for instance.

The test case is not aware of any transport details, because it does not have to. The advantages are
obvious: On the one hand multiple test cases can reference the message endpoint definition for
better reuse. Secondly test cases are independent of message transport details. So connection
factories, user credentials, endpoint uri values and so on are not present in the test case.

In other words the "endpoint" attribute of the <send> element specifies which message endpoint
definition to use and therefore where the message should go to. Once again all available message
endpoints are configured in a separate Citrus configuration file. Be sure to always pick the right
message endpoint type in order to publish your message to the right destination.

Citrus Framework (2.5.2) 34

Endpoints

If you do not like the XML language you can also use pure Java code to define the same test. In Java
you would also make use of the message endpoint definition and reference this instance. The same
test as shown above in Java DSL looks like this:

Java DSL designer

import org.testng. | Test Cont ext;

import org.testng.annotations. Test;

i nport com consol . citrus. annotations. CitrusTest;

import com consol . citrus.dsl.testng. Test NGC trusTest Desi gner

@est
public class SendMessageTest Desi gner extends Test NGCi trusTest Desi gner {

@Ci trusTest (nane = "SendMessageTest")
public void sendMessageTest () {
description("Basic send nessage exanple")

send(" hel | oSer vi ceEndpoi nt")
. payl oad(" <Test Message>" +
"<Text >Hel | o! </ Text >" +
"</ Test Message>")
. header (" Operation", "sayHello")

Instead of using the XML tags for send we use methods from TestNGCitrusTestDesigner class. The
same message endpoint is referenced within the send message action. The payload is constructed
as plain Java character sequence which is a bit verbose. We will see later on how we can improve
this. For now it is important to understand the combination of send test action and a message
endpoint.

Tip

It is good practice to follow naming conventions when defining names for message
endpoints. The intended purpose of the message endpoint as well as the
sending/receiving actor should be clear when choosing the name. For instance
messageEndpointl, messageEndpoint2 will not give you much hints to the purpose of the
message endpoint.

This is basically how to send messages in Citrus. The test case is responsible for constructing the
message content while the predefined message endpoint holds transport specific settings. Test
cases reference endpoint components to publish messages to the outside world. This is just the start
of action. Citrus supports a whole package of other ways how to define and manipulate the message
contents. Read more about message sending actions in Section 12.1, “Sending messages”.

8.2. Receive messages with endpoints

Now we have a look at the message receiving part inside the test. A simple example shows how it
works.

XML DSL

<recei ve endpoi nt ="hel | oServi ceEndpoi nt" >
<nessage>
<payl oad>
<Test Message>
<Text >Hel | o! </ Text >
</ Test Message>
</ payl oad>

Citrus Framework (2.5.2) 35

Endpoints

</ nessage>
<header >
<el ement nane="Qperation" val ue="sayHel |l 0"/ >
</ header >
</receive>

If we recap the send action of the previous chapter we can identify some common mechanisms that
apply for both sending and receiving actions. The test action also uses the endpoint attribute for
referencing a predefined message endpoint. This time we want to receive a message from the
endpoint. Again the test is not aware of the transport details such as JMS connections, endpoint uri,
and so on. The message endpoint component encapsulates this information.

Before we go into detail on validating the received message we have a quick look at the Java DSL
variation for the receive action. The same receive action as above looks like this in Java DSL.

Java DSL designer

@@ trusTest
public void messagi ngTest () {
recei ve("hel | oServi ceEndpoi nt ")
. payl oad(" <Test Message>" +
" <Text >Hel | ol </ Text>" +
"</ Test Message>")
. header (" Operation", "sayHello");

The receive action waits for a message to arrive. The whole test execution is stopped while waiting
for the message. This is important to ensure the step by step test workflow processing. Of course you
can specify message timeouts so the receiver will only wait a given amount of time before raising a
timeout error. Following from that timeout exception the test case fails as the message did not arrive
in time. Citrus defines default timeout settings for all message receiving tasks.

At this point you know the two most important test actions in Citrus. Sending and receiving actions
will become the main components of your integration tests when dealing with loosely coupled
message based components in a enterprise application environment. It is very easy to create
complex message flows, meaning a sequence of sending and receiving actions in your test case.
You can replicate use cases and test your message exchange with extended message validation
capabilities. See Section 12.2, “Receiving messages” for a more detailed description on how to
validate incoming messages and how to expect message contents in a test case.

Now we have seen the basic endpoint concept in Citrus. The endpoint components represent the
connections to the test boundary systems. This is how we can connect to the system under test for
message exchange. And this is our main goal with this integration test framework. We want to
provide easy access to common message transports on client and server side so that we can test the
communication interfaces on a real message transport exchange.

Citrus Framework (2.5.2) 36

Chapter 9. Message validation

When Citrus receives a message from external applications it is time to verify the message content.
This message validation includes syntax rules as well as semantic values that need to be compared
to an expected behavior. Citrus provides powerful message validation capabilities. Each incoming
message is validated with syntax and semantics. The tester is able to define expected message
headers and payloads. Citrus message validator implementations will compare the messages and
report differences as test failure. With the upcoming sections we have a closer look at message
validation of XML messages with XPath and XML schema validation and further message formats
like JSON and plaintext.

9.1. Xml message validation

XML is a very common message format especially in the SOAP WebServices and JMS messaging
world. Citrus provides XML message validator implementations that are able to compare XML
message structures. The validator will notice differences in the XML message structure and supports
XML namespaces, attributes and XML schema validation. The default XML message validator
implementation is active by default and can be overwritten with a custom implementation using the
bean id defaultXmIMessageValidator.

<bean id="def aul t Xml MessageVal i dator" cl ass="com consol . citrus.validation.xm .DomXm MessageVal i dator"/>

The default XML message validator is very powerful when it comes to compare XML structures. The
validator supports namespaces with different prefixes and attributes als well as namespace qualified
attributes. See the following sections for a detailed description of all capabilities.

9.1.1. XML payload validation

Once Citrus has received a message the tester can validate the message contents in various ways.
First of all the tester can compare the whole message payload to a predefined control message
template.

The receiving action offers following elements for control message templates:

« <payload>: Defines the message payload as nested XML message template. The whole message
payload is defined inside the test case.

» <data>: Defines an inline XML message template as nested CDATA. Slightly different to the
payload variation as we define the whole message payload inside the test case as CDATA section.

« <resource>: Defines an expected XML message template via external file resources. This time the
payload is loaded at runtime from the external file.

Both ways inline payload definition or external file resource give us a control message template that
the test case expects to arrive. Citrus uses this control template for extended message comparison.
All elements, namespaces, attributes and node values are validated in this comparison. When using
XML message payloads Citrus will navigate through the whole XML structure validating each element
and its content. Same with JSON payloads.

Citrus Framework (2.5.2) 37

Message validation

Only in case received message and control message are equal to each other as expected the
message validation will pass. In case differences occur Citrus gives detailed error messages and the
test case fails.

The control message template is not necessarily very static. Citrus supports various ways to add
dynamic message content on the one side and on the other side Citrus can ignore some elements
that are not part of message comparison (e.g. when generated content or timestamps are part of the
message content). The tester can enrich the expected message template with test variables or ignore
expressions so we get a more robust validation mechanism. We will talk about this in the next
sections to come.

When using the Citrus Java DSL you will face a verbose message payload definition. This is because
Java does not support multiline character sequence values as Strings. We have to use verbose
String concatenation when constructing XML message payload contents for instance. In addition to
that reserved characters like quotes must be escaped and line breaks must be explicitly added. All
these impediments let me suggest to use external file resources in Java DSL when dealing with large
complex message payload data. Here is an example:

Java DSL designer

@0 trusTest
public void recei veMessageTest () {
recei ve("hel | oServi ceServer")
. payl oad(new O assPat hResour ce("conm consol / ci trus/ message/ dat a/ Test Request . xnl "))
. header (" Operation", "sayHello")
. header (" Messagel d", "${nessageld}");

9.1.2. XML header validation

Now that we have validated the message payload in various ways we are now interested in validating
the message header. This is simple as you have to define the header name and the control value
that you expect. Just add the following header validation to your receiving action.

XML DSL

<header >
<el enent name="Operation" val ue="Get Custoner"/>
<el ement nane="Request Tag" val ue="${request Tag}"/>
</ header >

Java DSL designer

@ci trusTest
public void recei veMessageTest () {
recei ve("hel | oServi ceServer")
. header (" Operation", "sayHello")
. header (" Messagel d", "${nessageld}");

Message headers are represented as name-value pairs. Each expected header element identified by
its name has to be present in the received message. In addition to that the header value is compared
to the given control value. If a header entry is not found by its name or the value does not fit
accordingly Citrus will raise validation errors and the test case will fail.

Note

Citrus Framework (2.5.2) 38

Message validation

Sometimes message headers may not apply to the name-value pair pattern. For example
SOAP headers can also contain XML fragments. Citrus supports these kind of headers
too. Please see the SOAP chapter for more details.

9.1.3. Ignore XML elements

Some elements in the message payload might not apply for validation at all. Just think of
communication timestamps an dynamic values inside a message:

The timestamp value in our next example will dynamically change from test run to test run and is
hardly predictable for the tester, so lets ignore it in validation.

XML DSL

<nessage>
<payl| oad>
<Test Message>
<Messagel d>${ messagel d} </ Messagel d>
<Ti mest anp>2001- 12- 17T09: 30: 47. 0Z</ Ti mest anp>
<Ver si onl d>@ gnor e@/ Ver si onl d>
</ Test Message>
</ payl oad>
<i gnore path="/Test Message/ Ti nest anp"/ >
</ nessage>

Although we have given a static timestamp value in the payload data the element is ignored during
validation as the ignore XPath expression matches the element. In addition to that we also ignored
the version id element in this example. This time with an inline @ignore@ expression. This is for
those of you that do not like XPath. As a result the ignored message elements are automatically
skipped when Citrus compares and validates message contents and do not break the test case.

When using the Java DSL the @ignore@ placeholder as well as XPath expressions can be used
seamlessly. Here is an example of that:

Java DSL designer

@@ trusTest
public void recei veMessageTest () {
recei ve("hel | oServi ceServer")
. payl oad(new O assPat hResour ce("conm consol / ci trus/ nessage/ dat a/ Test Request . xnl "))
. header (" Operation", "sayHello")
. header (" Messagel d", "${nessageld}")
.ignore("/Test Message/ Ti nest anp") ;

Of course you can use the inline @ignore@ placeholder in an external file resource, too.

9.1.4. Groovy XML validation

With the Groovy XmiSlurper you can easily validate XML message payloads without having to deal
directly with XML. People who do not want to deal with XPath may also like this validation alternative.
The tester directly navigates through the message elements and uses simple code assertions in
order to control the message content. Here is an example how to validate messages with Groovy
script:

XML DSL

Citrus Framework (2.5.2) 39

Message validation

<recei ve endpoi nt="hel | oServiced ient" tinmeout="5000">
<nessage>
<val i dat e>
<script type="groovy">
assert root.children().size() ==
assert root.Messageld.text() == '${nmessagel d}’
assert root.Correlationld.text() == '${correlationld}
assert root.User.text() == 'HelloService
assert root.Text.text() == "Hello ' + context.getVariabl e("user")
</script>
</val i dat e>
</ message>
<header >
<el enent name="Cperation" val ue="sayHel | 0"/>
<el ement nane="Correl ationld" val ue="${correl ationld}"/>
</ header >
</receive>

Java DSL designer

@i t rusTest
public void recei veMessageTest () {
recei ve("hel l oServicedient")

.val i dateScript("assert root.Messageld.text() == "'${nessageld}"';" +
"assert root.Correlationld.text() == "${correlationld}" ;")

. header (" Operation, "sayHello")

. header ("Correl ationld", "${correlationld}")

.ti meout (5000L);

The Groovy XmlSlurper validation script goes right into the message-tag instead of a XML control
template or XPath validation. The Groovy script supports Java assert Statements for message
element validation. Citrus automatically injects the root element root to the validation script. This is
the Groovy XmlSlurper object and the start of element navigation. Based on this root element you
can access child elements and attributes with a dot notated syntax. Just use the element names
separated by a simple dot. Very easy! If you need the list of child elements use the children()
function on any element. With the text () function you get access to the element's text-value. The
si ze() is very useful for validating the number of child elements which completes the basic validation
statements.

As you can see from the example, we may use test variables within the validation script, too. Citrus
has also injected the actual test context to the validation script. The test context object holds all test
variables. So you can also access variables with cont ext . get Vari abl e("user") for instance. On the
test context you can also set new variable values with cont ext . set Vari abl e("user”, "newUser Narre") .

There is even more object injection for the validation script. With the automatically added object
recei vedMessage You have access to the Citrus message object for this receive action. This enables
you to do whatever you want with the message payload or header.

XML DSL

<recei ve endpoi nt="hel | oServi ced ient" tinmeout="5000">
<nessage>
<val i dat e>
<script type="groovy">
assert recei vedMessage. get Payl oad(String.class).contains("Hello Citrus!")
assert recei vedMessage. get Header (" Operation") == 'sayHello

cont ext. set Vari abl e("request _payl oad", recei vedMessage. get Payl oad(String. cl ass))
</script>
</val i dat e>
</ message>
</receive>

Citrus Framework (2.5.2) 40

Message validation

The listing above shows some power of the validation script. We can access the message payload,
we can access the message header. With test context access we can also save the whole message
payload as a new test variable for later usage in the test.

In general Groovy code inside the XML test case definition or as part of the Java DSL code is not
very comfortable to maintain. You do not have code syntax assist or code completion. This is why we
can also use external file resources for the validation scripts. The syntax looks like follows:

XML DSL

<recei ve endpoi nt="hel | oServicedient" tineout="5000">
<message>
<val i dat e>
<script type="groovy" file="classpath:validationScript.groovy"/>
</val i dat e>
</ message>
<header >
<el ement nane="Qperation" val ue="sayHel |l 0"/ >
<el enent nanme="Correl ationld" val ue="${correl ationld}"/>
</ header >
</receive>

Java DSL designer

@i trusTest
public void recei veMessageTest () {
recei ve("hell oServicedient")
.validateScript(new Fil eSyst enResource("validationScript.groovy"))
. header (" Operation, "sayHello")
. header ("Correl ationld", "${correlationld}")
.ti meout (5000L);

We referenced some external file resource validationScript.groovy. This file content is loaded at
runtime and is used as script body. Now that we have a normal groovy file we can use the code
completion and syntax highlighting of our favorite Groovy editor.

Note

You can use the Groovy validation script in combination with other validation types like
XML tree comparison and XPath validation.

Tip
For further information on the Groovy XmliSlurper please see the official Groovy website
and documentation

9.2. XML schema validation

There are several possibilities to describe the structure of XML documents. The two most popular
ways are DTD (Document type definition) and XSD (XML Schema definition). Once a XML document
has decided to be classified using a schema definition the structure of the document has to fit the
predefined rules inside the schema definition. XML document instances are valid only in case they
meet all these structure rules defined in the schema definition. Currently Citrus can validate XML
documents using the schema languages DTD and XSD.

Citrus Framework (2.5.2) 41

Message validation

9.2.1. XSD schema repositories

Citrus tries to validate all incoming XML messages against a schema definition in order to ensure that
all rules are fulfilled. As a consequence the message receiving actions in Citrus do have to know the
XML schema definition (*.xsd) file resources that belong to our project. Therefore Citrus introduces a
central schema repository component which holds all available XML schema files for a project.

<citrus:schema-repository i d="schenaRepository">
<ci trus: schemas>
<citrus:schema id="travel AgencySchema"
| ocati on="cl asspat h: ci trus/flight booki ng/ Travel AgencySchena. xsd"/ >
<citrus:schema id="royal ArilineSchema"
| ocati on="cl asspat h: ci trus/flight booki ng/ Royal Ai rli neSchenma. xsd"/ >
<citrus:reference schema="snart Aril i neSchena"/>
</citrus: schemas>
</citrus: schema-repository>

<citrus:schema id="smartArilineSchema"
| ocati on="cl asspat h: ci trus/flightbooking/ Smart Ai rli neSchema. xsd"/ >

As you can see the schema repository is a simple XML component defined inside the Spring
application context. The repository can hold nested schema definitions defined by some identifier and
a file location for the xsd schema file. Schema definitions can also be referenced by its identifier for
usage in several schema repository instances.

By convention the default schema repository component is defined in the Citrus Spring application
context with the id schemaRepository. Spring application context is then able to inject the schema
repository into all message receiving test actions at runtime. The receiving test action consolidates
the repository for a matching schema definition file in order to validate the incoming XML document
structure.

The connection between incoming XML messages and xsd schema files in the repository is done by
a mapping strategy which we will discuss later in this chapter. By default Citrus picks the right
schema based on the target namespace that is defined inside the schema definition. The target
namespace of the schema definition has to match the namespace of the root element in the received
XML message. With this mapping strategy you will not have to wire XML messages and schema files
manually all is done automatically by the Citrus schema repository at runtime. All you need to do is to
register all available schema definition files regardless of which target namespace or nature inside
the Citrus schema repository.

Important

XMI schema validation is mandatory in Citrus. This means that Citrus always tries to find a
matching schema definition inside the schema repository in order to perform syntax
validation on incoming schema qualified XML messages. A classified XML message is
defined by its namespace definitions. Consequently you will get validation errors in case
no matching schema definition file is found inside the schema repository. So if you
explicitly do not want to validate the XML schema for some reason you have to disable the
validation explicitly in your test with schema-validation="false".

<recei ve endpoi nt ="htt pMessageEndpoi nt" >
<nmessage schema-validation="fal se">
<val i dat e>
<xpat h expressi on="//nsl: Test Message/ ns1l: MessageHeader/ nsl: Messagel d"
val ue="${messagel d}"/ >
<xpat h expressi on="//nsl: Test Message/ nsl: MessageHeader/nsl: Correl ati onl d"
val ue="${correl ationld}"/>
<nanespace prefix="nsl1l" value="http://citrus.com nanespace"/>
</val i dat e>
</ nessage>

Citrus Framework (2.5.2) 42

Message validation

<header >
<el ement nane="Qperation" val ue="sayHel |l 0"/ >
<el enent nane="Messagel d" val ue="${nessagel d}"/>
</ header >
</receive>

This mandatory schema validation might sound annoying to you but in our opinion it is
very important to validate the structure of the received XML messages, so disabling the
schema validation should not be the standard for all tests. Disabling automatic schema
validation should only apply to very special situations. So please try to put all available
schema definitions to the schema repository and you will be fine.

9.2.2. WSDL schemas

In SOAP WebServices world the WSDL (WebService Schema Definition Language) defines the
structure an nature of the XML messages exchanged across the interface. Often the WSDL files do
hold the XML schema definitions as nested elements. In Citrus you can directly set the WSDL file as
location of a schema definition like this:

<citrus:schema id="arilineWsdl"
| ocation="cl asspat h: ci trus/flightbooking/AirlineSchema. wsdl"/>

Citrus is able to find the nested schema definitions inside the WSDL file in order to build a valid
schema file for the schema repository. So incoming XML messages that refer to the WSDL file can
be validated for syntax rules.

9.2.3. Schema location patterns

Setting all schemas one by one in a schema repository can be verbose and uncomfortable,
especially when dealing with lots of xsd and wsdl files. The schema repository also supports location
pattern expressions. See this example to see how it works:

<citrus:schema-repository i d="schenmaRepository">
<citrus:|ocations>
<citrus:location
pat h="cl asspat h: ci trus/fli ght booki ng/ *. xsd"/ >
</citrus:|ocations>
</citrus: schema-repository>

The schema repository searches for all files matching the resource path location pattern and adds
them as schema instances to the repository. Of course this also works with WSDL files.

9.2.4. Schema collections

Sometimes multiple a schema definition is separated into multiple files. This is a problem for the
Citrus schema repository as the schema mapping strategy then is not able to pick the right file for
validation, in particular when working with target namespace values as key for the schema mapping
strategy. As a solution for this problem you have to put all schemas with the same target namespace
value into a schema collection.

<citrus:schema-col | ection id="flightbooki ngSchemaCol | ecti on">
<ci trus: schemas>
<citrus:schema | ocation="cl asspath:citrus/flightbooking/ BaseTypes. xsd"/>
<citrus:schema | ocation="cl asspath:citrus/flightbooking/AirlineSchema.xsd"/>

Citrus Framework (2.5.2) 43

Message validation

</citrus: schemas>
</citrus: schema-col | ecti on>

Both schema definitions BaseTypes.xsd and AirlineSchema.xsd share the same target namespace
and therefore need to be combined in schema collection component. The schema collection can be
referenced in any schema repository as normal schema definition.

<citrus:schema-repository id="schemaRepository">
<ci trus: schemas>
<citrus:reference schema="fli ght booki ngSchemaCol | ecti on"/ >
</citrus: schemas>
</citrus: schema-repository>

9.2.5. Schema mapping strategy

The schema repository in Citrus holds one to many schema definition files and dynamically picks up
the right one according to the validated message payload. The repository needs to have some
strategy for deciding which schema definition to choose. See the following schema mapping
strategies and decide which of them is suitable for you.

9.2.5.1. Target Namespace Mapping Strategy

This is the default schema mapping strategy. Schema definitions usually define some target
namespace which is valid for all elements and types inside the schema file. The target namespace is
also used as root namespace in XML message payloads. According to this information Citrus can
pick up the right schema definition file in the schema repository. You can set the schema mapping
strategy as property in the configuration files:

<citrus:schema-repository id="schemaRepository"
schema- mappi ng- st r at egy="schenaMappi ngSt r at egy" >
<ci trus: schemas>
<citrus:schema id="hel | oSchena"
| ocati on="cl asspat h: ci t rus/ sanpl es/ sayHel | 0. xsd"/ >
</citrus: schemas>
</citrus: schema-repository>

<bean i d="schenmaMappi ngSt r at egy"
cl ass="com consol . ci trus. xm . schena. Tar get NanespaceSchemaMappi ngSt r at egy"/ >

The sayHello.xsd schema file defines a target namespace (http://consol.de/schemas/sayHello.xsd):

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns="http://consol . de/ schenas/ sayHel | 0. xsd"
tar get Nanmespace="http://consol . de/ schemas/ sayHel | 0. xsd"
el enent For nDef aul t ="qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">

</ xs: schema>

Incoming request messages should also have the target namespace set in the root element and this
is how Citrus matches the right schema file in the repository.

<Hel | oRequest xm ns="http://consol . de/schemas/sayHel | 0. xsd">
<Messagel d>123456789</ Messagel d>
<Correl ati onl d>1000</ Correl ati onl d>
<User >Chri st oph</ User >
<Text>Hell o Ci trus</Text>
</ Hel | oRequest >

Citrus Framework (2.5.2) 44

Message validation

9.2.5.2. Root QName Mapping Strategy

The next possibility for mapping incoming request messages to a schema definition is via the XML
root element QName. Each XML message payload starts with a root element that usually declares
the type of a XML message. According to this root element you can set up mappings in the schema
repository.

<citrus:schema-repository id="schemaRepository"
schenma- mappi ng- st r at egy="schenaMappi ngSt r at egy" >
<ci trus: schemas>
<citrus:reference schema="hel | oSchema"/>
<citrus:reference schena="goodbyeSchema"/ >
</citrus: schemas>
</citrus:schema-repository>

<bean i d="schemaMappi ngSt r at egy"
cl ass="com consol . ci trus. xm . schema. Root QNaneSchenmaMappi ngSt r at egy" >
<property name="nappi ngs">
<map>
<entry key="Hel | oRequest" val ue="hel | oSchena"/>
<entry key="GoodbyeRequest" val ue="goodbyeSchena"/ >
</ map>
</ property>
</ bean>

<citrus:schema i d="hel | oSchema"
| ocati on="cl asspat h: ci t rus/ sanpl es/ sayHel | 0. xsd"/ >

<ci trus:schema i d="goodbyeSchema"
| ocati on="cl asspat h: ci t rus/ sanpl es/ sayGoodbye. xsd"/ >

The listing above defines two root gname mappings - one for HelloRequest and one for
GoodbyeRequest message types. An incoming message of type <HelloRequest> is then mapped to
the respective schema and so on. With this dedicated mappings you are able to control which
schema is used on a XML request, regardless of target namespace definitions.

9.2.5.3. Schema mapping strategy chain

Let's discuss the possibility to combine several schema mapping strategies in a logical chain. You
can define more than one mapping strategy that are evaluated in sequence. The first strategy to find
a proper schema definition file in the repository wins.

<citrus:schema-repository id="schemaRepository"
schenma- mappi ng- st r at egy="schenaMappi ngSt r at egy" >
<ci trus: schemas>
<citrus:reference schema="hel | oSchema"/>
<citrus:reference schena="goodbyeSchema"/ >
</citrus:schemas>
</citrus:schema-repository>

<bean i d="schenmaMappi ngSt r at egy"
cl ass="com consol . ci trus. xnl . schema. SchenaMappi ngSt r at egyChai n" >
<property name="strategi es">
<list>
<bean cl ass="com consol . citrus.xn .schenma. Root QNaneSchenmaMappi ngSt r at egy" >
<property nanme="nappi ngs">
<map>
<entry key="Hel | oRequest" val ue="hel | oSchema"/>
</ map>
</ property>
</ bean>
<bean cl ass="com consol . citrus.xnl .schenma. Tar get NanespaceSchemaMappi ngSt r at egy"/ >
</list>
</ property>
</ bean>

So the schema mapping chain uses both RootQNameSchemaMappingStrategy and

Citrus Framework (2.5.2) 45

Message validation

TargetNamespaceSchemaMappingStrategy in combination. In case the first root gname strategy fails
to find a proper mapping the next target namespace strategy comes in and tries to find a proper
schema.

9.2.6. Schema definition overruling

Now it is time to talk about schema definition settings on test action level. We have learned before
that Citrus tries to automatically find a matching schema definition in some schema repository. There
comes a time where you as a tester just have to pick the right schema definition by yourself. You can
overrule all schema mapping strategies in Citrus by directly setting the desired schema in your
receiving message action.

<recei ve endpoi nt ="htt pMessageEndpoi nt ">
<nessage schenma="hel | oSchena" >
<val i dat e>
<xpat h expressi on="//nsl: Test Message/ nsl: MessageHeader/ nsl: Messagel d"
val ue="${ messagel d}"/ >
<xpat h expression="//nsl: Test Message/ nsl: MessageHeader/ nsl: Correl ati onl d"
val ue="${correl ationld}"/>
<nanespace prefix="nsl" value="http://citrus.com nanespace"/>
</val i dat e>
</ message>
</receive>

<citrus:schema i d="hel | oSchema"
| ocati on="cl asspat h: ci t rus/ sanpl es/ sayHel | 0. xsd"/ >

In the example above the tester explicitly sets a schema definition in the receive action
(schema="helloSchema"). The attribute value refers to named schema bean somewhere in the
applciation context. This overrules all schema mapping strategies used in the central schema
repository as the given schema is directly used for validation. This feature is helpful when dealing
with different schema versions at the same time where the schema repository can not help you
anymore.

Another possibility would be to set a custom schema repository at this point. This means you can
have more than one schema repository in your Citrus project and you pick the right one by yourself in
the receive action.

<recei ve endpoi nt ="htt pMessageEndpoi nt">
<nmessage schema-repository="mnmySpeci al SchemaRepository">
<val i dat e>
<xpat h expressi on="//nsl: Test Message/ nsl: MessageHeader/ nsl: Messagel d"
val ue="${messagel d}"/ >
<xpat h expressi on="//nsl: Test Message/ ns1l: MessageHeader/nsl: Correl ati onl d"
val ue="${correl ationld}"/>
<nanmespace prefix="nsl1l" value="http://citrus.com nanespace"/>
</val i dat e>
</ message>
</receive>

The schema-repository attribute refers to a Citrus schema repository component which is defined
somewhere in the Spring application context.

Important

In case you have several schema repositories in your project do always define a default
repository (name="schemaRepository"). This helps Citrus to always find at least one
repository to interact with.

Citrus Framework (2.5.2) 46

Message validation

9.2.7. DTD validation

XML DTD (Document type definition) is another way to validate the structure of a XML document.
Many people say that DTD is deprecated and XML schema is the much more efficient way to
describe the rules of a XML structure. We do not disagree with that, but we also know that legacy
systems might still use DTD. So in order to avoid validation errors we have to deal with DTD
validation as well.

First thing you can do about DTD validation is to specify an inline DTD in your expected message
template.

<recei ve endpoi nt ="htt pMessageEndpoi nt" >
<nmessage schema-validation="fal se">
<dat a>
<! [CDATA[
<! DOCTYPE root [
<! ELEMENT root (nessage)>
<! ELEMENT nessage (text)>
<! ELEMENT text (#PCDATA) >
1>
<r oot >
<nessage>
<t ext >Hel | o Test Franewor k! </t ext >
</ nessage>
</ root >
11>
<dat a/ >
</ message>
</receive>

The system under test may also send the message with a inline DTD definition. So validation will
succeed.

In most cases the DTD is referenced as external .dtd file resource. You can do this in your expected
message template as well.

<recei ve endpoi nt ="htt pMessageEndpoi nt" >
<nmessage schema-validation="fal se">
<dat a>
<! [CDATA[
<! DOCTYPE root SYSTEM
"coni consol /citrus/validation/exanple.dtd">
<r oot >
<nessage>
<text >Hel | o Test Franmewor k! </t ext >
</ message>
</root>
11>
<dat a/ >
</ message>
</receive>

9.3. JSON message validation

Message formats such as JSON have become very popular, in particular when speaking of RESTful
WebServices and JavaScript using JSON as the message format to go for. Citrus is able to expect
and validate JSON messages as we will see in the next sections.

Important

By default Citrus will use XML message formats when sending and receiving messages.
This also reflects to the message validation logic Citrus uses for incoming messages. So

Citrus Framework (2.5.2) 47

Message validation

by default Citrus will try to parse the incoming message as XML DOM element tree. In
case we would like to enable JSON message validation we have to tell Citrus that we
expect a JSON message right now.

And this is quite easy. Citrus has a JSON message validator implementation active by
default and immediately as we mark an incoming message as JSON data this message
validator will jump in.

Citrus provides several default message validator implementations for JOSN message format:

e com.consol.citrus.validation.json.JsonTextMessageValidator: Basic JSON message validator
implementation compares JSON objects (expected and received). The order of JSON entries can
differ as specified in JSON protocol. Tester defines an expected control JSON object with test
variables and ignored entries. JSONArray as well as nested JSONObjects are supported, too. The
JSON validator offers two different modes to operate. By default strict mode is set and the validator
will also check the exact amount of control object fields to match. No additional fields in received
JSON data structure will be accepted. In soft mode validator allows additional fields in received
JSON data structure so the control JSON object can be a partial subset in which case only the
control fields are validated. Additional fields in the received JSON data structure are ignored then.

» com.consol.citrus.validation.script. GroovyJsonMessageValidator: Extended groovy message
validator provides specific JSON slurper support. With JSON slurper the tester can validate the
JSON message payload with closures for instance.

You can overwrite this default message validators for JSON by placing a bean into the Spring
Application context. The bean uses a default nhame as identifier. Then your custom bean will
overwrite the default validator:

<bean id="def aul t JsonMessageVal i dator" cl ass="com consol .citrus.validation.json.JsonText MessageVal i dator"/>

<bean i d="def aul t G oovyJsonMessageVal i dator" cl ass="com consol .citrus.validation.script.G oovylJsonMessageVal i dator"/

This is how you can customize the message validators used for JSON message data.

We have mentioned before that Citrus is working with XML by default. This is why we have to tell
Citrus that the message that we are receiving uses the JSON message format. We have to tell the
test case receiving action that we expect a different format other than XML.

<recei ve endpoi nt ="htt pMessageEndpoi nt ">
<nessage type="json">

<dat a>
{
"type" : "read",
"mbean" : "java.lang:type=Menory",
"attribute" : "HeapMenoryUsage",
"path" : "@qual sl gnoreCase(' USED) @,
"val ue" : "${heapUsage}",
"tinmestanmp" : "@gnore@
}
</ dat a>

</ nessage>
</receive>

The message receiving action in our test case specifies a message format type type="json". This tells
Citrus to look for some message validator implementation capable of validating JSON messages. As

Citrus Framework (2.5.2) 48

Message validation

we have added the proper message validator to the Spring application context Citrus will pick the
right validator and JSON message validation is performed on this message. As you can see you we
can use the usual test variables and the ignore element syntax here, too. Citrus is able to handle
different JSON element orders when comparing received and expected JSON object. We can also
use JSON arrays and nested objects. The default JSON message validator implementation in Citrus
is very powerful in comparing JSON objects.

Instead of defining an expected message payload template we can also use Groovy validation
scripts. Lets have a look at the Groovy JSON message validator example. As usual the default
Groovy JSON message validator is active by default. But the special Groovy message validator
implementation will only jump in when we used a validation script in our receive message definition.
Let's have an example for that.

<recei ve endpoi nt ="htt pMessageEndpoi nt" >
<nmessage type="json">
<val i dat e>
<script type="groovy">

<! [CDATA][
assert json.type == 'read
assert json.nmbean == 'java.l ang:type=Menory
assert json.attribute == 'HeapMenoryUsage
assert json.value == '${heapUsage}
11>
</script>

</val i dat e>
</ nessage>
</receive>

Again we tell Citrus that we expect a message of type="json". Now we used a validation script that is
written in Groovy. Citrus will automatically activate the special message validator that executes our
Groovy script. The script validation is more powerful as we can use the full power of the Groovy
language. The validation script automatically has access to the incoming JSON message object json.
We can use the Groovy JSON dot notated syntax in order to navigate through the JSON structure.
The Groovy JSON slurper object json is automatically passed to the validation script. This way you
can access the JSON object elements in your code doing some assertions.

There is even more object injection for the validation script. With the automatically added object
recei vedMessage YOU have access to the Citrus message object for this receive action. This enables
you to do whatever you want with the message payload or header.

XML DSL

<recei ve endpoi nt ="htt pMessageEndpoi nt" >
<nessage type="json">
<val i dat e>
<script type="groovy">
assert recei vedMessage. get Payl oad(String.class).contains("Hello Ctrus!")
assert recei vedMessage. get Header (" Operation") == 'sayHello

cont ext.set Vari abl e("request _payl oad", recei vedMessage. get Payl oad(String.cl ass))
</script>
</val i dat e>
</ nessage>
</receive>

The listing above shows some power of the validation script. We can access the message payload,
we can access the message header. With test context access we can also save the whole message
payload as a new test variable for later usage in the test.

In general Groovy code inside the XML test case definition or as part of the Java DSL code is not
very comfortable to maintain. You do not have code syntax assist or code completion. This is why we

Citrus Framework (2.5.2) 49

Message validation

can also use external file resources for the validation scripts. The syntax looks like follows:

XML DSL

<recei ve endpoi nt="hel | oServi ced ient" tinmeout="5000">
<nessage>
<val i dat e>
<script type="groovy" file="classpath:validationScript.groovy"/>
</val i dat e>
</ nessage>
</receive>

Java DSL designer

@0 trusTest
public void recei veMessageTest () {
recei ve("hel l oServicedient")
.val i dateScript (new Fi | eSyst enResource("val i dationScript.groovy"))

We referenced some external file resource validationScript. groovy. This file content is loaded at
runtime and is used as script body. Now that we have a normal groovy file we can use the code
completion and syntax highlighting of our favorite Groovy editor.

Important

Using several message validator implementations at the same time in the Spring
application context is also no problem. Citrus automatically searches for all available
message validators applicable for the given message format and executes these
validators in sequence. So several message validators can coexist in a Citrus project.

When we have multiple message validators that apply to the message format Citrus will execute all of
them in sequence. In case you need to explicitly choose a message validator implementation you can
do so in the receive action:

<recei ve endpoi nt ="htt pMessageEndpoi nt" >
<nessage type="json" validator="groovyJsonMessageVal i dator">
<val i dat e>
<script type="groovy">

<! [CDATA
assert json.type == 'read
assert json.nbean == 'java.l ang:type=Menory
assert json.attribute == 'HeapMenoryUsage
assert json.value == '${heapUsage}"
11>
</script>

</val i dat e>
</ message>
</receive>

In this example we use the groovyJsonMessageValidator explicitly in the receive test action. The
message validator implementation was added as Spring bean with id groovyJsonMessageValidator
to the Spring application context before. Now Citrus will only execute the explicit message validator.
Other implementations that might also apply are skipped.

Tip

By default Citrus will consolidate all available message validators for a message format in
sequence. You can explicitly pick a special message validator in the receive message

Citrus Framework (2.5.2) 50

Message validation

action as shown in the example above. In this case all other validators will not take part in
this special message validation. But be careful: When picking a message validator
explicitly you are of course limited to this message validator capabilities. Validation
features of other validators are not valid in this case (e.g. message header validation,
XPath validation, etc.)

So much for receiving JSON message data in Citrus. Of course sending JSON messages in Citrus is
also very easy. Just use JSON message payloads in your sending message action.

<send endpoi nt ="htt pMessageEndpoi nt ">
<nessage>
<dat a>

{
"type" : "read",
"mbean" : "java.lang:type=Menory"
"attribute" : "HeapMenoryUsage",
"path" : "used"

}

</ dat a>
</ message>
</ send>

9.4. XHTML message validation

When Citrus receives plain Html messages we likely want to use the powerful XML validation
capabilities such as XML tree comparison or XPath support. Unfortunately Html messages do not
follow the XML well formed rules very strictly. This implies that XML message validation will fail
because of non well formed Html code.

XHTML closes this gap by automatically fixing the most common Html XML incompatible rule
violations such as missing end tags (e.g.
).

Let's try this with a simple example. Very first thing for us to do is to add a new library dependency to
the project. Citrus is using the jtidy library in order to prepare the HTML and XHTML messages for
validation. As this 3rd party dependency is optional in Citrus we have to add it now to our project
dependency list. Just add the jtidy dependency to your Maven project POM.

<dependency>
<groupl d>net . sf.jtidy</groupld>
<artifactld>jtidy</artifactld>
<ver si on>r 938</ ver si on>
</ dependency>

Please refer to the jtidy project documentation for the latest versions. Now everything is ready. As
usual the Citrus message validator for XHTML is active in background by default. You can overwrite
this default implementation by placing a Spring bean with id defaultXhtmIMessageValidator to the
Citrus application context.

<bean id="def aul t Xht nl MessageVal i dator" cl ass="com consol . citrus. validation.xhtmn . Xhtnl MessageVal i dator"/>

Now we can tell the test case receiving action that we want to use the XHTML message validation in
our test case.

<recei ve endpoi nt ="htt pMessageEndpoi nt ">
<nmessage type="xhtm ">
<dat a>

Citrus Framework (2.5.2) 51

Message validation

<! [CDATA[
<IDOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.1//EN' "org/w3c/ xhtm /xhtm 1-strict.dtd">
<htm xnml ns="http://ww.w3. org/ 1999/ xht nl " >
<head>
<title>Citrus Hello World</title>
</ head>
<body>
<hl>Hel |l o World! </ hl>

<p>This is a test!</p>
</ body>
11>

</ dat a>
</ message>
</receive>

The message receiving action in our test case has to specify a message format type type="xhtml". As
you can see the Html message payload get XHTML specific DOCTYPE processing instruction. The
xhtml1-strict.dtd is mandatory in the XHTML message validation. For better convenience all XHTML
dtd files are packaged within Citrus so you can use this as a relative path.

The incoming Html message is automatically converted into proper XHTML code with well formed
XML. So now the XHTML message validator can use the XML message validation mechanism of
Citrus for comparing received and expected data. As usual you can use test variables, ignore
element expressions and XPath expressions.

9.5. Plain text message validation

Plain text message validation is the easiest validation in Citrus that you can think of. This validation
just performs an exact Java String match of received and expected message payloads.

As usual a default message validator for plaintext messages is active by default. Citrus will pick this
message validator for all messages of type="plaintext". The default message validator
implementation can be overwritten by placing a Spring bean with id defaultPlaintextMessageValidator
to the Spring application context.

<bean id="defaul t Pl ai nt ext MessageVal i dator" cl ass="com consol .citrus.validation.text.Plai nText MessageVal i dator"/>

In the test case receiving action we tell Citrus to use plain text message validation.

<recei ve endpoi nt ="htt pMessageEndpoi nt" >
<nmessage type="pl ai ntext">
<dat a>Hel | o Wor | d! </ dat a>
</ message>
</receive>

With the message format type type="plaintext" set Citrus performs String equals on the message
payloads (received and expected). Only exact match will pass the test.

By the way sending plain text messages in Citrus is also very easy. Just use the plain text message
payload data in your sending message action.

<send endpoi nt =" htt pMessageEndpoi nt ">
<nessage>
<dat a>Hel | o Wor| d! </ dat a>
</ nessage>
</ send>

Of course test variables are supported in the plain text payloads. The variables are replace by the

Citrus Framework (2.5.2) 52

Message validation

referenced values before sending or receiving the message.

9.6. Binary message validation

Binary message validation is not very easy to do especially when it comes to compare data with a
given control message. As a tester you want to validate the binary content. In Citrus the way to
compare binary message content is to use base64 String encoding. The binary data is encoded as
base64 character sequence and there fore is comparable with an expected content.

The received message content does not have to be base64 encoded. Citrus is doing this conversion
automatically before validation takes place. The binary data can be anything e.g. images, pdf or gzip
content.

The default message validator for binary messages is active by default. Citrus will pick this message
validator for all messages of type="binary_base64". The default message validator implementation
can be overwritten by placing a Spring bean with id defaultBinaryBase64MessageValidator to the
Spring application context.

<bean id="def aul t Bi nar yBase64MessageVal i dat or" cl ass="com consol . citrus. validation.text.Bi naryBase64MessageVal i dat or

In the test case receiving action we tell Citrus to use binary base64 message validation.

<recei ve endpoi nt ="htt pMessageEndpoi nt ">
<nessage type="bi nary_base64">
<dat a></ dat a>
</ message>
</receive>

With the message format type type="binary_base64" Citrus performs the base64 character sequence
validation. Incoming message content is automatically encoded as base64 String and compared to
the expected data. This way we can make sure that the binary content is as expected.

By the way sending binary base64 messages in Citrus is also very easy. Just use the binary base64
encoding function to do so.

<send endpoi nt =" htt pMessageEndpoi nt ">
<nessage>
<dat a>ci trus: encodeBase64(' Hel | o Worl d!"') </ data>
</ nessage>
</ send>

9.7. Java DSL validation callbacks

The Java DSL offers some additional validation tricks and possibilities when dealing with messages
that are sent and received over Citrus. One of them is the validation callback functionality. With this
feature you can marshal/unmarshal message payloads and code validation steps on Java objects.

Java DSL designer

@0 trusTest
public void recei veMessageTest () {
recei ve(bookResponseEndpoi nt)
.val i dati onCal | back(new Marshal | i ngVal i dati onCal | back<AddBookResponseMessage>() {
@verride
public void validat e(AddBookResponseMessage response, MessageHeaders headers) {

Citrus Framework (2.5.2) 53

Message validation

Assert.isTrue(response.isSuccess());

56

By default the validation callback needs some XML unmarshaller implementation for transforming the
XML payload to a Java object. Citrus will automatically search for the unmarshaller bean in your
Spring application context if nothing specific is set. Of course you can also set the unmarshaller
instance explicitly.

Java DSL designer

@\ut ow r ed
private Unmarshal | er unmarshaller;

@i trusTest
public void recei veMessageTest () {
recei ve(bookResponseEndpoi nt)
.val i dationCal | back(new Marshal | i ngVal i dati onCal | back<AddBookResponseMessage>(unmar shal | er) {
@verride
public void validat e(AddBookResponseMessage response, MessageHeaders headers) {
Assert.isTrue(response.isSuccess());
}
2

Obviously working on Java objects is much more comfortable than using the XML String
concatenation. This is why you can also use this feature when sending messages.

Java DSL designer

@\t ow r ed
private Marshall er marshaller;

@0 trusTest
public void sendMessageTest () {
send(bookRequest Endpoi nt)
. payl oad(cr eat eAddBookRequest Message(" 978-ci t rus: randonNunber (10) "), marshall er)
. header ("citrus_soap_action", "addBook");

}

private AddBookRequest Message creat eAddBookRequest Message(String isbn) {
AddBookRequest Message request Message = new AddBookRequest Message() ;
Book book = new Book();
book. set Aut hor (" Foo") ;
book.setTitl e("FooTitle");
book. set | sbn(i shn);
book. set Year (2008) ;
book. set Regi strati onDat e(Cal endar . get | nstance());
request Message. set Book(book) ;
return request Message;

The example above creates a AddBookRequestMessage object and puts this as payload to a send
action. In combination with a marshaller instance Citrus is able to create a proper XML message
payload then.

9.8. Customize message validators

In the previous sections we have already seen some examples on how to overwrite default message
validator implementations in Citrus. By default all message validators can be overwritten by placing a
Spring bean of the same id to the Spring application context. The default implementations of Citrus
are:

Citrus Framework (2.5.2) 54

Message validation

« defaultXmlMessageValidator: com.consol.citrus.validation.xml.DomXmIMessageValidator

» defaultXpathMessageValidator: com.consol.citrus.validation.xml.XpathMessageValidator

» defaultJsonMessageValidator: com.consol.citrus.validation.json.JsonTextMessageValidator

« defaultJsonPathMessageValidator: com.consol.citrus.validation.json.JsonPathMessageValidator
» defaultPlaintextMessageValidator: com.consol.citrus.validation.text.PlainTextMessageValidator

 defaultBinaryBase64MessageValidator:
com.consol.citrus.validation.text.BinaryBase64MessageValidator

« defaultXhtmlMessageValidator: com.consol.citrus.validation.xhtml.XhtmIMessageValidator

* defaultGroovyXmlIMessageValidator:
com.consol.citrus.validation.script. GroovyXmIMessageValidator

 defaultGroovyJsonMessageValidator:
com.consol.citrus.validation.script. GroovyJsonMessageValidator

Overwriting a single message validator with a custom implementation is then very easy. Just add
your custom Spring bean to the application context using one of these default bean identifiers. In
case you want to change the message validator gang by adding or removing a message validator
implementation completely you can place a message validator component in the Spring application
context.

<ci trus: nessage-val i dat or s>
<citrus:validator ref="defaul tXm MessageVal i dator"/>
<citrus:validator ref="defaultXpathMessageVal i dator"/>
<citrus:validator ref="default G oovyXm MessageVal i dator"/>
<citrus:validator ref="defaultPl aintextMssageValidator"/>
<citrus:validator ref="defaultBi naryBase64MessageVal i dator"/>
<citrus:validator class="com consol.citrus.validation.custom CustonVessageValidator"/>
<citrus:validator ref="defaultJsonMessageVali dator"/>
<citrus:validator ref="defaul tJsonPathMessageVali dator"/>
<citrus:validator ref="default G oovyJsonMessageValidator"/>
<citrus:validator ref="defaultXhtnl MessageVal i dator"/>

</ citrus: nessage-val i dat or s>

The listing above adds a custom message validator implementation to the sequence of message
validators in Citrus. We reference default message validators and add a implementation of type
com.consol.citrus.validation.custom.CustomMessageValidator. The custom implementation class has
to implement the basic interface com.consol.citrus.validation.MessageValidator. Now Citrus will try to
match the custom implementation to incoming message types and occasionally execute the message
validator logic. This is how you can add and change the basic message validator registry in Citrus.
You can add custom implementations for new message formats very easy.

The same approach applies in case you want to remove a message validator implementation by
banning it completely. Just delete the entry in the message validator registry component:

<ci trus: nessage-val i dat or s>
<citrus:validator ref="defaultJsonMessageValidator"/>
<citrus:validator ref="defaul tJsonPat hMessageVali dator"/>
<citrus:validator ref="default G oovyJsonMessageVal i dator"/>
</citrus: message-val i dat or s>

The Citrus message validator component deleted all default implementations except of those dealing
with JSON message format. Now Citrus is only able to validate JSON messages. Be careful as the

Citrus Framework (2.5.2) 55

Message validation

complete Citrus project will be affected by this change.

Citrus Framework (2.5.2)

56

Chapter 10. Using XPath

Some time ago in this document we have already seen how XML message payloads are constructed
when sending and receiving messages. Now using XPath is a very powerful way of accessing
elements in complex XML structures. The XPath expression language is very handy when it comes
to save element values as test variables or when validating special elements in a XML message
structure.

XPath is a very powerful technology for walking XML trees. This W3C standard stands for advanced
XML tree handling using a special syntax as query language. Citrus supports the XPath syntax in the
following fields:

» <message><element path="[XPath-Expression]"></message>
« <validate><xpath expression="[XPath-Expression]"/></validate>
e <extract><message path="[XPath-Expression]"></extract>

e <ignore path="[XPath-Expression]"/>

The next program listing indicates the power in using XPath with Citrus:

<message>
<val i dat e>
<xpat h expressi on="//User/ Nanme" val ue="John"/>
<xpat h expressi on="//User/Address[@ype="of fice']/Street" val ue="Conpanystreet 21"/>
<xpat h expression="//User/ Nane" val ue="${user Nane}"/>
<xpat h expression="//User/ @sAdm n" val ue="${i sAdm n}"/>
<xpat h expression="//User/ @sAdm n" val ue="true" result-type="bool ean"/>
<xpat h expression="//*[.="search-for']" val ue="searched-for"/>
<xpat h expressi on="count (//orderStatus[.="success'])" val ue="3" result-type="nunber"/>
</val i dat e>
</ nessage>

Now we describe the XPath usage in Citrus step by step.

10.1. Manipulate with XPath

Some elements in XML message payloads might be of dynamic nature. Just think of generated
identifiers or timestamps. Also we do not want to repeat the same static identifier several times in our
test cases. This is the time where test variables and dynamic message element overwrite come in
handy. The idea is simple. We want to overwrite a specific message element in our payload with a
dynamic value. This can be done with XPath or inline variable declarations. Lets have a look at an
example listing showing both ways:

XML DSL

<nessage>
<payl oad>
<Test Message>
<Messagel d>${ messagel d} </ Messagel d>
<Cr eat edBy>_</ Cr eat edBy>
<Ver si onl d>${ ver si on} </ Ver si onl d>
</ Test Message>
</ payl oad>
<el enent path="/Test Message/ Cr eat edBy" val ue="${user}"/>
</ message>

Citrus Framework (2.5.2) 57

Using XPath

The program listing above shows ways of setting variable values inside a message template. First of
all you can simply place variable expressions inside the message (see how ${messageld} is used). In
addition to that you can also use XPath expressions to explicitly overwrite message elements before
validation.

<el enent pat h="/ Test Message/ Cr eat edBy" val ue="${user}"/>

The XPath expression evaluates and searches for the right element in the message payload. The
previously defined variable ${user} replaces the element value. Of course this works with XML
attributes too.

Both ways via XPath or inline variable expressions are equal to each other. With respect to the
complexity of XML namespaces and XPath you may find the inline variable expression more
comfortable to use. Anyway feel free to choose the way that fits best for you. This is how we can add
dynamic variable values to the control template in order to increase maintainability and robustness of
message validation.

Tip

Validation matchers put validation mechanisms to a new level offering dynamic assertion
statements for validation. Have a look at the possibilities with assertion statements in
Chapter 34, Validation matcher

10.2. Validate with XPath

We have already seen how to validate whole XML structures with control message templates. All
elements are validated and compared one after another. In some cases this approach might be too
extensive. Imagine the tester only needs to validate a small subset of message elements. The
definition of control templates in combination with several ignore statements is not appropriate in this
case. You would rather want to use explicit element validation.

XML DSL

<message>
<val i dat e>
<xpat h expressi on="/ Test Request/ Messagel d" val ue="${nessagel d}"/>
<xpat h expressi on="/ Test Request/ Versi onl d" val ue="2"/>
</val i dat e>
</ message>

Java DSL designer

@@ trusTest
public void recei veMessageTest () {
recei ve("hel | oServi ceServer")
.validate("/ Test Request/ Messagel d", "${nessageld}")
.validate("//Versionld", "2")
. header (" Operation", "sayHello");

Instead of comparing the whole message some message elements are validated explicitly via XPath.
Citrus evaluates the XPath expression on the received message and compares the result value to
the control value. The basic message structure as well as all other message elements are not
included into this explicit validation.

Citrus Framework (2.5.2) 58

Using XPath

Note

If this type of element validation is chosen neither <payload> nor <data> nor <resource>
template definitions are allowed in Citrus XML test cases.

Tip

Citrus offers an alternative dot-notated syntax in order to walk through XML trees. In case
you are not familiar with XPath or simply need a very easy way to find your element inside
the XML tree you might use this way. Every element hierarchy in the XML tree is
represented with a simple dot - for example:

Test Request . Versi onl d

The expression will search the XML tree for the respective <TestRequest><Versionld>
element. Attributes are supported too. In case the last element in the dot-notated
expression is a XML attribute the framework will automatically find it.

Of course this dot-notated syntax is very simple and might not be applicable for more
complex tree navigation. XPath is much more powerful - no doubt. However the
dot-notated syntax might help those of you that are not familiar with XPath. So the
dot-notation is supported wherever XPath expressions might apply.

The Xpath expressions can evaluate to different result types. By default Citrus is operating on NODE
and STRING result types so that you can validate some element value. But you can also use
different result types such as NODESET and BOOLEAN. See this example how that works:

XML DSL

<nessage>
<val i dat e>
<xpat h expressi on="/Test Request/Error" val ue="fal se" result-type="bool ean"/>
<xpat h expressi on="/ Test Request/ St at us[.="success']" val ue="3" result-type="nunber"/>
<xpat h expressi on="/ Test Request/ Order Type" value="[single, multi, multi]" result-type="node-set"/>
</val i dat e>
</ nessage>

Java DSL designer

@Ci trusTest
public void recei veMessageTest () {
recei ve("hel |l oServi ceServer")
.val i dat e("bool ean: / Test Request/Error", false)
.val i dat e("nunber:/ Test Request/ Status[.="success']", 3)
.val i dat e("node-set:/ Test Request/ Or der Type", "[single, nmulti, multi]")
. header (" Operation", "sayHello");

In the example above we use different expression result types. First we want to make sure nor
ITestRequest/Error element is present. This can be done with a boolean result type and false value.
Second we want to validate the number of found elements for the expression
/TestRequest/Status[.='success']. The XPath expression evaluates to a node list that results in its list
size to be checked. And last not least we evaluate to a node-set result type where all values in the
node list will be translated to a comma delimited string value.

Now lets have a look at some more powerful validation expressions using matcher implementations.

Citrus Framework (2.5.2) 59

Using XPath

Up to now we have seen that XPath expression results are comparable with equalTo operations. We
would like to add some more powerful validation such as greaterThan, lessThan, hasSize and much
more. Therefore we have introduced Hamcrest validation matcher support in Citrus. Hamcrest is a
very poweful matcher library that provides a fantastic set of matcher implementations. Lets see how
we can add these in our test case:

XML DSL

<message>
<val i dat e>
<xpat h expressi on="/Test Request/Error" val ue="@ssert That (anyO (enpty(), nullValue()))@/>
<xpat h expression="/Test Request/Status[.="success']" val ue="@ssert That (greaterThan(0)) @ result-type="nunber"/>
<xpat h expressi on="/Test Request/ Or der Type" val ue="@ssert That (hasSi ze(3)) @ result-type="node-set"/>
</val i dat e>
</ nessage>

Java DSL designer

@0 trusTest
public void recei veMessageTest () {
recei ve("hel | oServi ceServer")
.validate("/ Test Request/Error", anyCOf (enpty(), nullValue()))
.val i dat e(" nunber:/ Test Request/ St at us[. =" success']", greaterThan(0))
.val i dat e("node-set:/ Test Request/ Order Type", hasSi ze(3))
. header (" Operation", "sayHello");

When using the XML DSL we have to use the assertThat validation matcher syntax for defining the
Hamcrest matchers. You can combine matcher implementation as seen in the anyOf(empty(),
nullValue()) expression. When using the Java DSL you can just add the matcher as expected result
object. Citrus evaluates the matchers and makes sure everything is as expected. This is a very
powerful validation mechanism as it also works with node-sets containing multiple values as list.

This is how you can add very powerful message element validation in XML using XPath expressions.

10.3. Extract variables with XPath

Imagine you receive a message in your test with some generated message identifier values. You
have no chance to predict the identifier value because it was generated at runtime by a foreign
application. You can ignore the value in order to protect your validation. But in many cases you might
need to return this identifier in the respective response message or somewhat later on in the test. So
we have to save the dynamic message content for reuse in later test steps. The solution is simple
and very powerful. We can extract dynamic values from received messages and save those to test
variables. Add this code to your message receiving action.

XML DSL

<extract>

<header name="COperation" vari abl e="operation"/>

<message path="/Test Request/Versionld" vari abl e="versionld"/>
</ extract >

Java DSL designer

@i t rusTest
public void recei veMessageTest () {
recei ve("hel | oServi ceServer")
.extract FronHeader (" Operation", "operation")
.extract FronPayl oad("// Test Request/ Versionld", "versionld");

Citrus Framework (2.5.2) 60

Using XPath

echo("Extracted operation from header is: ${operation}");
echo("Extracted version from payl oad is: ${versionld}")

As you can see Citrus is able to extract both header and message payload content into test
variables. It does not matter if you use new test variables or existing variables as target. The
extraction will automatically create a new variable in case it does not exist. The time the variable was
created all following test actions can access the test variables as usual. So you can reference the
variable values in response messages or other test steps ahead.

Tip

We can also use expression result types in order to manipulate the test variable outcome.
In case we use a boolean result type the existence of elements can be saved to variable
values. The result type node-set translates a node list result to a comma separated string
of all values in this node list. Simply use the expression result type attributes as shown in
previous sections.

10.4. XML namespaces in XPath

When it comes to XML namespaces you have to be careful with your XPath expressions. Lets have a
look at an example message that uses XML namespaces:

<nsl: Test Message xm ns:nsl="http://citrus.com nanespace">
<nsl: Test Header >
<nsl: Correl ationl d>_</nsl: Correl ationl d>
<nsl: Ti nest anp>2001- 12- 17T09: 30: 47. 0Z</ ns1: Ti mest anp>
<ns1l: Versi onl d>2</ ns1: Ver si onl d>
</ nsl: Test Header >
<nsl: Test Body>
<nsl: Cust oner >
<nsl:|d>1</nsl: | d>
</ nsl: Cust oner >
</ nsl: Test Body>
</ nsl: Test Message>

Now we would like to validate some elements in this message using XPath

<nessage>
<val i dat e>

<xpat h expressi on="// Test Message/ Test Header/ Correl ati onl d* val ue="${correl ati onld}"/>
</val i dat e>
</ nessage>

The validation will fail although the XPath expression looks correct regarding the XML tree. Because
the message uses the namespace xni ns: ns1="http://citrus. conf namespace" With its prefix ns1 our
XPath expression is not able to find the elements. The correct XPath expression uses the
namespace prefix as defined in the message.

<nessage>
<val i dat e>

<xpat h expressi on="//ns1: Test Message/ ns1l: Test Header/ns1l: Correl ati onl d* val ue="${correl ati onld}"/>
</ nessage>

Now the expressions work fine and the validation is successful. But this is quite error prone. This is

Citrus Framework (2.5.2) 61

Using XPath

because the test is now depending on the namespace prefix that is used by some application. As
soon as the message is sent with a different namespace prefix (e.g. ns2) the validation will fail again.

You can avoid this effect when specifying your own namespace context and your own namespace
prefix during validation.

<message>
<val i dat e>
<xpat h expressi on="// pf x: Test Message/ pf x: Test Header / pf x: Ver si onl d" val ue="2"/>
<xpat h expressi on="// pf x: Test Message/ pf x: Test Header / pf x: Correl ati onl d" val ue="${correl ati onl d}"/>
<nanespace prefix="pfx" value="http://citrus.com nanespace"/>
</val i dat e>
</ message>

Now the test in independent from any namespace prefix in the received message. The namespace
context will resolve the namespaces and find the elements although the message might use different
prefixes. The only thing that matters is that the namespace value (http://citrus.com/namespace)
matches.

Tip

Instead of this namespace context on validation level you can also have a global
namespace context which is valid in all test cases. We just add a bean in the basic Spring
application context configuration which defines global namespace mappings.

<nanespace- cont ext >
<nanespace prefix="def" uri="http://ww. consol .de/sanpl es/sayHel | 0"/ >
</ namespace- cont ext >

Once defined the def namespace prefix is valid in all test cases and all XPath
expressions. This enables you to free your test cases from namespace prefix bindings
that might be broken with time. You can use these global namespace mappings wherever
XPath expressions are valid inside a test case (validation, ignore, extract).

10.5. Default namespaces in XPath

In the previous section we have seen that XML namespaces can get tricky with XPath validation.
Default namespaces can do even more! So lets look at the example with default namespaces:

<Test Message xm ns="http://citrus.conl nanespace">
<Test Header >
<Correl ationld>_</Correl ati onl d>
<Ti mest anp>2001- 12- 17T09: 30: 47. 0Z</ Ti mest anp>
<Ver si onl d>2</ Ver si onl d>
</ Test Header >
<Test Body>
<Cust oner >
<l d>1</ | d>
</ Cust omer >
</ Test Body>
</ Test Message>

The message uses default namespaces. The following approach in XPath will fail due to namespace
problems.

<nessage>
<val i dat e>

Citrus Framework (2.5.2) 62

Using XPath

<xpat h expressi on="//Test Message/ Test Header/ Correl ati onl d* val ue="${correl ati onld}"/>
</val i dat e>

</ nessage>

Even default namespaces need to be specified in the XPath expressions. Look at the following code
listing that works fine with default namespaces:

<nessage>
<val i dat e>
<xpat h expression="//: Test Message/ : Test Header/: Ver si onl d* val ue="2"/>

<xpat h expression="//:Test Message/: Test Header/: Correl ati onl d" val ue="${correl ati onl d}"/>
</val i dat e>

</ message>
Tip

It is recommended to use the namespace context as described in the previous chapter

when validating. Only this approach ensures flexibility and stable test cases regarding
namespace changes.

Citrus Framework (2.5.2) 63

Chapter 11. Using JSONPath

JSONPath is the JSON equivalent to XPath in the XML message world. With JSONPath expressions
you can query and manipulate entries of a JSON message structure. The JSONPath expressions
evaluate against a JSON message where the JSON object structure is represented in a dot notated
syntax.

You will see that JSONPath is a very powerful technology when it comes to find object entries in a
complex JSON hierarchy structure. Also JSONPath can help to do message manipulations before a
message is sent out for instance. Citrus supports JSONPath expressions in various scenarios:

* <message><element path="[JSONPath-Expression]"></message>
» <validate><json-path expression="[JSONPath-Expression]"/></validate>
» <extract><message path="[JSONPath-Expression]"></extract>

» <ignore path="[JSONPath-Expression]"/>

11.1. Manipulate with JSONPath

First thing we want to do with JSONPath is to manipulate a message content before it is actually sent
out. This is very useful when working with message file resources that are reused accross multiple
test cases. Each test case can manipulate the message content individually with JSONPath before
sending. Lets have a look at this simple sample:

<nessage type="json">
<resource file="file:path/to/user.json" />
<el enent path="$. user.name" val ue="Adm n" />
<el enent path="$.user.adm n" val ue="true" />
<el enent path="$..status" val ue="cl osed" />
</ nessage>

We use a basic message content file that is called user.json. The content of the file is following JSON
data structure:

{ user:
{
"id": citrus:randonNunber (10)
"pane": "Unknown",
“admin": "?",
"projects":
[{
"nane": "Projectl",
"status": "open"
Iz
{
"nane": "Project2",
"status": "open"

"nane": "Project3",
"status": "cl osed"

H

Citrus loads the file content and used it as message payload. Before the message is sent out the
JSONPath expressions have the chance to manipulate the message content. All JSONPath

Citrus Framework (2.5.2) 64

Using JSONPath

expressions are evaluated and the give values overwrite existing values accordingly. The resulting
message looks like follows:

{ user:

{
"id": citrus:randomNunber (10)
"pane": "Adm n",
"admin": "true",
"projects":

[{
“name": "Projectl",
"status": "cl osed"

"nane": "Project2",
"status": "cl osed"

"nane": "Project3",
"status": "cl osed"

H

The JSONPath expressions have set the user name to Admin. The admin boolean property was set
to true and all project status values were set to closed. Now the message is ready to be sent out. In
case a JSONPath expression should fail to find a matching element within the message structure the
test case will fail.

With this JSONPath mechanism ou are able to manipulate message content before it is sent or
received within Citrus. This makes life very easy when using message resource files that are reused
across multiple test cases.

11.2. Validate with JSONPath

Lets continue to use JSONPath expressions when validating a receive message in Citrus:

XML DSL

<nessage type="json">
<val i dat e>
<j son-path expression="$. user. nane" val ue="Penny"/>
<j son-path expression="$["'user']['nane']" val ue="${user Nane}"/>
<j son-pat h expression="$. user. al i ases" val ue="["penny", "jenny", "nanny"]"/>
<j son-path expression="%$. user[?(@adni n)].password" val ue="@tartsWth(' $%00') @/ >
<j son-path expression="$. user. address[?(@type="office')]"
val ue="{"city":"Minich","street":"Conpany Street", "type":"office"}"/>
</val i dat e>
</ message>

Java DSL

recei ve(someEndpoi nt)
. messageType(MessageType. JSON)

.validate("$.user.nanme", "Penny")
.validate("$[' user']['nane']", "${userNane}")
.validate("$.user.aliases", "["penny","jenny", "nanny"]")

.validate("$.user[?(@adm n)].password", "@tartsWth(' $9%0') @)
.validate("$.user.address[?(@type="office')]", "{"city":"Mmnich", "street":"Conpany Street","type":"office"}");

The above JSONPath expressions will be evaluated when Citrus validates the received message.
The expression result is compared to the expected value where expectations can be static values as
well as test variables and validation matcher expressions. In case a JSONPath expression should not

Citrus Framework (2.5.2) 65

Using JSONPath

be able to find any elements the test case will also fail.

JSON is a pretty simple yet powerful message format. Simplified a JSON message just knows
JSONODbject, JISONArray and JSONValue items. The handling of JSONObject and JSONValue items
in JSONPath expressions is straight forward. We just use a dot notated syntax for walking through
the JSONODbject hierarchy. The handling of JSONArray items is also not very difficult either. Citrus
will try the best to convert JSONArray items to String representation values for comparison.

Important

JSONPath expressions will only work on JSON message formats. This is why we have to
tell Citrus the correct message format. By default Citrus is working with XML message
data and therefore the XML validation mechanisms do apply by default. With the message
type attribute set to json we make sure that Citrus enables JSON specific features on the
message validation such as JSONPath support.

Now lets get a bit more complex with validation matchers and JSON object functions. Citrus tries to
give you the most comfortable validation capabilities when comparing JSON object values and JSON
arrays. One first thing you can use is object functions like keySet() or size(). These functionality is not
covered by JSONPath out of the bow but added by Citrus. Se the following example on how to use it:

XML DSL

<nmessage type="json">
<val i dat e>
<j son- pat h expressi on="$. user. keySet ()" val ue="[id, nane, adm n, proj ects]"/>
<j son-path expression="$. user. al i ases. size()" val ue="3"/>
</val i dat e>
</ nessage>

Java DSL

recei ve(soneEndpoi nt)
. messageType(MessageType. JSON)
.validate("$. user.keySet ()", "[id, name, admi n, proj ects]")
.validate("$.user.aliases.size()", "3");

The object functions do return special JSON object related properties such as the set of keys for an
object or the size of an JSON array.

Now lets get even more comfortable validation capabilities with matchers. Citrus supports Hamcrest
matchers which gives us a very powerful way of validating JSON object elements and arrays. See
the following examples that demonstrate how this works:

XML DSL

<nessage type="json">
<val i dat e>
<j son-pat h expressi on="$. user. keySet ()" val ue="@ssert That (cont ai ns(i d, nane, adm n, proj ects)) @/ >
<j son-pat h expressi on="$. user. al i ases. si ze()" val ue="@ssert That (al | Of (greater Than(0), |essThan(5)))@/>
</val i dat e>
</ message>

Java DSL

recei ve(soneEndpoi nt)
. messageType(MessageType. JSON)
.val i date("$. user.keySet ()", contains("id","name","adm n", "projects"))

Citrus Framework (2.5.2) 66

Using JSONPath

.validate("$.user.aliases.size()", allO(greaterThan(0), |essThan(5)));

When using the XML DSL we have to use the assertThat validation matcher syntax for defining the
Hamcrest matchers. You can combine matcher implementation as seen in the allOf(greaterThan(0),
lessThan(5)) expression. When using the Java DSL you can just add the matcher as expected result
object. Citrus evaluates the matchers and makes sure everything is as expected. This is a very
powerful validation mechanism as it combines the Hamcrest matcher capabilities with JSON
message validation.

11.3. Extract variables with JSONPath

Citrus is able to save message content to test variables at test runtime. When an incoming message
is passing the message validation the user can extract some values of that received message to new
test variables for later use in the test. This is especially handsome when having to send back some
dynamic values. So lets save some values using JSONPath:

<nessage type="json">
<dat a>
{ user:

{
"nanme": "Admn",
"password": "secret",
"admin": "true",
"aliases": ["penny","chef", "master"]

}

</ dat a>
<extract>
<nessage path="$. user.name" vari abl e="user Nane"/ >
<nessage path="$. user.aliases" variabl e="userAliases"/>
<nessage path="$.user[?(@admi n)].password" vari abl e="adnmi nPassword"/>
</ extract>
</ message>

With this example we have extracted three new test variables via JSONPath expression evaluation.
The three test variables will be available to all upcoming test actions. The variable values are:

user Nane=Adni n
user Al i ases=["penny", "chef", "master"]
adm nPasswor d=secr et

As you can see we can also extract complex JSONODbject items or JSONArray items. The test
variable value is a String representation of the complex object.

11.4. Ignore with JSONPath

The next usage scenario for JSONPath expressions in Citrus is the ignoring of elements during
message validation. As you already know Citrus provides powerful validation mechanisms for XML
and JSON message format. The framework is able to compare received and expected message
contents with powerful validator implementations. Now it this time we want to use a JSONPath
expression for ignoring a very specific entry in the JSON object structure.

<nmessage type="json">
<dat a>
{

"users":

[

name": "Jane",

Citrus Framework (2.5.2) 67

Using JSONPath

"token": "?",
"lastLogin": 0O

"name": "Penny",
“token": """,
"lastLogin": O

"nanme": "Mary",
"token": "?",
"l astLogin": O
H
}
</ dat a>

<i gnore expression="$. users[*].token" />
<i gnore expression="$..lastLogin" />
</ message>

This time we add JSONPath expressions as ignore statements. This means that we explicitly leave
out the evaluated elements from validation. Obviously this mechanism is a good thing to do when
dynamic message data simply is not deterministic such as timestamps and dynamic identifiers. In the
example above we explicitly skip the token entry and all lastLogin values that are obviously
timestamp values in milliseconds.

The JSONPath evaluation is very powerful when it comes to select a set of JSON objects and
elements. This is how we can ignore several elements with one single JSONPath expression which is
very powerful.

Citrus Framework (2.5.2) 68

Chapter 12. Test actions

This chapter gives a brief description to all test actions that a tester can incorporate into the test
case. Besides sending and receiving messages the tester may access these actions in order to build
a more complex test scenario that fits the desired use case.

12.1. Sending messages

In a integration test scenario we want to trigger processes and call interface services on the system
under test. In order to do this we need to be able to send messages to various message transports.
Therefore the send message test action in Citrus is one of the most important test actions. First of all
let us have a look at the Citrus message definition in Citrus:

A message consists of a message header (name-value pairs) and a message payload. Later in this
section we will see different ways of constructing a message with payload and header values. But
first of all let's concentrate on a simple sending message action inside a test case.

XML DSL

<t est case name="SendMessageTest">
<descri ption>Basi c send nmessage exanpl e</description>

<vari abl es>
<vari abl e name="text" value="Hello Citrus!"/>
<vari abl e name="nessagel d" val ue="M1x123456789"/ >
</vari abl es>

<actions>
<send endpoi nt ="hel | oSer vi ceEndpoi nt" >
<nessage>
<payl oad>
<Test Message>
<Text >${t ext } </ Text >
</ Test Message>
</ payl oad>
</ message>
<header >
<el ement nane="Qperation" val ue="sayHel |l 0"/ >
<el enent nane="Messagel d" val ue="${nessagel d}"/>
</ header >
</ send>
</ actions>
</testcase>

The sample uses both header and payload as message parts to send. In both parts you can use
variable definitions (see ${text} and ${messageld}). So first of all let us recap what variables do. Test
variables are defined at the very beginning of the test case and are valid throughout all actions that
take place in the test. This means that actions can simply reference a variable by the expression

${vari abl e- nane}.
Tip

Use variables wherever you can! At least the important entities of a test should be defined
as variables at the beginning. The test case improves maintainability and flexibility when
using variables.

Now lets have a closer look at the sending action. The ‘endpoint' attribute might catch your attention
first. This attribute references a message endpoint in Citrus configuration by name. As previously

Citrus Framework (2.5.2) 69

Test actions

mentioned the message endpoint definition lives in a separate configuration file and contains the
actual message transport settings. In this example the "helloServiceEndpoint" is referenced which is
a message endpoint for sending out messages via JMS or HTTP for instance.

The test case is not aware of any transport details, because it does not have to. The advantages are
obvious: On the one hand multiple test cases can reference the message endpoint definition for
better reuse. Secondly test cases are independent of message transport details. So connection
factories, user credentials, endpoint uri values and so on are not present in the test case.

In other words the "endpoint" attribute of the <send> element specifies which message endpoint
definition to use and therefore where the message should go to. Once again all available message
endpoints are configured in a separate Citrus configuration file. We will come to this later on. Be sure
to always pick the right message endpoint type in order to publish your message to the right
destination.

If you do not like the XML language you can also use pure Java code to define the same test. In Java
you would also make use of the message endpoint definition and reference this instance. The same
test as shown above in Java DSL looks like this:

Java DSL designer

import org.testng. | Test Cont ext;

import org.testng.annotations. Test;

import com consol.citrus.annotations. CtrusTest;

i nmport com consol . citrus. dsl.testng. Test NGG t rusTest Desi gner ;

@est
public class SendMessageTest Desi gner extends Test NGCitrusTest Desi gner {

@i trusTest (nane = "SendMessageTest")
public void sendMessageTest () {
description("Basic send nessage exanple");

variable("text", "Hello Gitrus!");
vari abl e("nmessagel d", "M1x123456789");

send(" hel | oServi ceEndpoi nt")
. payl oad(" <Test Message>" +
"<Text >${text}</ Text>" +
"</ Test Message>")
. header (" Operation", "sayHello")
. header (" Request Tag", "${nessageld}");

Java DSL runner

import org.testng. | Test Context;

import org.testng.annotations. Test;

import com consol .citrus. annotations. CtrusTest;

import com consol .citrus. dsl.testng. Test NGG t rusTest Runner;

@est
public class SendMessageTest Runner extends Test NGC trusTest Runner {

@i trusTest (nane = "SendMessageTest")
public void sendMessageTest () {
variable("text", "Hello Gitrus!");
vari abl e("nmessagel d", "M1x123456789");

send(action -> action. endpoint ("hel | oServi ceEndpoi nt")
. payl oad(" <Test Message>" +
"<Text >${text} </ Text>" +
"</ Test Message>")
. header (" Operation", "sayHello")
. header (" Request Tag", "${nessageld}"));

Citrus Framework (2.5.2) 70

Test actions

Instead of using the XML tags for send we use methods from TestNGCitrusTestDesigner class. The
same message endpoint is referenced within the send message action.

Now that the message sender pattern is clear we can concentrate on how to specify the message
content to be sent. There are several possibilities for you to define message content in Citrus:

* message: This element constructs the message to be sent. There are several child elements
available:

» payload: Nested XML payload as direct child node.
« data: Inline CDATA definition of the message payload
» resource: External file resource holding the message payload

The syntax would be: <resource file="classpath:com/consol/citrus/messages/TestRequest.xml"
/>

The file path prefix indicates the resource type, so the file location is resolved either as file
system resource (file:) or classpath resource (classpath:).

« element: Explicitly overwrite values in the XML message payload using XPath. You can replace
message content with dynamic values before sending. Each <element> entry provides a "path"
and "value" attribute. The "path" gives a XPath expression evaluating to a XML node element or
attribute in the message. The "value" can be a variable expression or any other static value.
Citrus will replace the value before sending the message.

» header: Defines a header for the message (e.g. JIMS header information or SOAP header):

« element: Each header receives a "name" and "value". The "name" will be the name of the
header entry and "value" its respective value. Again the usage of variable expressions as value
is supported here, too.

XML DSL
<send endpoi nt ="hel | oSer vi ceEndpoi nt ">
<nessage>
<payl| oad>
<I-- nmessage payload as XML -->

</ payl oad>
</ nessage>
</ send>

<send endpoi nt ="hel | oSer vi ceEndpoi nt ">
<nessage>
<dat a>
<! [CDATA]
<!-- nmessage payload as XM. -->
11>
</ dat a>
</ message>
</ send>

<send endpoi nt =" hel | oSer vi ceEndpoi nt" >
<nessage>
<resource file="classpath: con consol /citrus/nessages/ Test Request.xm " />
</ message>
</ send>

Citrus Framework (2.5.2) 71

Test actions

The most important thing when dealing with sending actions is to prepare the message payload and
header. You are able to construct the message payload either by nested XML child nodes (payload),
as inline CDATA (<data>) or external file (<resource>).

Note

Sometimes the nested XML message payload elements may cause XSD schema
validation rule violations. This is because of variable values not fitting the XSD schema
rules for example. In this scenario you could also use simple CDATA sections as payload
data. In this case you need to use the <dat a> element in contrast to the <payl oad> element
that we have used in our examples so far.

With this alternative you can skip the XML schema validation from your IDE at design
time. Unfortunately you will loose the XSD auto completion features many XML editors
offer when constructing your payload.

The The same possibilities apply to the Citrus Java DSL.

Java DSL designer

@0 trusTest
public void messagi ngTest () {
send(" hel | oServi ceEndpoi nt")
. payl oad(" <Test Message>" +
" <Text >Hel | ol </ Text>" +
"</ Test Message>") ;

@z trusTest
public void messagi ngTest () {
send(" hel | oServi ceEndpoi nt")
. payl oad(new O assPat hResour ce("com consol / ci trus/ messages/ Test Request . xm ")) ;

@i trusTest
public void messagi ngTest () {
send(" hel | oServi ceEndpoi nt")
. payl oadMbdel (new Test Request ("Hello Gitrus!"));

@i t rusTest
public void messagi ngTest () {
send(" hel | oServi ceEndpoi nt")
. message(new Def aul t Message(" <Test Request ><Message>Hel | o Wor| d! </ Message></ Test Request>")));

Besides defining message payloads as normal Strings and via external file resource (classpath and
file system) you can also use model objects as payload data in Java DSL. This model object payload
requires a proper message marshaller that should be available as Spring bean inside the application
context. By default Citrus is searching for a bean of type org.springframework.oxm.Marshaller.

In case you have multiple message marshallers in the application context you have to tell Citrus
which one to use in this particular send message action.

@0 trusTest
public void messagi ngTest () {
send(" hel | oServi ceEndpoi nt")
. payl oadModel (new Test Request ("Hello Citrus!"), "nyMessageMarshall erBean");

Citrus Framework (2.5.2) 72

Test actions

Now Citrus will marshal the message payload with the message marshaller bean named
myMessageMarshallerBean. This way you can have multiple message marshaller implementations
active in your project (XML, JSON, and so on).

Last not least the message can be defined as Citrus message object. Here you can choose one of
the different message implementations used in Citrus for SOAP, Http or JMS messages. Or you just
use the default message implementation or maybe a custom implementation.

Before sending takes place you can explicitly overwrite some message values in payload. You can
think of overwriting specific message elements with variable values. Also you can overwrite values
using XPath(Chapter 10, Using XPath) or JSONPath (Chapter 11, Using JSONPath) expressions.

The message header is part of our duty of defining proper messages, too. So Citrus uses
name-value pairs like "Operation" and "Messageld" in the next example to set message header
entries. Depending on what message endpoint is used and which message transport underneath the
header values will be shipped in different ways. In JMS the headers go to the header section of the
message, in Http we set mime headers accordingly, in SOAP we can access the SOAP header
elements and so on. Citrus aims to do the hard work for you. So Citrus knows how to set headers on
different message transports.

XML DSL
<send endpoi nt =" hel | oSer vi ceEndpoi nt ">
<nessage>
<payl oad>

<Test Message>
<Text >Hel | o! </ Text >
</ Test Message>
</ payl oad>
</ message>
<header >
<el ement nane="Qperation" val ue="sayHel |l 0"/ >
</ header >
</receive>

The message headers to send are defined by a simple name and value pair. Of course you can use
test variables in header values as well. Let's see how this looks like in Java DSL:

Java DSL designer

@oi trusTest
public void messagi ngTest () {
recei ve("hel | oServi ceEndpoi nt")
. payl oad(" <Test Message>" +
"<Text >Hel | ol </ Text>" +
"</ Test Message>")
. header (" Operation", "sayHello");

Java DSL runner

@0 trusTest
public void messagi ngTest () {
recei ve(action -> action. endpoi nt ("hel |l oServi ceEndpoi nt")
. payl oad(" <Test Message>" +
"<Text >Hel | ol </ Text>" +
"</ Test Message>")
. header (" Operation", "sayHello"));

This is basically how to send messages in Citrus. The test case is responsible for constructing the

Citrus Framework (2.5.2) 73

Test actions

message content while the predefined message endpoint holds transport specific settings. Test
cases reference endpoint components to publish messages to the outside world. The variable
support in message payload and message header enables you to add dynamic values before
sending out the message.

12.2. Receiving messages

Just like sending messages the receiving part is a very important action in an integration test.
Honestly the receive action is even more important in Citrus as we also want to validate the incoming
message contents. We are writing a test so we also need assertions and checks that everything
works as expected.

As already mentioned before a message consists of a message header (name-value pairs) and a
message payload. Later in this document we will see how to validate incoming messages with
payload and header values. We start with a very simple example:

XML DSL

<recei ve endpoi nt ="hel | oServi ceEndpoi nt" >
<nessage>
<payl oad>
<Test Message>
<Text >${t ext} </ Text>
</ Test Message>
</ payl oad>
</ nessage>
<header >
<el ement nane="Qperation" val ue="sayHel |l 0"/ >
<el enent nanme="Messagel d" val ue="${nmessagel d}"/>
</ header >
</receive>

Overall the receive message action looks quite similar to the send message action. Concepts are
identical as we define the message content with payload and header values. We can use test
variables in both message payload an headers. Now let us have a look at the Java DSL
representation of this simple example:

Java DSL designer

@i trusTest
public void messagi ngTest () {
recei ve("hel | oServi ceEndpoi nt")
. payl oad(" <Test Message>" +
"<Text >${text} </ Text>" +
"</ Test Message>")
. header (" Operation", "sayHello")
. header (" Messagel d", "${nessageld}");

Java DSL runner

@0 trusTest
public void messagi ngTest () {
recei ve(action -> action. endpoi nt ("hel | oServi ceEndpoi nt")
. payl oad(" <Test Message>" +
"<Text >${text}</ Text>" +
"</ Test Message>")
. header (" Operation", "sayHello")
. header (" Messagel d", "${nessageld}"));

Citrus Framework (2.5.2) 74

Test actions

The receive action waits for a message to arrive. The whole test execution is stopped while waiting
for the message. This is important to ensure the step by step test workflow processing. Of course you
can specify message timeouts so the receiver will only wait a given amount of time before raising a
timeout error. Following from that timeout exception the test case fails as the message did not arrive
in time. Citrus defines default timeout settings for all message receiving tasks.

In a good case scenario the message arrives in time and the content can be validated as a next step.
This validation can be done in various ways. On the one hand you can specify a whole XML
message that you expect as control template. In this case the received message structure is
compared to the expected message content element by element. On the other hand you can use
explicit element validation where only a small subset of message elements is included into validation.

Besides the message payload Citrus will also perform validation on the received message header
values. Test variable usage is supported as usual during the whole validation process for payload
and header checks.

In general the validation component (validator) in Citrus works hand in hand with a message
receiving component as the following figure shows:

The message receiving component passes the message to the validator where the individual
validation steps are performed. Let us have a closer look at the validation options and features step
by step.

12.2.1. Validate message payloads

The most detailed validation of incoming messages is to define some expected message payload.
The Citrus message validator will then perform a detailed message payload comparison. The
incoming message has to match exactly to the expected message payload. The different message
validator implementations in Citrus provide deep comparison of message structures such as XML,
JSON and so on.

So by defining an expected message payload we validate the incoming message in syntax and
semantics. In case a difference is identified by the message validator the validation and the test case
fails with respective exceptions. This is how you can define message payloads in receive action:

XML DSL
<recei ve endpoi nt ="hel | oServi ceEndpoi nt" >
<nessage>
<payl oad>
<I-- nmessage payload as XM. -->

</ payl oad>
</ nessage>
</receive>

<recei ve endpoi nt ="hel | oServi ceEndpoi nt" >

<nessage>
<dat a>
<! [CDATA[
<I-- nmessage payload as XM. -->
11>
</ dat a>

</ nessage>
</receive>

<recei ve endpoi nt="hel | oSer vi ceEndpoi nt ">
<message>
<resource file="classpath: conm consol /citrus/nessages/ Test Request. xm " />

Citrus Framework (2.5.2) 75

Test actions

</ nessage>
</receive>

The three examples above represent three different ways of defining the message payload in a
receive message action. On the one hand we can use inline message payloads as nested XML or
CDATA sections in the test. On the other hand we can load the message content from external file
resource.

Note

Sometimes the nested XML message payload elements may cause XSD schema
validation rule violations. This is because of variable values not fitting the XSD schema
rules for example. In this scenario you could also use simple CDATA sections as payload
data. In this case you need to use the <dat a> element in contrast to the <payl oad> element
that we have used in our examples so far.

With this alternative you can skip the XML schema validation from your IDE at design
time. Unfortunately you will loose the XSD auto completion features many XML editors
offer when constructing your payload.

In Java DSL we also have multiple options for specifying the message payloads:

Java DSL designer

@i t rusTest
public void messagi ngTest () {
recei ve("hel | oServi ceEndpoi nt")
. payl oad(" <Test Message>" +
" <Text >Hel | ol </ Text>" +
"</ Test Message>") ;

@i trusTest
public void messagi ngTest () {
recei ve("hel | oServi ceEndpoi nt")
. payl oad(new Cl assPat hResour ce("conl consol / ci trus/ messages/ Test Request . xm ")) ;

@z trusTest
public void messagi ngTest () {
recei ve("hel | oServi ceEndpoi nt")
. payl oadMbdel (new Test Request ("Hello Citrus!"));

@i trusTest
public void messagi ngTest () {
recei ve("hel | oServi ceEndpoi nt")
. message(new Def aul t Message(" <Test Request ><Message>Hel | o Wor| d! </ Message></ Test Request>")));

The examples above represent the basic variations of how to define message payloads in Citrus
Java DSL. The payload can be a simple String or a Spring file resource (classpath or file system). In
addition to that we can use a model object. When using model objects as payloads we need a proper
message marshaller implementation in the Spring application context. By default this is a marshaller
bean of type org.springframework.oxm.Marshaller that has to be present in the Spring application
context. You can add such a bean for XML and JSON message marshalling for instance.

In case you have multiple message marshallers in the application context you have to tell Citrus

Citrus Framework (2.5.2) 76

Test actions

which one to use in this particular send message action.

@0 trusTest
public void messagi ngTest () {
recei ve("hel | oServi ceEndpoi nt")
. payl oadMbdel (new Test Request ("Hello Citrus!"), "nyMessageMarshall erBean")

Now Citrus will marshal the message payload with the message marshaller bean named
myMessageMarshallerBean. This way you can have multiple message marshaller implementations
active in your project (XML, JSON, and so on).

Last not least the message can be defined as Citrus message object. Here you can choose one of
the different message implementations used in Citrus for SOAP, Http or JMS messages. Or you just
use the default message implementation or maybe a custom implementation.

In general the expected message content can be manipulated using XPath (Chapter 10, Using
XPath) or JSONPath (Chapter 11, Using JSONPath). In addition to that you can ignore some
elements that are skipped in comparison. We will describe this later on in this section. Now lets
continue with message header validation.

12.2.2. Validate message headers

Message headers are used widely in enterprise messaging solution: The message headers are part
of the message semantics and need to be validated, too. Citrus can validate message header by
name and value.

XML DSL

<recei ve endpoi nt ="hel | oServi ceEndpoi nt" >
<nessage>
<payl oad>
<Test Message>
<Text >Hel | o! </ Text >
</ Test Message>
</ payl oad>
</ nessage>
<header >
<el ement nanme="Qperation" val ue="sayHel |l 0"/>
</ header >
</receive>

The expected message headers are defined by a name and value pair. Citrus will check that the
expected message header is present and will check the value. In case the message header is not
found or the value does not match Citrus will raise an exception and the test fails. You can use
validation matchers (Chapter 34, Validation matcher) for a more powerful validation of header values,
too.

Let's see how this looks like in Java DSL:

Java DSL designer

@0 trusTest
public void messagi ngTest () {
recei ve("hel | oServi ceEndpoi nt")
. payl oad(" <Test Message>" +
"<Text >Hel | o! </ Text>" +
"</ Test Message>")
. header (" Operation", "sayHello")

Citrus Framework (2.5.2) 77

Test actions

Java DSL runner

@0 trusTest
public void messagi ngTest () {
recei ve(action -> action. endpoi nt ("hel |l oServi ceEndpoi nt")
. payl oad(" <Test Message>" +
"<Text >Hel | o! </ Text>" +
"</ Test Message>")
. header (" Operation", "sayHello"));

Header definition in Java DSL is straight forward as we just define name and value as usual. This
completes the message validation when receiving a message in Citrus. The message validator
implementations may add additional validation capabilities such as XML schema validation or XPath
and JSONPath validation. Please refer to the respective chapters in this guide to learn more about
that.

12.2.3. Message selectors

The <selector> element inside the receiving action defines key-value pairs in order to filter the
messages being received. The filter applies to the message headers. This means that a receiver will
only accept messages matching a header element value. In messaging applications the header
information often holds message ids, correlation ids, operation names and so on. With this
information given you can explicitly listen for messages that belong to your test case. This is very
helpful to avoid receiving messages that are still available on the message destination.

Lets say the tested software application keeps sending messages that belong to previous test cases.
This could happen in retry situations where the application error handling automatically tries to solve
a communication problem that occurred during previous test cases. As a result a message
destination (e.g. a JMS message queue) contains messages that are not valid any more for the
currently running test case. The test case might fail because the received message does not apply to
the actual use case. So we will definitely run into validation errors as the expected message control
values do not match.

Now we have to find a way to avoid these problems. The test could filter the messages on a
destination to only receive messages that apply for the use case that is being tested. The Java
Messaging System (JMS) came up with a message header selector that will only accept messages
that fit the expected header values.

Let us have a closer look at a message selector inside a receiving action:

XML DSL

<sel ect or >
<el ement > nanme="correl ati onld" val ue="Cx1x123456789" </ el enent >
<el ement > name="operation" val ue="get Orders"</el enent >

</ sel ect or>

Java DSL designer

@z trusTest
public void recei veMessageTest () {
recei ve("test Servi ceEndpoi nt")
.selector("correl ati onl d=" Cx1x123456789" AND operation='"getOrders'");

Citrus Framework (2.5.2) 78

Test actions

Java DSL runner

@0 trusTest
public void recei veMessageTest () {
recei ve(action -> action. endpoi nt ("test Servi ceEndpoi nt")
.sel ector("correl ationl d=' Cx1x123456789' AND operation='getOrders'"));

This example shows how message selectors work. The selector will only accept messages that meet
the correlation id and the operation in the header values. All other messages on the message
destination are ignored. The selector elements are automatically associated to each other using the
logical AND operator. This means that the message selector string would look like this: correlationld
= 'Cx1x123456789' AND operation = 'getOrders'.

Instead of using several elements in the selector you can also define a selector string directly which
gives you more power in constructing the selection logic yourself. This way you can use AND logical
operators yourself.

<sel ect or >
<val ue>
correlationld = ' Cx1x123456789' AND operation = 'getOrders'
</ val ue>
</ sel ect or >

Important

In case you want to run tests in parallel message selectors become essential in your test
cases. The different tests running at the same time will steal messages from each other
when you lack of message selection mechanisms.

Important

Previously only JMS message destinations offered support for message selectors! With
Citrus version 1.2 we introduced message selector support for Spring Integration
message channels, too (see Section 21.3, “Message selectors on channels”).

12.2.4. Groovy MarkupBuilder

With the Groovy MarkupBuilder you can build XML message payloads in a simple way, without
having to write the typical XML overhead. For example we use a Groovy script to construct the XML
message to be sent out. Instead of a plain CDATA XML section or the nested payload XML data we
write a Groovy script snippet. The Groovy MarkupBuilder generates the XML message payload with
exactly the same result:

XML DSL

<send endpoi nt ="hel | oSer vi ceEndpoi nt ">
<nessage>
<bui | der type="groovy">
mar kupBui | der . Test Message {
Messagel d(' ${ nessagel d}')
Ti mestanp(' ?")
Versionld('2")
Text('Hello Citrus!")
}

</ bui | der >

Citrus Framework (2.5.2) 79

Test actions

<el ement pat h="/Test Message/ Ti mest anp"
val ue="${createDate}"/>

</ nessage>
<header >

<el enent nanme="Operation" val ue="sayHel | 0"/ >

<el enent nanme="Messagel d" val ue="${nmessagel d}"/>
</ header >

</ send>

We use the builder element with type groovy and the MarkupBuilder code is directly written to this
element. As you can see from the example above, you can mix XPath and Groovy markup builder
code. The MarkupBuilder syntax is very easy and follows the simple rule:
markupBuilder.ROOT-ELEMENT{ CHILD-ELEMENTS }. However the tester has to follow some
simple rules and naming conventions when using the Citrus MarkupBuilder extension:

« The MarkupBuilder is accessed within the script over an object named mar kupBui | der . The name of
the custom root element follows with all its child elements.

< Child elements may be defined within curly brackets after the root-element (the same applies for
further nested child elements)

« Attributes and element values are defined within round brackets, after the element name

e Attribute and element values have to stand within apostrophes (e.g. attribute-name:
‘attribute-value")

The Groovy MarkupBuilder script may also be used within receive actions as shown in the following
listing:

XML DSL

<send endpoi nt ="hel | oSer vi ceEndpoi nt ">
<nessage>
<bui | der type="groovy" file="cl asspath: conf consol/citrus/groovy/ hell oRequest. groovy"/>
</ nessage>
</ send>

<recei ve endpoi nt ="hel | oServi ceEndpoi nt" ti meout="5000">
<nessage>
<bui | der type="groovy">
mar kupBui | der . Test Response(xm ns: ' http://ww. consol . de/ schenmas/ sanpl es/ sayHel | 0. xsd") {
Messagel d(' ${ messagel d} ')
Correlationld('${correlationld}")
User (' Hel | oServi ce')
Text (' Hel l o ${user}"')

</ bui | der >
</ message>
</receive>

As you can see it is also possible to define the script as external file resource. In addition to that
namespace support is given as normal attribute definition within the round brackets after the element
name.

The MarkupBuilder implementation in Groovy offers great possibilities in defining message payloads.
We do not need to write XML tag overhead and we can construct complex message payloads with
Groovy logic like iterations and conditional elements. For detailed MarkupBuilder descriptions please
see the official Groovy documentation.

12.3. Database actions

Citrus Framework (2.5.2) 80

Test actions

In many cases it is necessary to access the database during a test. This enables a tester to also
validate the persistent data in a database. It might also be helpful to prepare the database with some
test data before running a test. You can do this using the two database actions that are described in
the following sections.

12.3.1. SQL update, insert, delete

The <sgl> action simply executes a group of SQL statements in order to change data in a database.
Typically the action is used to prepare the database at the beginning of a test or to clean up the
database at the end of a test. You can specify SQL statements like INSERT, UPDATE, DELETE,
CREATE TABLE, ALTER TABLE and many more.

On the one hand you can specify the statements as inline SQL or stored in an external SQL resource
file as shown in the next two examples.

XML DSL

<acti ons>
<sql dat asour ce="soneDat aSour ce">
<st at enent >DELETE FROM CUSTOVERS</ st at enent >
<st at enent >DELETE FROM ORDERS</ st at enent >
</ sql >

<sgl dat asource="nyDat aSource">
<resource file="file:tests/unit/resources/script.sql"/>
</ sql >
</ acti ons>

Java DSL designer

@\ut owi r ed
@al i fier("nyDataSource")
private DataSource dataSource;

@i t rusTest
public void sql Test() {
sql (dat aSour ce)
. st at ement (" DELETE FROM CUSTOVERS")
. stat ement (" DELETE FROM ORDERS") ;

sqgl (dat aSour ce)
.sqgl Resource("file:tests/unit/resources/script.sql");

Java DSL runner

@\ut owi r ed
@al ifier("nyDataSource")
private DataSource dataSource;

@i t rusTest
public void sql Test() {
sql (action -> action. dat aSour ce(dat aSour ce)
. st at ement (" DELETE FROM CUSTOVERS")
. st at ement (" DELETE FROM ORDERS")) ;

sqgl (action -> action. dat aSour ce(dat aSour ce)
.sqgl Resource("file:tests/unit/resources/script.sql"));

The first action uses inline SQL statements defined directly inside the test case. The next action uses
an external SQL resource file instead. The file resource can hold several SQL statements separated
by new lines. All statements inside the file are executed sequentially by the framework.

Citrus Framework (2.5.2) 81

Test actions

Important

You have to pay attention to some rules when dealing with external SQL resources.

« Each statement should begin in a new line
* Itis not allowed to define statements with word wrapping

« Comments begin with two dashes "--"

Note

The external file is referenced either as file system resource or class path resource, by
using the “file:" or "classpath:" prefix.

Both examples use the "datasource" attribute. This value defines the database data source to be
used. The connection to a data source is mandatory, because the test case does not know about
user credentials or database names. The 'datasource' attribute references predefined data sources
that are located in a separate Spring configuration file.

12.3.2. SQL query

The <sql> query action is specially designed to execute SQL queries (SELECT * FROM). So the test
is able to read data from a database. The query results are validated against expected data as
shown in the next example.

XML DSL

<sgl datasource="t est Dat aSour ce">
<st at ement >sel ect NAME from CUSTOVERS where | D=' ${custonerl|d}' </ st at enent >
<st at enent >sel ect count (*) from ERRORS</ st at enent >
<stat enent >sel ect | D from ORDERS where DESC LI KE ' Def % </ st at enent >
<st at enment >sel ect DESCRI PTI ON from ORDERS where | D="${id}' </stat enent >

<val i date colum="ID" val ue="1"/>

<val i dat e col utm="NAME" val ue="Chri st oph"/>

<val i dat e col utmm="COUNT(*)" val ue="${rowsCount}"/>

<val i dat e col um="DESCRI PTI ON' val ue="null"/>
</sql >

Java DSL designer

@\t ow red
@ualifier("testDataSource")
private DataSource dataSource;

@0 trusTest
public void databaseQueryTest () {
quer y(dat aSour ce)

.statenment ("sel ect NAMVE from CUSTOVERS where CUSTOMER | D=' ${custonerld}'")
.statenment ("sel ect COUNT(1) as overall _cnt from ERRORS")
.statenment ("sel ect ORDER | D from ORDERS where DESCRI PTION LIKE ‘M grate% ")
.statement ("sel ect DESCRI PTI ON from ORDERS where ORDER | D = 2")
.val idate("ORDER I D', "1")
.validate("NAVE", "Christoph")
.val i dat e(" OVERALL_CNT", "${rowsCount}")
.val i dat e(" DESCRI PTI ON', "NULL");

Citrus Framework (2.5.2) 82

Test actions

Java DSL runner

@\wut ow red
@ual ifier("testDataSource")
private DataSource dataSource;

@i trusTest
public void databaseQueryTest () {
query(action -> action. dat aSour ce(dat aSour ce)

.statenent ("sel ect NAVE from CUSTOVERS where CUSTOMER | D="${custonerld}'")
.statenent ("sel ect COUNT(1l) as overall _cnt from ERRORS")
.statenent ("sel ect ORDER I D from ORDERS where DESCRI PTION LIKE 'Mgrate%")
.statenent ("sel ect DESCRI PTI ON from ORDERS where ORDER I D = 2")
.validate("ORDER_ I D', "1")
.validate("NAME", "Christoph")
.val i dat e(" OVERALL_CNT", "${rowsCount}")
.val i dat e(" DESCRI PTI ON', "NULL"));

The action offers a wide range of validating functionality for database result sets. First of all you have
to select the data via SQL statements. Here again you have the choice to use inline SQL statements
or external file resource pattern.

The result sets are validated through <validate> elements. It is possible to do a detailed check on
every selected column of the result set. Simply refer to the selected column name in order to validate
its value. The usage of test variables is supported as well as database expressions like count(),
avg(), min(), max().

You simply define the <validate> entry with the column name as the "column" attribute and any
expected value expression as expected "value". The framework then will check the column to fit the
expected value and raise validation errors in case of mismatch.

Looking at the first SELECT statement in the example you will see that test variables are supported
in the SQL statements. The framework will replace the variable with its respective value before
sending it to the database.

In the validation section variables can be used too. Look at the third validation entry, where the
variable "${rowsCount}" is used. The last validation in this example shows, that NULL values are also
supported as expected values.

If a single validation happens to fail, the whole action will fail with respective validation errors.
Important

The validation with “<val i date col um="..." value="..."/>" meets single row result sets
as you specify a single column control value. In case you have multiple rows in a result
set you rather need to validate the columns with multiple control values like this:

<val i dat e col utm="soneCol utmNane" >
<val ues>
<val ue>Val ue in 1st row</val ue>
<val ue>Val ue in 2nd row</val ue>
<val ue>Value in 3rd row</val ue>
<val ue>Val ue in x row</val ue>
</ val ues>
</val i dat e>

Within Java you can pass a variable argument list to the validate method like this:

quer y(dat aSour ce)

Citrus Framework (2.5.2) 83

Test actions

.statenent ("sel ect NAME from WEEKDAYS where NAME LIKE 'S% ")
.val i date("NAME", "Saturday", "Sunday")

Next example shows how to work with multiple row result sets and multiple values to expect within
one column:

<sql datasource="t est Dat aSource" >
<st at enent >sel ect WEEKDAY as DAY, DESCRI PTI ON fr om WEEK</ st at enent >
<val i dat e col utm="DAY" >
<val ues>
<val ue>Monday</ val ue>
<val ue>Tuesday</ val ue>
<val ue>Wednesday</ val ue>
<val ue>Thur sday</ val ue>
<val ue>Fri day</ val ue>
<val ue>@ gnor e@/ val ue>
<val ue>@ gnor e@/ val ue>
</val ues>
</val i dat e>
<val i dat e col utm="DESCRI PTI ON' >
<val ues>
<val ue>l hate Mndays! </ val ue>
<val ue>Tuesday is sports day</val ue>
<val ue>The m d of the week</val ue>
<val ue>Thur sday we pl ay chess</val ue>
<val ue>Friday, the weekend is near!</val ue>
<val ue>@ gnor e@/ val ue>
<val ue>@ gnor e@/ val ue>
</val ues>
</val i dat e>
</sql >

For the validation of multiple rows the <val i dat e> element is able to host a list of control values for a
column. As you can see from the example above, you have to add a control value for each row in the
result set. This also means that we have to take care of the total number of rows. Fortunately we can
use the ignore placeholder, in order to skip the validation of a specific row in the result set. Functions
and variables are supported as usual.

Important

It is important, that the control values are defined in the correct order, because they are
compared one on one with the actual result set coming from database query. You may
need to add "order by" SQL expressions to get the right order of rows returned. If any of
the values fails in validation or the total number of rows is not equal, the whole action will
fail with respective validation errors.

12.3.3. Groovy SQL result set validation

Groovy provides great support for accessing Java list objects and maps. As a Java SQL result set is
nothing but a list of map representations, where each entry in the list defines a row in the result set
and each map entry represents the columns and values. So with Groovy's list and map access we
have great possibilities to validate a SQL result set - out of the box.

XML DSL

<sql datasource="t est Dat aSour ce">
<st at enent >sel ect | D from CUSTOMVERS where NAME=' ${cust onmer Nane}' </ st at enent >
<st at enent >sel ect ORDERTYPE, STATUS from ORDERS where | D='${orderld}' </statenent>

Citrus Framework (2.5.2) 84

Test actions

<val i dat e-scri pt type="groovy">
assert rows.size() ==

assert rows[0].ID == "1"

assert rows[1].STATUS == 'in progress'

assert rows[1l] == [ORDERTYPE:' Sanpl eOrder', STATUS:'in progress']
</validate-script>

</ sql >

Java DSL designer

quer y(dat aSour ce)
.statenent ("sel ect ORDERTYPE, STATUS from ORDERS where | D="${orderld}'")

.validateScript("assert rows.size == 2;" +
"assert rows[0].ID=="1";" +
"assert rows[0].STATUS == 'in progress';", "groovy");

Java DSL runner

query(action -> action. dat aSour ce(dat aSour ce)
.statenent ("sel ect ORDERTYPE, STATUS from ORDERS where |D="${orderld}"'")

.validateScript("assert rows.size == 2;" +
"assert rows[0].ID=="1";" +
"assert rows[0].STATUS == 'in progress';", "groovy"));

As you can see Groovy provides fantastic access methods to the SQL result set. We can browse the
result set with named column values and check the size of the result set. We are also able to search
for an entry, iterate over the result set and have other helpful operations. For a detailed description of
the list and map handling in Groovy my advice for you is to have a look at the official Groovy
documentation.

Note

In general other script languages do also support this kind of list and map access. For
now we just have implemented the Groovy script support, but the framework is ready to
work with all other great script languages out there, too (e.g. Scala, Clojure, Fantom, etc.).
So if you prefer to work with another language join and help us implement those features.

12.3.4. Save result set values

Now the validation of database entries is a very powerful feature but sometimes we simply do not
know the persisted content values. The test may want to read database entries into test variables
without validation. Citrus is able to do that with the following <extract> expressions:

XML DSL

<sgl datasource="t est Dat aSour ce">
<stat ement >sel ect |1 D from CUSTOMERS where NAME=' ${cust ormer Nane}' </ st at enent >
<stat enent >sel ect STATUS from ORDERS where | D="${orderld}' </statenent>

<extract columm="I1D" variabl e="${custonerld}"/>
<extract col um="STATUS" vari abl e="${order Status}"/>
</ sql >

Java DSL designer

quer y(dat aSour ce)
.statenent ("sel ect STATUS from ORDERS where | D="${orderld}"'")
.extract (" STATUS", "orderStatus");

Citrus Framework (2.5.2) 85

Test actions

Java DSL runner

query(action -> action. dat aSour ce(dat aSour ce)
.statenent ("sel ect STATUS from ORDERS where | D="${orderld}"'")
.extract ("STATUS", "orderStatus"));

We can save the database column values directly to test variables. Of course you can combine the
value extraction with the normal column validation described earlier in this chapter. Please keep in
mind that we can not use these operations on result sets with multiple rows. Citrus will always use
the first row in a result set.

12.4. Sleep

This action shows how to make the test framework sleep for a given amount of time. The attribute
'time' defines the amount of time to wait in seconds. As shown in the next example decimal values
are supported too. When no waiting time is specified the default time of 50000 milliseconds applies.

XML DSL

<t est case nane="sl eepTest">
<actions>
<sl eep seconds="3.5"/>

<sleep mlliseconds="500"/>

<sl eep/ >
</ actions>
</testcase>

Java DSL designer and runner

@oi trusTest
public void sleepTest() {
sl eep(500); // sleep 500 mlliseconds

sleep(); // sleep default tine

When should somebody use this action? To us this action was always very useful in case the test
needed to wait until an application had done some work. For example in some cases the application
took some time to write some data into the database. We waited then a small amount of time in order
to avoid unnecessary test failures, because the test framework simply validated the database too
early. Or as another example the test may wait a given time until retry mechanisms are triggered in
the tested application and then proceed with the test actions.

12.5. Java

The test framework is written in Java and runs inside a Java virtual machine. The functionality of
calling other Java objects and methods in this same Java VM through Java Reflection is self-evident.
With this action you can call any Java API available at runtime through the specified Java classpath.

The action syntax looks like follows:

<j ava cl ass="comconsol .citrus.test.util.lnvocati onDumy">
<construct or >
<argument type="">Test |nvocation</argunent>
</ construct or >

Citrus Framework (2.5.2) 86

Test actions

<net hod name="i nvoke" >
<argunment type="String[]">1, 2</ ar gunent >
</ met hod>
</java>

<java class="com consol.citrus.test.util.lnvocationDummy">
<constructor >
<argunment type="">Test |nvocation</argunent>
</ construct or>
<net hod name="i nvoke" >
<argunment type="int">4</argunent >
<argument type="String">Test |nvocation</argunent>
<ar gunment type="bool ean">true</ar gunent >
</ net hod>
</java>

<j ava class="com consol .citrus.test.util.lnvocati onDumy">
<net hod name="nai n">
<argunment type="String[]">4, Test,true </argunent>
</ met hod>
</java>

The Java class is specified by fully qualified class name. Constructor arguments are added using the
<constructor> element with a list of <argument> child elements. The type of the argument is defined
within the respective attribute "type". By default the type would be String.

The invoked method on the Java object is simply referenced by its name. Method arguments do not
bring anything new after knowing the constructor argument definition, do they?.

Method arguments support data type conversion too, even string arrays (useful when calling CLIs). In
the third action in the example code you can see that colon separated strings are automatically
converted to string arrays.

Simple data types are defined by their name (int, boolean, float etc.). Be sure that the invoked
method and class constructor fit your arguments and vice versa, otherwise you will cause errors at
runtime.

Besides instantiating a fully new object instance for a class how about reusing a bean instance
available in Spring bean container. Simply use the ref attribute and refer to an existing bean in Spring
application context.

<java ref="invocati onDumy" >
<net hod name="i nvoke" >
<argunment type="int">4</argunent >
<argunment type="String">Test |nvocation</argunment>
<argunment type="bool ean">true</ argunent >

</ met hod>
</java>
<bean id="invocati onDummy" cl ass="com consol .citrus.test.util.lnvocati onDunmy"/>

The method is invoked on the Spring bean instance. This is very useful as you can inject other
objects (e.g. via Autowiring) to the Spring bean instance before method invocation in test takes place.
This enables you to execute any Java logic inside a test case.

12.6. Receive timeout

In some cases it might be necessary to validate that a message is not present on a destination. This
means that this action expects a timeout when receiving a message from an endpoint destination.
For instance the tester intends to ensure that no message is sent to a certain destination in a time
period. In that case the timeout would not be a test aborting error but the expected behavior. And in

Citrus Framework (2.5.2) 87

Test actions

contrast to the normal behavior when a message is received in the time period the test will fail with

error.

In order to validate such a timeout situation the action <expectTimout> shall help. The usage is very

simple as the following example shows:

XML DSL

<t est case nanme="recei veJMSTi meout Test " >
<acti ons>
<expect-tineout endpoi nt="nmyEndpoi nt" wait="500"/>
</ actions>
</t estcase>

Java DSL designer

@\ut owi r ed
@al ifier("nyEndpoint")
private Endpoi nt myEndpoi nt;

@i t rusTest
public void receiveTi neout Test () {
recei veTi neout (myEndpoi nt)
.ti meout (500);

Java DSL runner

@\t ow red
@ualifier("nyEndpoint")
private Endpoi nt nyEndpoint;

@i t rusTest
public void receiveTi neout Test () {
recei veTi neout (action -> action. endpoi nt (myEndpoi nt)
.ti meout (500));

The action offers two attributes:

« endpoint: Reference to a message endpoint that will try to receive messages.

» wait/timeout: Time period to wait for messages to arrive

Sometimes you may want to add some selector on the timeout receiving action. This way you can
very selective check on a message to not be present on a message destination. This is possible with

defining a message selector on the test action as follows.

XML DSL

<expect-tineout endpoi nt="nyEndpoi nt" wait="500">
<sel ect >Messagel d=' 123456789' <sel ect/ >
<expect-tinmeout/>

Java DSL designer

@@ trusTest
public void receiveTi neout Test () {
recei veTi neout (myEndpoi nt)
.sel ector("Messageld = '123456789'")
.ti meout (500);

Citrus Framework (2.5.2)

88

Test actions

Java DSL runner

@0 trusTest
public void receiveTi neout Test () {
recei veTi meout (action -> action. endpoi nt (nyEndpoi nt)
.sel ector("Messageld = '123456789'")
.ti meout (500));

12.7. Echo

The <echo> action prints messages to the console/logger. This functionality is useful when
debugging test runs. The property "message"” defines the text that is printed. Tester might use it to
print out debug messages and variables as shown the next code example:

XML DSL

<t est case name="echoTest">

<vari abl es>

<vari abl e name="date" value="citrus:currentDate()"/>
</vari abl es>
<actions>

<echo>

<nessage>Hel | o Test Franewor k</ nmessage>
</ echo>

<echo>
<nmessage>Current date is: ${date}</nessage>
</ echo>
</ actions>
</t estcase>

Java DSL designer and runner

@i t rusTest
public void echoTest() {
variabl e("date", "citrus:currentDate()");

echo("Hell o Test Franmework");
echo("Current date is: ${date}")

Result on the console:

Hel | o Test Framework
Current tine is: 05.08.2008

12.8. Stop time

Time measurement during a test can be very helpful. The <trace-time> action creates and monitors
multiple timelines. The action offers the attribute "id" to identify a time line. The tester can of course
use more than one time line with different ids simultaneously.

Read the next example and you will understand the mix of different time lines:

XML DSL

<t est case name="St opTi neTest" >
<actions>
<trace-tine/>

Citrus Framework (2.5.2) 89

Test actions

<trace-tine id="time_line_id"/>
<sl eep seconds="3.5"/>
<trace-time id=" tine_line_id "/>
<sleep mlliseconds="5000"/>
<trace-tine/>

<trace-tinme id=" tine_line_id "/>
</ actions>
</t estcase>

Java DSL designer and runner

@i trusTest

public void stopTineTest() {
stopTi ne();
stopTime("time_line_id")
sl eep(3.5); // do sonething
stopTime("time_line_id")
sl eep(5000); // do sonething
st opTi ne();
stopTime("time_line_id")

The test output looks like follows:

Starting Ti mneWat cher

Starting Ti neWatcher: tine_line_id

Ti meWat cher tinme_line_id after 3500 milliseconds
Ti meWat cher after 8500 seconds

Ti meWatcher tine_line_id after 8500 milliseconds

Note
In case no time line id is specified the framework will measure the time for a default time
line.

To print out the current elapsed time for a time line you simply have to place the <trace-time> action
into the action chain again and again, using the respective time line identifier. The elapsed time will
be printed out to the console every time.

12.9. Create variables

As you know variables usually are defined at the beginning of the test case (Chapter 5, Test
variables). It might also be helpful to reset existing variables as well as to define new variables during
the test. The action <create-variables> is able to declare new variables or overwrite existing ones.

XML DSL

<t estcase nane="createVari abl esTest">

<vari abl es>
<vari abl e name="nyVari abl e" val ue="12345"/>
<variabl e name="id" val ue="54321"/>

</vari abl es>

<acti ons>
<echo>

<nessage>Current variable value: ${nyVari abl e} </ nessage>

</ echo>

<create-vari abl es>
<variabl e name="nyVari abl e" val ue="${id}"/>

Citrus Framework (2.5.2) 90

Test actions

<vari abl e name="newvari abl e" value=""'this is a test'"/>
</create-vari abl es>

<echo>
<nessage>Current variable value: ${nyVariabl e} </ nessage>
</ echo>

<echo>
<nessage>
New vari abl e ' newvari abl e has the val ue: ${newvari abl e}
</ nessage>
</ echo>
</ acti ons>
</testcase>

Java DSL designer and runner

@D trusTest

public void createVariabl eTest() {
vari abl e("nmyVari abl e", "12345");
variable("id", "54321");

echo("Current variable value: ${nyVariable}")

createVariabl e("nyVariabl e", "${id}")
createVariabl e("newvariable", "this is a test");

echo("Current variable value: ${nyVariable}");

echo("New vari abl e ' newvari abl e’ has the val ue: ${newariable}");

Note

Please note the difference between the variable() method and the createVariable()
method. The first initializes the test case with the test variables. So all variables defined
with this method are valid from the very beginning of the test. In contrary to that the
createVariable() is executed within the test action chain. The newly created variables are
then valid for the rest of the test. Trailing actions can reference the variables as usual with
the variable expression.

12.10. Trace variables

You already know the <echo> action that prints messages to the console or logger. The
<trace-variables> action is specially designed to trace all currently valid test variables to the console.
This was mainly used by us for debug reasons. The usage is quite simple:

XML DSL

<t estcase nanme="traceVari abl esTest">
<vari abl es>
<vari abl e name="nyVari abl e" val ue="12345"/>
<vari abl e name="next Vari abl e" val ue="54321"/>
</vari abl es>
<acti ons>
<trace-vari abl es>
<vari abl e name="nyVari abl e"/ >
<vari abl e nanme="next Vari abl e"/ >
</trace-vari abl es>

<trace-vari abl es/ >
</ actions>
</testcase>

Citrus Framework (2.5.2) 91

Test actions

Java DSL designer and runner

@i trusTest

public void traceTest() {
vari abl e("nyVari abl e", "12345");
vari abl e("next Vari abl e", "54321");

traceVari abl es("nyVari abl e", "nextVariable");
traceVari abl es();

Simply add the <trace-variables> action to your action chain and all variables will be printed out to
the console. You are able to define a special set of variables by using the <variable> child elements.
See the output that was generated by the test example above:

Current value of variable nyVariable = 12345
Current value of variable nextVariable = 54321

12.11. Transform

The <transforme action transforms XML fragments with XSLT in order to construct various XML
representations. The transformation result is stored into a test variable for further usage. The
property xml-data defines the XML source, that is going to be transformed, while xslt-data defines the
XSLT transformation rules. The attribute variable specifies the target test variable which receives the
transformation result. The tester might use the action to transform XML messages as shown in the
next code example:

XML DSL

<t est case nanme="transfornilest ">
<acti ons>
<transform variabl e="result">
<xml - dat a>
<! [CDATA[
<Test Request >
<Message>Hel | o Worl d! </ Message>
</ Test Request >
11>
</ xnm - dat a>
<xsl t - dat a>
<! [CDATA[
<xsl :styl esheet version="1.0" xnml ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n' >
<xsl:tenpl ate match="/">
<htm >
<body>
<h2>Test Request </ h2>
<p>Message: <xsl:val ue-of sel ect="TestRequest/Message"/></p>
</ body>
</ htm >
</ xsl : tenpl at e>
</ xsl : styl esheet >
11>
</ xsl t - dat a>
</transforne
<echo>
<nessage>${resul t} </ nessage>
</ echo>
</ acti ons>
</t estcase>

The transformation above results to:

Citrus Framework (2.5.2) 92

Test actions

<htm >
<body>
<h2>Test Request </ h2>
<p>Message: Hello World!</p>
</ body>
</ htnl >

In the example we used CDATA sections to define the transformation source as well as the XSL
transformation rules. As usual you can also use external file resources here. The transform action
with external file resources looks like follows:

<transform vari abl e="resul t">
<xm -resource file="classpath: transform source.xm"/>
<xslt-resource file="classpath:transformxslt"/>

</ transform

The Java DSL alternative for transforming data via XSTL in Citrus looks like follows:

Java DSL designer

@0 trusTest
public void transfornTest() {
transform)
.source("<Test Request >" +
"<Message>Hel | o Worl d! </ Message>" +
"</ Test Request >")
.xslt("<xsl:stylesheet version=\"1.0\" xm ns: xsl=\"http://ww.w3.org/ 1999/ XSL/ Transform ">\ n" +
"<xsl:tenplate match=\"/\">\n" +
"<htm >\ n" +
"<body>\n" +
"<h2>Test Request</h2>\n" +
"<p>Message: <xsl:val ue-of select=\"TestRequest/Message\"/></p>\n" +
"</ body>\n" +
"</htm >\n" +
"</xsl:tenplate>\n" +
"</ xsl :styl esheet>")
.result("result");

echo("${result}");

transform)
. source(new O assPat hResour ce("conf consol /citrus/actions/transformsource.xnm "))
.xsl t (new O assPat hResour ce(" comnl consol /citrus/actions/transformxslt"))
.result("result");

echo("${result}");

Java DSL runner

@i t rusTest
public void transfornTest () {
transfornm(action ->
action. source("<Test Request >" +
"<Message>Hel | o Worl d! </ Message>" +
"</ Test Request >")
.xslt("<xsl:styl esheet version=\"1.0\" xml ns:xsl=\"http://ww. w3. org/ 1999/ XSL/ Transform ">\ n" +
"<xsl:tenplate match=\"/\">\n" +
"<htm >\ n" +
"<body>\n" +
"<h2>Test Request</h2>\n" +
"<p>Message: <xsl:val ue-of select=\"TestRequest/Message\"/></p>\n" +
"</ body>\n" +
"</htm >\n" +
"</xsl:tenplate>\n" +
"</ xsl :styl esheet >")
.result("result"));

echo("${resul t}");

Citrus Framework (2.5.2) 93

Test actions

transfornm(action ->
action. source(new O assPat hResour ce("conm consol /citrus/actions/transformsource.xm "))
. xsl t (new d assPat hResour ce("conm consol /citrus/actions/transformxslt"))
.result("result"));

echo("${result}");

Defining multi-line Strings with nested quotes is no fun in Java. So you may want to use external file
resources for your scripts as shown in the second part of the example. In fact you could also use
script languages like Groovy or Scala that have much better support for multi-line Strings.

12.12. Groovy script execution

Groovy is an agile dynamic language for the Java Platform. Groovy ships with a lot of very powerful
features and fits perfectly with Java as it is based on Java and runs inside the JVM.

The Citrus Groovy support might be the entrance for you to write customized test actions. You can
easily execute Groovy code inside a test case, just like a normal test action. The whole test context
with all variables is available to the Groovy action. This means someone can change variable values
or create new variables very easily.

Let's have a look at some examples in order to understand the possible Groovy code interactions in
Citrus:

XML DSL

<t est case name="groovyTest">
<vari abl es>
<variabl e name="tinme" value="citrus:currentDate()"/>
</ vari abl es>
<actions>
<gr oovy>
println "Hello Ctrus'
</ groovy>
<gr oovy>
println ' The variable is: ${tine}’
</ groovy>
<groovy resource="cl asspat h: conf consol / ci trus/scri pt/exanpl e. groovy"/>
</ acti ons>
</testcase>

Java DSL designer

@0 trusTest

public void groovyTest() {
groovy("println "Hello Citrus'");
groovy("println 'The variable is: ${tinme}'");

groovy(new Cl assPat hResour ce("conl consol / citrus/script/exanpl e. groovy"));

Java DSL runner

@ trusTest

public void groovyTest() {
groovy(action -> action.script("println 'Hello Gitrus'"));
groovy(action -> action.script("println 'The variable is: ${tinme}'"));

groovy(action -> action.script(new C assPat hResour ce("com consol /citrus/script/exanple.groovy")));

Citrus Framework (2.5.2) 94

Test actions

As you can see it is possible to write Groovy code directly into the test case. Citrus will interpret and
execute the Groovy code at runtime. As usual nested variable expressions are replaced with
respective values. In general this is done in advance before the Groovy code is interpreted. For more
complex Groovy code sections which grow in lines of code you can also reference external file
resources.

After this basic Groovy code usage inside a test case we might be interested accessing the whole
TestContext. The TestContext Java object holds all test variables and function definitions for the test
case and can be referenced in Groovy code via simple naming convention. Just access the object
reference 'context' and you are able to manipulate the TestContext (e.g. setting a new variable which
is directly ready for use in following test actions).

XML DSL

<testcase nanme="groovyTest">
<acti ons>
<gr oovy>
context.setVariabl e("greetingText","Hello G trus")
println context.getVariable("greetingText")
</ gr oovy>
<echo>
<nmessage>New vari abl e: ${greetingText} </ nmessage>
</ echo>
</ acti ons>
</testcase>

Note

The implicit TestContext access that was shown in the previous sample works with a
default Groovy script template provided by Citrus. The Groovy code you write in the test
case is automatically surrounded with a Groovy script which takes care of handling the
TestContext. The default template looks like follows:

i mport com consol .citrus.*

import com consol .citrus.variable.*

i mport com consol . citrus. cont ext. Test Cont ext

import com consol .citrus.script.G oovyAction. Scri pt Execut or

public class GScript inplenments ScriptExecutor {
public void execute(Test Context context) {
@5CRI PTBODY@
}

Your code is placed in substitution to the @cr PTBODY@ placeholder. Now you might
understand how Citrus handles the context automatically. You can also write your own
script templates making more advanced usage of other Java APIs and Groovy code. Just
add a script template path to the test action like this:

<groovy script-tenpl ate="cl asspat h: ny-cust om t enpl at e. gr oovy" >

[...]

</ groovy>

On the other hand you can disable the automatic script template wrapping in your action
at all:

<groovy use-script-tenpl ate="fal se">
println 'Just use some G oovy code
</ gr oovy>

Citrus Framework (2.5.2) 95

Test actions

The next example deals with advanced Groovy code and writing whole classes. We write a new
Groovy class which implements the ScriptExecutor interface offered by Citrus. This interface defines
a special execute method and provides access to the whole TestContext for advanced test variables
access.

<t est case name="groovyTest">
<vari abl es>
<variabl e name="tinme" value="citrus:currentDate()"/>
</vari abl es>
<acti ons>
<gr oovy>
<! [CDATA[
i mport com consol.citrus.*
i mport com consol .citrus.variable.*
i mport com consol . citrus. context. Test Cont ext
i mport com consol . citrus.script.G oovyAction. Scri pt Execut or

public class GScript inplenents ScriptExecutor {
public void execute(Test Context context) {
println context.getVariable("tine")

}
}
11>
</ groovy>
</ acti ons>
</t estcase>

Implementing the ScriptExecutor interface in a custom Groovy class is applicable for very special test
context manipulations as you are able to import and use other Java API classes in this code.

12.13. Failing the test

The fail action will generate an exception in order to terminate the test case with error. The test case
will therefore not be successful in the reports.

The user can specify a custom error message for the exception in order to describe the error cause.
Here is a very simple example to clarify the syntax:

XML DSL

<testcase nane="fail Test">
<actions>
<fail nmessage="Test will fail with custom nessage"/>
</ actions>
</testcase>

Test results:

Execution of test: fail Test failed! Nested exception is:
com consol . citrus. exceptions. CitrusRunti meExcepti on:
Test will fail wth custom nmessage

[---1]
Cl TRUS TEST RESULTS
fail Test . failed - Exception is: Test will fail with custom nessage

Found 1 test cases to execute

Ski pped 0 test cases (0.0%

Executed 1 test cases, containing 3 actions
Tests failed: 1 (100.0%

Tests successfully: 0 (0.0%

Citrus Framework (2.5.2) 96

Test actions

While using the Java DSL tester might want to raise some Java exceptions in the middle of
configuring the test case. But this is not possible as we have to separate the design time and the
execution time of the test case. The @CitrusTest annotated configuration method is called for
building up the whole test case. After this method was processed the test gets executed in runtime
oth the test. If you specify a throws exception statement in the configuration method this will not be
done at runtime but at design time. This is why you have to use the special fail test action which
raises a Java exception during the runtime of the test. The next example will not work as expected:

Java DSL designer and runner

@@ trusTest
public void wongUsageSanpl e() {
/] sone test actions

throw new Val i dati onException("This test should fail now'); // does not work as expected

The validation exception above is directly raised before the test is able to start as the @CitrusTest
annotated method does not represent the test runtime. Instead of this we have to use the fail action
as follows:

Java DSL designer and runner

@i t rusTest
public void fail Test() {
/'l some test actions

fail ("This test should fail now'); // fails at test runtinme as expected

Now the test fails at runtime as the fail action is raised during the test execution as expected.

12.14. Input

During the test case execution it is possible to read some user input from the command line. The test
execution will stop and wait for keyboard inputs over the standard input stream. The user has to type
the input and end it with the return key.

The user input is stored to the respective variable value.

XML DSL

<t est case nanme="input Test">

<vari abl es>
<vari abl e name="userinput" val ue=""></vari abl e>
<vari abl e name="useri nput 1" val ue=""></vari abl e>
<vari abl e name="userinput 2" val ue="y"></vari abl e>
<vari abl e name="useri nput 3" val ue="yes"></vari abl e>
<vari abl e name="useri nput4" val ue=""></vari abl e>

</vari abl es>

<actions>
<i nput/>
<echo><nessage>user input was: ${userinput}</nessage></echo>

<i nput nessage="Now press enter:" variabl e="userinputl"/>
<echo><nessage>user input was: ${userinputl}</nmessage></echo>

<i nput message="Do you want to continue?"
val i d- answer s="y/n" vari abl e="useri nput2"/>
<echo><nessage>user input was: ${userinput?2}</nmessage></echo>

<i nput nmessage="Do you want to continue?"
val i d- answer s="yes/ no" vari abl e="useri nput3"/>

Citrus Framework (2.5.2) 97

Test actions

<echo><nessage>user input was: ${userinput3}</nessage></echo>

<i nput vari abl e="useri nput4"/>
<echo><nessage>user input was: ${userinput4}</nessage></echo>
</ actions>
</testcase>

As you can see the input action is customizable with a prompt message that is displayed to the user
and some valid answer possibilities. The user input is stored to a test variable for further use in the
test case. In detail the input action offers following attributes:

¢ message -> message displayed to the user
« valid-answers -> optional slash separated string containing the possible valid answers
« variable -> result variable name holding the user input (default = ${userinput})

The same action in Java DSL now looks quite familiar to us although attribute naming is slightly
different:

Java DSL designer

@i trusTest

public void inputActionTest() {
vari abl e("userinput", "");
vari abl e("userinput1", "");
vari abl e("userinput2", "y");
vari abl e("userinput3", "yes");
vari abl e("userinput4", "");

input();

echo("user input was: ${userinput}");

input ().nessage("Now press enter:").result("userinputl");
echo("user input was: ${userinputl}");

input ().nessage("Do you want to continue?").answers("y", "n").result("userinput2");
echo("user input was: ${userinput2}");
i nput (). nmessage("Do you want to continue?").answers("yes", "no").result("userinput3");

echo("user input was: ${userinput3}");
input().result("userinput4");
echo("user input was: ${userinput4}");

Java DSL runner

@i t rusTest

public void inputActionTest() {
vari abl e("userinput", "");
vari abl e("userinput1", "");
vari abl e("userinput2", "y");
vari abl e("userinput3", "yes");
vari abl e("userinput4", "");

i nput (action -> {});

echo("user input was: ${userinput}");

i nput (action -> action. message("Now press enter:").result("userinputl"));
echo("user input was: ${userinputl}");

input (action -> action.nessage("Do you want to continue?").answers("y", "n").result("userinput2"));
echo("user input was: ${userinput2}");
i nput (action -> action. nessage("Do you want to continue?").answers("yes", "no").result("userinput3"));

echo("user input was: ${userinput3}");
input (action -> action.result("userinput4"));
echo("user input was: ${userinput4}");

When the user input is restricted to a set of valid answers the input validation of course can fail due
to mismatch. This is the case when the user provides some input not matching the valid answers
given. In this case the user is again asked to provide valid input. The test action will continue to ask

Citrus Framework (2.5.2) 98

Test actions

for valid input until a valid answer is given.

Note

User inputs may nhot fit to automatic testing in terms of continuous integration testing
where no user is present to type in the correct answer over the keyboard. In this case you
can always skip the user input in advance by specifying a variable that matches the user
input variable name. As the user input variable is then already present the user input is
missed out and the test proceeds automatically.

12.15. Load

You are able to load properties from external property files and store them as test variables. The
action will require a file resource either from class path or file system in order to read the property
values.

Let us look at an example to get an idea about this action:

Content of load.properties:

user nane=M ckey Mbuse
greeting.text=Hell o Test Franmework

XML DSL
<t est case nanme="| oadPropertiesTest">
<acti ons>
<l oad>
<properties file="file:tests/resources/|oad. properties"/>
</ | oad>

<trace-vari abl es/ >
</ actions>
</testcase>

Java DSL designer and runner

@@ trusTest
public void | oadPropertiesTest() {
load("file:tests/resources/| oad. properties")

traceVari abl es();

Output:

Current value of variable usernane = M ckey Muse
Current value of variable greeting.text = Hello Test Franmework

The action will load all available properties in the file load.properties and store them to the test case
as local variables.

Important

Please be aware of the fact that existing variables are overwritten!

Citrus Framework (2.5.2) 99

Test actions

12.16. Wait

With this action you can make your test wait until a certain condition is satisfied. The attribute
seconds defines the amount of time to wait in seconds. You can also use the milliseconds attribute
for a more fine grained time value. The attribute interval defines the amount of time to wait between
each check. The interval is always specified as millisecond time interval.

If the check does not exceed within the defined overall waiting time then the test execution fails with
an appropriate error message. There are different types of conditions to check.

¢ http: This condition is based on a Http request call on a server endpoint. Citrus will wait until the
Http response is as defined (e.g. Http 200 OK). This is useful when you want to wait for a server to
start.

« file: This condition checks for the existence of a file on the local file system. Citrus will wait until the
file is present.

Next let us have a look at a simple example:

XML DSL

<t est case nanme="wait Test">
<acti ons>
<wai t seconds="10" interval ="2000" >
<http url="http://sanpl e. org/resource" statusCode="200" tineout="2000" />
<wai t/>
</ actions>
</testcase>

Java DSL designer and runner

@@ trusTest
public void waitTest() {
wai t For (). http("http://sanple.org/resource").seconds(10L).interval (2000L);

The example waits for some Http server resource to be available with Http 200 OK response. Citrus
will use HEAD request method by default. You can set the request method with the method attribute
on the Http condition.

Next let us have a look at the file condition usage:

XML DSL

<t est case nane="wait Test">
<actions>
<wai t seconds="10" interval ="2000" >
<file path="path/to/resource/file.txt" />
<wai t/>
</ actions>
</testcase>

Java DSL designer and runner

@i trusTest

public void waitTest() {
waitFor().file("path/to/resource/file.txt");

}

Citrus Framework (2.5.2) 100

Test actions

Citrus checks for the file to exist under the given path. Only if the file exists the test will continue with
further test actions.

When should somebody use this action? This action is very useful when you want your test to wait
for a certain event to occur before continuing with the test execution. For example if you wish that
your test waits until a Docker container is started or for an application to create a log file before
continuing, then use this action. You can also create your own condition statements and bind it to the
test action.

12.17. Purging JMS destinations

Purging JMS destinations during the test run is quite essential. Different test cases can influence
each other when sending messages to the same JMS destinations. A test case should only receive
those messages that actually belong to it. Therefore it is a good idea to purge all JIMS queue
destinations between the test cases. Obsolete messages that are stuck in a JMS queue for some
reason are then removed so that the following test case is not offended.

Note

Citrus provides special support for JMS related features. We have to activate those JMS
features in our test case by adding a special "jms" namespace and schema definition
location to the test case XML.

<spring: beans xm ns="http://ww. citrusframework. org/schema/testcase"
xm ns: spring="http://ww.springfranmework. org/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: jms="http://ww.citrusfranework. org/schema/jns/testcase"
xsi : schenmalLocati on="
http://ww. springfranewor k. or g/ schena/ beans
http://ww. springfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusfranework. org/ schena/t est case
http://ww. citrusfranework. org/ schena/testcase/citrus-testcase. xsd
http://ww. citrusfranework. org/ schena/j ns/testcase
http://wwmv citrusframework. org/ schema/j ns/testcase/citrus-jms-testcase. xsd">

[...]

</ beans>

Now we are ready to use the JMS features in our test case in order to purge some JMS queues. This
can be done with following action definition:

XML DSL

<t est case nanme="purgeTest">
<actions>
<j ms: pur ge-j ms- queues>
<j ms: queue name="Sone. JM5. QUEUE. Nane"/ >
<j ms: queue nane="Anot her. JMs. QUEUE. Nane"/ >
<j ms: queue name="M. JMS. QUEUE. Nane"/ >
</ j ms: pur ge-j ms- queues>

<j ms: pur ge-j ms- queues connection-factory="connecti onFactory">
<j ms: queue nane="Sone. JM5. QUEUE. Nane"/ >
<j ms: queue nane="Anot her.JMs. QUEUE. Nane"/ >
<j ms: queue nanme="M. JMS. QUEUE. Nane"/ >
</j ms: pur ge-j ms- queues>
</ actions>
</testcase>

Citrus Framework (2.5.2) 101

Test actions

Notice that we have referenced the jms namespace when using the purge-jms-queues test action.

Java DSL designer

@\ut owi r ed
@al ifier("connectionFactory")
private Connecti onFactory connectionFactory;

@i t rusTest
public void purgeTest() {
pur geQueues()
. queue(" Sone. JV5. QUEUE. Nane")
. queue(" Anot her . JIMS. QUEUE. Nane") ;

pur geQueues(connect i onFact ory)
.timeout (150L) // customtineout in ns
. queue(" Sone. JVS. QUEUE. Nane")
. queue(" Anot her . JIMS. QUEUE. Nane") ;

Java DSL runner

@\ut owi r ed
@al ifier("connectionFactory")
private Connecti onFactory connectionFactory;

@ci trusTest
public void purgeTest() {
pur geQueues(acti on ->
action. queue(" Sone. JVM5. QUEUE. Nane")
. queue(" Anot her . JIMS. QUEUE. Nane")) ;

pur geQueues(action -> action.connectionFactory(connectionFactory)
.timeout (150L) // customtineout in ns
. queue(" Sone. JVMS. QUEUE. Nane")
. queue(" Anot her . JIMS. QUEUE. Nane")) ;

Purging the JMS queues in every test case is quite exhausting because every test case needs to
define a purging action at the very beginning of the test. Fortunately the test suite definition offers
tasks to run before, between and after the test cases which should ease up this tasks a lot. The test
suite offers a very simple way to purge the destinations between the tests. See Section 37.3, “Before

test” for more information about this.

As you can see in the next example it is quite easy to specify a group of destinations in the Spring
configuration that get purged before a test is executed.

<citrus: before-test id="purgeBeforeTest">
<citrus:actions>
<j ms: pur ge-j ns- queues>
<j ms: queue nane="Some. JM5. QUEUE. Nane"/ >
<j ms: queue nane="Anot her. JMsS. QUEUE. Nane"/ >
</j ms: pur ge-j ms- queues>
</citrus:actions>
</citrus: before-test>

Note

Please keep in mind that the JMS related configuration components in Citrus belong to a
separate XML namespace jms:. We have to add this namespace declaration to each test
case XML and Spring bean XML configuration file as described at the very beginning of
this section.

The syntax for purging the destinations is the same as we used it inside the test case. So now we are

Citrus Framework (2.5.2) 102

Test actions

able to purge JMS destinations with given destination names. But sometimes we do not want to rely
on queue or topic hames as we retrieve destinations over JNDI for instance. We can deal with
destinations coming from JNDI lookup like follows:

<j ee:j ndi -l ookup id="jnsQueueHel | oRequest | n" jndi-nanme="j ns/jnsQueueHel | oRequest | n"/>
<j ee:jndi -l ookup id="jnsQueueHel | oResponseQut" | ndi - nanme="j ns/j nsQueueHel | oResponseCut "/ >

<citrus: before-test id="purgeBeforeTest">
<citrus:actions>
<j nB: pur ge- j ne- queues>
<j ms: queue ref="jmsQueueHel | oRequest I n"/>
<j ms: queue ref="jmsQueueHel | oResponseCut"/ >
</ j ms: pur ge-j ms- queues>
</citrus:actions>
</citrus: before-test>

We just use the attribute 'ref' instead of 'name' and Citrus is looking for a bean reference for that
identifier that resolves to a JMS destination. You can use the JNDI bean references inside a test
case, too.

XML DSL

<t est case nanme="purgeTest">
<actions>
<j nB: pur ge-j ms- queues>
<j ms: queue ref="] msQueueHel | oRequest | n"/>
<j ms: queue ref="] nmsQueueHel | oResponseQut "/ >
</j ms: pur ge-j ns- queues>
</ actions>
</testcase>

Of course you can use queue object references also in Java DSL test cases. Here we easily can use
Spring's dependency injection with autowiring to get the object references from the IoC container.

Java DSL designer

@\ut owi r ed
@ualifier("jnmQueueHel | oRequest|n")
private Queue jnmsQueueHel | oRequest I n;

@\ut owi r ed
@ualifier("jnmQueueHel | oResponseCut™)
private Queue jnmsQueueHel | oResponseQut;

@@ trusTest
public void purgeTest() {
pur geQueues()
. queue(j msQueueHel | oRequest I n)
. queue(j msQueueHel | oResponseQut) ;

Java DSL runner

@\ut owi r ed
@ualifier("jnmQueueHel | oRequest|n")
private Queue jnmsQueueHel | oRequest I n;

@\ut ow r ed
@ualifier("jnmQueueHel | oResponseCut™)
private Queue jmsQueueHel | oResponseQut ;

@@ trusTest
public void purgeTest() {
pur geQueues(acti on ->
action. queue(j msQueueHel | oRequest | n)
. queue(j msQueueHel | oResponseQut)) ;

Citrus Framework (2.5.2) 103

Test actions

Note

You can mix queue name and queue object references as you like within one single purge
queue test action.

12.18. Purging message channels

Message channels define central messaging destinations in Citrus. These are namely in memory
message queues holding messages for test cases. These messages may become obsolete during a
test run, especially when test cases fail and stop in their message consumption. Purging these
message channel destinations is essential in these scenarios in order to not influence upcoming test
cases. Each test case should only receive those messages that actually refer to the test model.
Therefore it is a good idea to purge all message channel destinations between the test cases.
Obsolete messages that get stuck in a message channel destination for some reason are then
removed so that upcoming test case are not broken.

Following action definition purges all messages from a list of message channels:

XML DSL

<t est case nanme="pur geChannel Test">
<actions>
<pur ge- channel >
<channel name="soneChannel Nane"/>
<channel name="anot her Channel Nane"/ >
</ pur ge- channel >

<pur ge- channel >
<channel ref="sonmeChannel "/ >
<channel ref="anot her Channel "/ >
</ pur ge- channel >
</ actions>
</testcase>

As you can see the test action supports channel names as well as channel references to Spring bean
instances. When using channel references you refer to the Spring bean id or name in your
application context.

The Java DSL works quite similar as you can read from next examples:

Java DSL designer

@\ut ow r ed
@ual ifier("channel Resol ver")
private DestinationResol ver <MessageChannel > channel Resol ver;

@0 trusTest
public void purgeTest() {
pur geChannel s()
. channel Resol ver (channel Resol ver)
. channel Names("chl1", "ch2", "ch3")
.channel ("ch4");

Java DSL runner

@\ut ow r ed
@al ifier("channel Resol ver")
private DestinationResol ver <MessageChannel > channel Resol ver;

Citrus Framework (2.5.2) 104

Test actions

@0 trusTest
public void purgeTest() {
pur geChannel s(action ->
act i on. channel Resol ver (channel Resol ver)
. channel Nanes("ch1", "ch2", "ch3")
. channel ("ch4"));

The channel resolver reference is optional. By default Citrus will automatically use a Spring
application context channel resolver so you just have to use the respective Spring bean names that
are configured in the Spring application context. However setting a custom channel resolver may be
adequate for you in some special cases.

While speaking of Spring application context bean references the next example uses such bean
references for channels to purge.

Java DSL designer

@\ut ow red
@ualifier("channel 1")
private MessageChannel channel 1;

@\ut owi red
@alifier("channel 2")
private MessageChannel channel 2;

@\ut owi r ed
@al ifier("channel 3")
private MessageChannel channel 3;

@i t rusTest
public void purgeTest() {
pur geChannel s()
. channel s(channel 1, channel 2)
. channel (channel 3) ;

Java DSL runner

@\t ow red
@alifier("channel 1")
private MessageChannel channel 1;

@\ut owi r ed
@al ifier("channel 2")
private MessageChannel channel 2;

@\ut owi r ed
@al ifier("channel 3")
private MessageChannel channel 3;

@zi trusTest
public void purgeTest() {
pur geChannel s(action ->
acti on. channel s(channel 1, channel 2)
. channel (channel 3));

Message selectors enable you to selectively remove messages from the destination. All messages
that pass the message selection logic get deleted the other messages will remain unchanged inside
the channel destination. The message selector is a Spring bean that implements a special message
selector interface. A possible implementation could be a selector deleting all messages that are older
than five seconds:

i mport org.springfranework. mressagi ng. Message;
import org.springfranework.integration. core. MessageSel ect or;

public class Ti nreBasedMessageSel ector inplements MessageSel ector {

Citrus Framework (2.5.2) 105

Test actions

publ i c bool ean accept (Message<?> nessage) {
if (SystemcurrentTineMIlis() - nessage. get Headers().getTi nestanp() > 5000) {
return fal se;
} else {
return true;
}

Note

The message selector returns false for those messages that should be deleted from the
channel!

You simply define the message selector as a new Spring bean in the Citrus application context and
reference it in your test action property.

<bean id="speci al MessageSel ector"
cl ass="com consol . ci trus. speci al . Ti nreBasedMessageSel ector "/ >

Now let us have a look at how you reference the selector in your test case:

XML DSL

<pur ge- channel s nessage- sel ect or ="speci al MessageSel ect or " >
<channel name="soneChannel Nane"/ >
<channel name="anot her Channel Nane"/>

</ pur ge- channel s>

Java DSL designer

@\ut ow red
@ualifier("special MessageSel ector")
private MessageSel ect or speci al MessageSel ect or;

@ trusTest
public void purgeTest() {
pur geChannel s()
. channel Names("chl", "ch2", "ch3")
. sel ector(speci al MessageSel ector);

Java DSL runner

@\ut ow red
@ualifier("special MessageSel ector")
private MessageSel ect or speci al MessageSel ect or;

@0 trusTest
public void purgeTest() {
pur geChannel s(action ->
action. channel Nanes("ch1", "ch2", "ch3")
. sel ector(speci al MessageSel ector));

In the examples above we use a message selector implementation that gets injected via Spring loC
container.

Purging channels in each test case every time is quite exhausting because every test case needs to
define a purging action at the very beginning of the test. A more straight forward approach would be

Citrus Framework (2.5.2) 106

Test actions

to introduce some purging action which is automatically executed before each test. Fortunately the
Citrus test suite offers a very simple way to do this. It is described in Section 37.3, “Before test”.

When using the special action sequence before test cases we are able to purge channel destinations
every time a test case executes. See the upcoming example to find out how the action is defined in
the Spring configuration application context.

<citrus: before-test id="purgeBeforeTest">
<citrus:actions>
<pur ge- channel >
<channel nane="fooChannel "/>
<channel nane="bar Channel "/ >
</ pur ge- channel >
</citrus:actions>
</citrus: before-test>

Just use this before-test bean in the Spring bean application context and the purge channel action is
active. Obsolete messages that are waiting on the message channels for consumption are purged
before the next test in line is executed.

Tip

Purging message channels becomes also very interesting when working with server
instances in Citrus. Each server component automatically has an inbound message
channel where incoming messages are stored to internally. So if you need to clean up a
server that has already stored some incoming messages you can do this easily by purging
the internal message channel. The message channel follows a naming convention
{serverName}.inbound where {serverName} is the Spring bean name of the Citrus server
endpoint component. If you purge this internal channel in a before test nature you are sure
that obsolete messages on a server instance get purged before each test is executed.

12.19. Purging endpoints

Citrus works with message endpoints when sending and receiving messages. In general endpoints
can also queue messages. This is especially the case when using JMS message endpoints or any
server endpoint component in Citrus. These are in memory message queues holding messages for
test cases. These messages may become obsolete during a test run, especially when a test case
that would consume the messages fails. Deleting all messages from a message endpoint is therefore
a useful task and is essential in such scenarios so that upcoming test cases are not influenced. Each
test case should only receive those messages that actually refer to the test model. Therefore it is a
good idea to purge all message endpoint destinations between the test cases. Obsolete messages
that get stuck in a message endpoint destination for some reason are then removed so that
upcoming test case are not broken.

Following action definition purges all messages from a list of message endpoints:

XML DSL

<t est case name="pur geEndpoi nt Test">
<actions>
<pur ge- endpoi nt >
<endpoi nt nanme="soneEndpoi nt Nane"/ >
<endpoi nt nanme="anot her Endpoi nt Nane"/ >
</ pur ge- endpoi nt >

<pur ge- endpoi nt >

Citrus Framework (2.5.2) 107

Test actions

<endpoi nt ref="sonmeEndpoi nt"/>
<endpoi nt ref="anot her Endpoi nt"/>
</ pur ge- endpoi nt >
</ actions>
</testcase>

As you can see the test action supports endpoint names as well as endpoint references to Spring
bean instances. When using endpoint references you refer to the Spring bean name in your

application context.
The Java DSL works quite similar - have a look:

Java DSL designer

@\ut owi r ed

@ci trusTest

public void purgeTest() {
pur geEndpoi nt s()

. endpoi nt Nanes(" endpoi nt 1", "endpoi nt2", "endpoi nt3")

. endpoi nt ("endpoi nt4");

Java DSL runner

@\ut owi r ed
@i t rusTest
public void purgeTest() {
pur geEndpoi nts(acti on ->
action. endpoi nt Nanes("endpoi nt 1", "endpoi nt 2",
.endpoi nt ("endpoi nt4"));

"endpoi nt 3")

When using the Java DSL we can inject endpoint objects with Spring bean container 10C. The next

example uses such bean references for endpoints in a purge action.

Java DSL designer

@\ut owi r ed
@ualifier("endpointl")
private Endpoi nt endpoint1;

@\ut owi r ed
@ual i fier("endpoint2")
private Endpoint endpoint2;

@\t ow red
@ual i fier("endpoint3")
private Endpoint endpoint 3;

@i trusTest
public void purgeTest() {
pur geEndpoi nt s()
. endpoi nt s(endpoi nt 1, endpoi nt 2)
. endpoi nt (endpoi nt 3) ;

Java DSL runner

@\ut ow r ed
@ual i fier("endpointl")
private Endpoint endpoint1;

@\t ow red
@al i fier("endpoint2")
private Endpoi nt endpoi nt 2;

@\t ow red
@ualifier("endpoint3")
private Endpoi nt endpoi nt 3;

Citrus Framework (2.5.2)

108

Test actions

@0 trusTest
public void purgeTest() {
pur geEndpoi nts(action ->
acti on. endpoi nt s(endpoi nt1, endpoi nt 2)
. endpoi nt (endpoi nt 3))

Message selectors enable you to selectively remove messages from an endpoint. All messages that
meet the message selector condition get deleted and the other messages remain inside the endpoint
destination. The message selector is either a normal String name-value representation or a map of
key value pairs:

XML DSL

<pur ge- endpoi nt s>
<sel ect or >
<val ue>operation = 'sayHel |l o' </ val ue>
</ sel ect or >
<endpoi nt nanme="soneEndpoi nt Nane"/ >
<endpoi nt nane="anot her Endpoi nt Nane"/ >
</ pur ge- endpoi nt s>

Java DSL designer

@ci trusTest
public void purgeTest() {
pur geEndpoi nt s()
. endpoi nt Nanes("endpoi nt 1", "endpoi nt2", "endpoi nt3")
.selector("operation = 'sayHello"");

Java DSL runner

@i t rusTest
public void purgeTest() {
pur geEndpoi nts(action ->
action. endpoi nt Nanes("endpoi nt 1", "endpoi nt2", "endpoi nt3")
.selector("operation = 'sayHello "));

In the examples above we use a String to represent the message selector expression. In general the
message selector operates on the message header. So following on from that we remove all
messages selectively that have a message header operation with its value sayHello.

Purging endpoints in each test case every time is quite exhausting because every test case needs to
define a purging action at the very beginning of the test. A more straight forward approach would be
to introduce some purging action which is automatically executed before each test. Fortunately the
Citrus test suite offers a very simple way to do this. It is described in Section 37.3, “Before test”.

When using the special action sequence before test cases we are able to purge endpoint
destinations every time a test case executes. See the upcoming example to find out how the action is
defined in the Spring configuration application context.

<citrus: before-test id="purgeBeforeTest">
<citrus:actions>
<pur ge- endpoi nt >
<endpoi nt name="f ooEndpoi nt"/ >
<endpoi nt nanme="bar Endpoi nt"/ >
</ pur ge- endpoi nt >
</citrus:actions>
</citrus: before-test>

Citrus Framework (2.5.2) 109

Test actions

Just use this before-test bean in the Spring bean application context and the purge endpoint action is
active. Obsolete messages that are waiting on the message endpoints for consumption are purged
before the next test in line is executed.

Tip

Purging message endpoints becomes also very interesting when working with server
instances in Citrus. Each server component automatically has an inbound message
endpoint where incoming messages are stored to internally. Citrus will automatically use
this incoming message endpoint as target for the purge action so you can just use the
server instance as you know it from your configuration in any purge action.

12.20. Assert failure

Citrus test actions fail with Java exceptions and error messages. This gives you the opportunity to
expect an action to fail during test execution. You can simple assert a Java exception to be thrown
during execution. See the example for an assert action definition in a test case:

XML DSL

<t estcase nanme="assert Fail ureTest">
<actions>
<assert exception="com consol.citrus.exceptions.Ci trusRunti neException"”
nessage="Unknown vari abl e ${date}">
<echo>
<nessage>Current date is: ${date}</nessage>
</ echo>
</ assert>
</ actions>
</testcase>

Java DSL designer and runner

@0 trusTest
public void assertTest() {
assert Exception().excepti on(com consol . citrus. exceptions.Ci trusRunti neExcepti on. cl ass)
. message(" Unknown variabl e ${date}")
.when(echo("Current date is: ${date}"));

Note

Note that the assert action requires an exception. In case no exception is thrown by the
embedded test action the assertion and the test case will fail!

The assert action always wraps a single test action, which is then monitored for failure. In case the
nested test action fails with error you can validate the error in its type and error message (optional).
The failure has to fit the expected one exactly otherwise the assertion fails itself.

Important

Important to notice is the fact that asserted exceptions do not cause failure of the test
case. As you except the failure to happen the test continues with its work once the
assertion is done successfully.

Citrus Framework (2.5.2) 110

Test actions

12.21. Catch exceptions

In the previous chapter we have seen how to expect failures in Citrus with assert action. Now the
assert action is designed for single actions to be monitored and for failures to be expected in any
case. The 'catch' action in contrary can hold several nested test actions and exception failure is
optional.

The nested actions are error proof for the chosen exception type. This means possible exceptions
are caught and ignored - the test case will not fail for this exception type. But only for this particular
exception type! Other exception types that occur during execution do cause the test to fail as usual.

XML DSL
<t est case name="cat chExceptionTest">
<actions>

<catch exception="com consol . citrus. exceptions. G trusRunti neExcepti on">

<echo>
<nessage>Current date is: ${date}</nessage>

</ echo>

</ cat ch>

</ actions>
</t estcase>

Java DSL designer and runner

@i t rusTest
public void catchTest() {
cat chException().exception(C trusRunti meExcepti on. cl ass)
.when(echo("Current date is: ${date}"))

Important

Note that there is no validation available in a catch block. So catching exceptions is just to
make a test more stable towards errors that can occur. The caught exception does not
cause any failure in the test. The test case may continue with execution as if there was
not failure. Also notice that the catch action is also happy when no exception at all is
raised. In contrary to that the assert action requires the exception and an assert action is
failing in positive processing.

Catching exceptions like this may only fit to very error prone action blocks where failures do not harm
the test case success. Otherwise a failure in a test action should always reflect to the whole test case
to fail with errors.

Note

Java developers might ask why not use try-catch Java block instead? The answer is
simple yet very important to understand. The test method is called by the Java DSL test
case builder for building the Citrus test. This can be referred to as the design time of the
test. After the building test method was processed the test gets executed, which can be
called the runtime of the test. This means that a try-catch block within the design time
method will never perform during the test run. The only reliable way to add the catch
capability to the test as part of the test case runtime is to use the Citrus test action which
gets executed during test runtime.

Citrus Framework (2.5.2) 111

Test actions

12.22. Running Apache Ant build targets

The <ant> action loads a build.xml Ant file and executes one or more targets in the Ant project. The
target is executed with optional build properties passed to the Ant run. The Ant build output is logged
with Citrus logger and the test case success is bound to the Ant build success. This means in case
the Ant build fails for some reason the test case will also fail with build exception accordingly.

See this basic Ant run example to see how it works within your test case:

XML DSL

<t estcase nanme="Ant RunTest">
<vari abl es>
<vari abl e name="t oday" val ue="citrus:currentDate()"/>
</vari abl es>
<acti ons>
<ant build-file="classpath: com consol/citrus/actions/build.xm">
<execute target="sayHell 0"/ >
<properties>
<property nane="date" val ue="${today}"/>
<property name="wel coneText" val ue="Hello!"/>
</ properties>
</ ant >
</ actions>
</testcase>

Java DSL designer

@0 trusTest
public void ant RunTest () {
vari abl e("today", "citrus:currentDate()");

antrun("cl asspat h: com consol /citrus/actions/build.xm")
.target ("sayHel | 0")
.property("date", "${today}")
.property("wel comeText", "$Hello!");

Java DSL runner

@z trusTest
public void ant RunTest () {
vari abl e("today", "citrus:currentDate()");

antrun(action -> action. buil dFil ePath("cl asspath: com consol /citrus/actions/build.xm")
.target ("sayHel | 0")
.property("date", "${today}")
.property("wel comeText", "$Hello!"));

The respective build.xml Ant file must provide the target to call. For example:

<proj ect nanme="citrus-build" default="sayHell o0">
<property name="wel coneText" val ue="Wel cone to Gitrus!"></property>

<target nane="sayHel | 0">
<echo nmessage="${wel coneText} - Today is ${date}"></echo>
</target>

<target nane="sayGoodbye">
<echo nessage="Goodbye everybody!"></echo>
</target>
</ proj ect >

As you can see you can pass custom build properties to the Ant build execution. Existing Ant build

Citrus Framework (2.5.2) 112

Test actions

properties are replaced and you can use the properties in your build file as usual.

You can also call multiple targets within one single build run by using a comma separated list of
target names:

XML DSL

<t est case name="Ant RunTest">
<vari abl es>
<variabl e name="t oday" value="citrus:currentDate()"/>
</vari abl es>
<actions>
<ant build-file="classpath: conm consol/citrus/actions/build.xm">
<execute targets="sayHel |l o, sayGoodbye"/ >
<properties>
<property nanme="date" val ue="${today}"/>
</ properties>
</ ant >
</ acti ons>
</testcase>

Java DSL designer

@@ trusTest
public void ant RunTest () {
vari abl e("today", "citrus:currentDate()");

antrun("cl asspat h: com consol /citrus/acti ons/ build.xm")
.targets("sayHel | 0", "sayGoodbye")
.property("date", "${today}");

Java DSL runner

@ci trusTest
public void antRunTest () {
vari abl e("today", "citrus:currentDate()");

antrun(action -> action. buil dFil ePat h("cl asspat h: com consol /citrus/actions/build.xm")
.targets("sayHel l 0", "sayGoodbye")
.property("date", "${today}"));

The build properties can live in external file resource as an alternative to the inline property
definitions. You just have to use the respective file resource path and all nested properties get loaded
as build properties.

In addition to that you can also define a custom build listener. The build listener must implement the
Ant API interface org.apache.tools.ant.BuildListener. During the Ant build run the build listener is
called with several callback methods (e.g. buildStarted(), buildFinished(), targetStarted(),
targetFinished(), ...). This is how you can add additional logic to the Ant build run from Citrus. A
custom build listener could manage the fail state of your test case, in particular by raising some
exception forcing the test case to fail accordingly.

XML DSL

<t est case name="Ant RunTest">
<actions>
<ant build-file="classpath: com consol/citrus/actions/build.xm"
bui I d-1i st ener="cust onBui | dLi st ener">
<execute target="sayHello0"/>
<properties file="classpath: com consol/citrus/actions/build.properties"/>
</ ant >
</ actions>
</testcase>

Citrus Framework (2.5.2) 113

Test actions

Java DSL designer

@Aut owi r ed
private Buil dLi stener custonBuil dLi stener;

@Ci trusTest
public void ant RunTest () {
antrun("cl asspat h: com consol /citrus/actions/build.xm")
.target ("sayHel | 0")
.propertyFile("classpath: conf consol/citrus/actions/build. properties")
.l'istener(custonBuil dLi stener);

Java DSL runner

@Aut owi r ed
private Buil dLi stener custonBuil dLi stener;

@i trusTest
public void ant RunTest () {
antrun(action -> action. buil dFil ePath("cl asspath: com consol /citrus/actions/build.xm")
.target ("sayHel | 0")
.propertyFile("classpath: conlf consol/citrus/actions/build. properties")
.l'i stener(custonBuil dLi stener));

The customBuildListener used in the example above should reference a Spring bean in the Citrus
application context. The bean implements the interface org.apache.tools.ant.BuildListener and
controls the Ant build run.

12.23. Start/Stop server instances

Citrus is working with server components that are started and stopped within a test run. This can be a
Http server or some SMTP mail server for instance. Usually the Citrus server components are
automatically started when Citrus is starting and respectively stopped when Citrus is shutting down.
Sometimes it might be helpful to explicitly start and stop a server instance within your test case. Here
you can use special start and stop test actions inside your test. This is a good way to test downtime
scenarios of interface partners with respective error handling when connections to servers are lost

Let me explain with a simple sample test case:

XML DSL

<t est case nane="sl eepTest">
<actions>
<start server="nyMil Server"/>

<sl eep/ >

<stop server="nyMil Server"/>
</ actions>
</testcase>

The start and stop server test action receive a server name which references a Spring bean
component of type com.consol.citrus.server.Server in your basic Spring application context. The
server instance is started or stopped within the test case. As you can see in the next listing we can
also start and stop multiple server instances within a single test action.

<t est case nanme="sl eepTest">
<actions>
<start>
<servers>

Citrus Framework (2.5.2) 114

Test actions

<server nane="nyMail Server"/>
<server nane="nyFtpServer"/>
</ server s>
</start>

<sl eep/ >

<st op>
<servers>
<server nane="nyMail Server"/>
<server nane="nyFtpServer"/>
</ servers>
</ st op>
</ acti ons>
</testcase>

When using the Java DSL the best way to reference a server instance is to autowire the Spring bean
via dependency injection. The Spring framework takes case on injecting the proper Spring bean
component defined in the SPring application context. This way you can easily start and stop server
instances within Java DSL test cases.

Java DSL designer and runner

@\ut ow red
@ualifier("nyFtpServer")
private FtpServer nyFtpServer

@0 trusTest
public void startStopServerTest() {
start (nyFt pServer);

sl eep();

st op(nyFt pServer)

Note

Starting and stopping server instances is a synchronous test action. This means that your
test case is waiting for the server to start before other test actions take place. Startup
times and shut down of server instances may delay your test accordingly.

As you can see starting and stopping Citrus server instances is very easy. You can also write your
own server implementations by implementing the interface com.consol.citrus.server.Server. All
custom server implementations can then be started and stopped during a test case.

12.24. Including custom test actions

Now we have a look at the opportunity to add custom test actions to the test case flow. Let us start
this section with an example:

XML DSL

<t est case nanme="Acti onRef erenceTest">
<acti ons>
<action reference="cl eanUpDat abase"/ >
<action reference="nySpeci al Acti on"/>
</ actions>
</testcase>

The generic <action> element references Spring beans that implement the Java interface

Citrus Framework (2.5.2) 115

Test actions

com consol . ci trus. Test Acti on. This is a very fast way to add your own action implementations to a
Citrus test case. This way you can easily implement your own actions in Java and include them into
the test case.

In the example above the called actions are special database cleanup implementations. The actions
are defined as Spring beans in the Citrus configuration and get referenced by their bean name or id.

<bean i d="cl eanUpDat abase" cl ass="my. domai n.citrus. actions. Speci al Dat abaseCl eanupActi on">
<property nanme="dat aSource" ref="testDataSource"/>
</ bean>

The Spring application context holds your custom bean implementations. You can set properties and
use the full Spring power while implementing your custom test action in Java. Let us have a look on
how such a Java class may look like.

i nport com consol . citrus. acti ons. Abstract Test Acti on;
i mport com consol . citrus. context. Test Cont ext;

public class Speci al Dat abaseCl eanupActi on extends Abstract Test Action {

@\t owi r ed
private DataSource dataSource;

@verride
public void doExecut e(Test Cont ext context) {
JdbcTenpl ate j dbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;

j dbcTenpl at e. execute("...");

All you need to do in your Java class is to implement the Citrus com consol . citrus. Test Acti on
interface. The abstract class com consol . ci trus. acti ons. Abstract Test Acti on may help you to start
with your custom test action implementation as it provides basic method implementations so you just
have to implement the doExecut e() method.

When using the Java test case DSL you are also quite comfortable with including your custom test
actions.

Java DSL designer and runner

@\ut ow red
private Speci al Dat abaseC eanupActi on cl eanUpDat abaseAct i on;

@0 trusTest
public void genericActionTest() {
echo("Now | et's include our special test action");

acti on(cl eanUpDat abaseActi on);

echo("That's it!");

Using anonymous class implementations is also possible.

Java DSL designer and runner

@ci trusTest
public void genericActionTest() {
echo("Now let's call our special test action anonynously");

action(new Abstract Test Action() {
public voi d doExecut e(Test Cont ext context) {
/1 do sonething
}

Citrus Framework (2.5.2) 116

Test actions

56

echo("That's it!");

12.25. Stop Timer

The <stop-timer> action can be used for stopping either a specific timer (Section 14.7, “Timer”) or all
timers running within a test. This action is useful when timers are started in the background (using
parallel or fork=true) and you wish to stop these timers at the end of the test. Some examples of
using this action are provided below:

XML DSL
<t estcase nanme="ti ner Test">
<acti ons>
<timer id="forkedTinmer" fork="true">
<sleep nmilliseconds="50" />
</tinmer>

<timer fork="true">
<sleep m|liseconds="50" />
</tinmer>

<tinmer repeatCount="5">
<sleep mlliseconds="50" />
</tiner>

<stop-tiner tinmerld="forkedTinmer" />
</ acti ons>
<finally>
<stop-tiner />
</finally>
</testcase>

Java DSL designer and runner

@@ trusTest
public void timerTest() {

timer()
.timerld("forkedTimer")
.fork(true)

.actions(sl eep(50L)

)

tinmer()

.fork(true)
.actions(sl eep(50L)
DE

tinmer()
. repeat Count (5)
.actions(sleep(50L));

st opTi mer (" f orkedTi ner")

doFi nal ly().actions(
st opTi ner ()

)i
}

In the above example 3 timers are started, the first 2 in the background and the third in the test
execution thread. Timer #3 has a repeatCount set to 5 so it will terminate automatically after 5 runs.
Timer #1 and #2 however have no repeatCount set so they will execute until they are told to stop.

Timer #1 is stopped explicitly using the first stopTimer action. Here the stopTimer action includes the

Citrus Framework (2.5.2) 117

Test actions

name of the timer to stop. This is convenient when you wish to terminate a specific timer. However
since no timerld was set for timer #2, you can terminate this (and all other timers) using the
'stopTimer' action with no explicit timerld set.

Citrus Framework (2.5.2) 118

Chapter 13. Templates

Templates group action sequences to a logical unit. You can think of templates as reusable
components that are used in several tests. The maintenance is much more effective because the

templates are referenced several times.

The template always has a unique name. Inside a test case we call the template by this unique

name. Have a look at a first example:

<t enpl at e name="doCr eat eVari abl es" >
<create-vari abl es>
<vari abl e name="var" val ue="123456789"/ >
</ create-vari abl es>

<cal | -tenpl ate name="doTraceVari abl es"/>
</tenpl at e>

<tenpl at e nanme="doTraceVari abl es" >
<echo>
<nessage>Current time is: ${tine}</ nessage>
</ echo>

<trace-vari abl es/ >
</tenpl at e>

The code example above describes two template definitions. Templates hold a sequence of test

actions or call other templates themselves as seen in the example above.

Note

The <call-template> action calls other templates by their name. The called template not
necessarily has to be located in the same test case XML file. The template might be

defined in a separate XML file other than the test case itself:

XML DSL

<t est case nane="tenpl at eTest" >
<vari abl es>
<variabl e name="nyTi ne" val ue="citrus:currentDate()"/>
</vari abl es>
<acti ons>
<cal | -tenpl at e name="doCr eat eVari abl es"/ >

<cal | -tenpl at e nanme="doTr aceVari abl es" >
<par amet er nane="tinme" val ue="${nyTi me}">
</call-tenpl at e>
</ actions>
</testcase>

Java DSL designer

@Ci trusTest
public void tenplateTest() {
variabl e("nyTine", "citrus:currentDate()");

appl yTenpl at e(" doCr eat eVari abl es") ;

appl yTenpl at e("doTraceVari abl es")
.paraneter (“tinme", "${nyTine}");

Java DSL runner

Citrus Framework (2.5.2)

119

Templates

@i trusTest
public void tenplateTest() {
variabl e("nyTine", "citrus:currentDate()");

appl yTenpl ate(tenpl ate -> tenpl ate. name("doCr eat eVari abl es"));

appl yTenpl ate(tenpl ate -> tenpl ate. name("doTr aceVari abl es")
.paranmeter("time", "${nyTine}"));

There is an open question when dealing with templates that are defined somewhere else outside the
test case. How to handle variables? A templates may use different variable names then the test and
vice versa. No doubt the template will fail as soon as special variables with respective values are not
present. Unknown variables cause the template and the whole test to fail with errors.

So a first approach would be to harmonize variable usage across templates and test cases, so that
templates and test cases do use the same variable naming. But this approach might lead to high
calibration effort. Therefore templates support parameters to solve this problem. When a template is
called the calling actor is able to set some parameters. Let us discuss an example for this issue.

The template "doDateCoversion" in the next sample uses the variable ${date}. The calling test case
can set this variable as a parameter without actually declaring the variable in the test itself:

<cal | -tenpl at e name="doDat eCover si on" >
<par anet er nane="date" val ue="${sanpl eDat e}">
</call-tenpl ate>

The variable sampleDate is already present in the test case and gets translated into the date
parameter. Following from that the template works fine although test and template do work on
different variable namings.

With template parameters you are able to solve the calibration effort when working with templates
and variables. It is always a good idea to check the used variables/parameters inside a template
when calling it. There might be a variable that is not declared yet inside your test. So you need to
define this value as a parameter.

Template parameters may contain more complex values like XML fragments. The call-template
action offers following CDATA variation for defining complex parameter values:

<cal | -tenpl at e name="pri nt XM_Pay| oad" >
<par anet er nanme="payl oad" >
<val ue>
<! [CDATA[
<Hel | oRequest xm ns="http://ww. consol . de/ schemas/ sanpl es/ sayHel | 0. xsd" >
<Text>Hel | o South ${var}</ Text>
</ Hel | oRequest >

11>
</ val ue>
</ par anet er >
</call-tenpl ate>

Important

When a template works on variable values and parameters changes to these variables will
automatically affect the variables in the whole test. So if you change a variable's value
inside a template and the variable is defined inside the test case the changes will affect
the variable in a global context. We have to be careful with this when executing a template
several times in a test, especially in combination with parallel containers (see
Section 14.3, “Parallel”).

Citrus Framework (2.5.2) 120

Templates

<paral | el >
<cal | -tenpl ate name="print">
<par anet er name="paranml" val ue="1"/>
<par anet er name="paranR" val ue="Hel | o Europe"/>
</call-tenpl ate>
<cal | -tenpl ate name="print">
<par anet er name="paranml" val ue="2"/>
<par amet er name="paranR" val ue="Hello Asia"/>
</call-tenpl at e>
<cal | -tenpl ate name="print">
<par anet er name="paranl" val ue="3"/>
<par anet er name="paranR" val ue="Hello Africa"/>
</call-tenpl at e>
</ parallel>

In the listing above a template print is called several times in a parallel container. The
parameter values will be handled in a global context, so it is quite likely to happen that the
template instances influence each other during execution. We might get such print
messages:

2. Hello Europe
2. Hello Africa
3. Hello Africa

Index parameters do not fit and the message 'Hello Asia' is completely gone. This is
because templates overwrite parameters to each other as they are executed in parallel at
the same time. To avoid this behavior we need to tell the template that it should handle
parameters as well as variables in a local context. This will enforce that each template
instance is working on a dedicated local context. See the global-context attribute that is
set to false in this example:

<tenpl ate name="print" gl obal -context="fal se">
<echo>
<nessage>${ par aml}. ${ par an} </ nessage>
</ echo>
</ tenpl at e>

After that template instances won't influence each other anymore. But notice that variable
changes inside the template then do not affect the test case neither.

Citrus Framework (2.5.2) 121

Chapter 14. Containers

Similar to templates a container element holds one to many test actions. In contrast to the template
the container appears directly inside the test case action chain, meaning that the container is not
referenced by more than one test case.

Containers execute the embedded test actions in specific logic. This can be an execution in iteration
for instance. Combine different containers with each other and you will be able to generate very
powerful hierarchical structures in order to create a complex execution logic. In the following sections
some predefined containers are described.

14.1. Sequential

The sequential container executes the embedded test actions in strict sequence. Readers now might
search for the difference to the normal action chain that is specified inside the test case. The actual
power of sequential containers does show only in combination with other containers like iterations
and parallels. We will see this later when handling these containers.

For now the sequential container seems not very sensational - one might say boring - because it
simply groups a pair of test actions to sequential execution.

XML DSL

<t est case name="sequenti al Test">
<actions>
<sequenti al >
<trace-time/>
<sl eep/ >
<echo>
<nessage>Hal | o Test Fr amewor k</ nessage>
</ echo>
<trace-tinme/>
</ sequenti al >
</ actions>
</testcase>

Java DSL designer and runner

@i t rusTest
public void sequential Test() {
sequenti al ()
.actions(
st opTi ne(),
sl eep(1.0),
echo("Hello Citrus"),
st opTi ne()

14.2. Conditional

Now we deal with conditional executions of test actions. Nested actions inside a conditional container
are executed only in case a booleand expression evaluates to true. Otherwise the container
execution is not performed at all.

See some example to find out how it works with the conditional expression string.

Citrus Framework (2.5.2) 122

Containers

XML DSL

<t est case nanme="conditional Test">
<vari abl es>
<vari abl e name="i ndex" val ue="5"/>
<vari abl e nanme="shoul dSl eep" val ue="true"/>
</vari abl es>

<acti ons>
<condi ti onal expression="${i ndex} = 5">
<sl eep seconds="10"/>
</ condi tional >

<condi ti onal expressi on="%{shoul dS| eep}">
<sl eep seconds="10"/>
</ condi tional >
</ actions>
</testcase>

Java DSL designer and runner

@oi trusTest

public void conditional Test() {
vari abl e("i ndex", 5);
vari abl e("shoul dSl eep", true)

condi tional ().when("${index} = 5"))
.actions(
sl eep(10000L)
DE

condi tional ().when("${shoul dSl eep}"))
.actions(
sl eep(10000L)

The nested sleep action is executed in case the variable ${index} is equal to the value '5'. This
conditional execution of test actions is useful when dealing with different test environments such as
different operating systems for instance. The conditional container also supports expressions that
evaluate to the character sequence "true" or "false" as shown in the ${shouldSleep} example.

14.3. Parallel

Parallel containers execute the embedded test actions concurrent to each other. Every action in this
container will be executed in a separate Java Thread. Following example should clarify the usage:

XML DSL

<t est case nanme="parall el Test">
<actions>
<paral | el >
<sl eep/ >

<sequenti al >
<sl eep/ >
<echo>
<nessage>1</ nessage>
</ echo>
</ sequenti al >

<echo>
<nessage>2</ message>
</ echo>

<echo>
<nessage>3</ nessage>
</ echo>

Citrus Framework (2.5.2) 123

Containers

<iterate condition="i It= 5"
i ndex="i">
<echo>
<nessage>10</ nessage>
</ echo>

</iterate>
</ parallel>
</ actions>
</testcase>

Java DSL designer and runner

@z trusTest
public void paralletTest() {
paral l el ().actions(
sl eep(),
sequential (). actions(
sl eep(),
echo("1")

).
echo("2")
echo("3")
iterate().condition("i It= 5").index("i"))
.actions(
echo("10")
)

So the normal test action processing would be to execute one action after another. As the first action
is a sleep of five seconds, the whole test processing would stop and wait for 5 seconds. Things are
different inside the parallel container. Here the descending test actions will not wait but execute at the
same time.

Note

Note that containers can easily wrap other containers. The example shows a simple
combination of sequential and parallel containers that will archive a complex execution
logic. Actions inside the sequential container will execute one after another. But actions in
parallel will be executed at the same time.

14.4. Iterate

Iterations are very powerful elements when describing complex logic. The container executes the
embedded actions several times. The container will continue with looping as long as the defined
breaking condition string evaluates to true. In case the condition evaluates to f al se the iteration will
break an finish execution.

XML DSL
<t estcase nane="iterateTest">
<acti ons>
<iterate index="i" condition="i |t 5">
<echo>
<nessage>i ndex is: ${i}</nessage>
</ echo>

</iterate>
</ actions>
</testcase>

Java DSL designer and runner

Citrus Framework (2.5.2) 124

Containers

@i trusTest
public void iterateTest() {
iterate().condition("i It 5").index("i"))
.actions(

echo("index is: ${i}")
)i

The attribute "index" automatically defines a new variable that holds the actual loop index starting at
"1". This index variable is available as a normal variable inside the iterate container. Therefore it is
possible to print out the actual loop index in the echo action as shown in the above example.

The condition string is mandatory and describes the actual end of the loop. In iterate containers the
loop will break in case the condition evaluates to f al se.

The condition string can be any Boolean expression and supports several operators:

* It (lower than)

 It= (lower than equals)

e gt (greater than)

« gt= (greater than equals)

* = (equals)

» and (logical combining of two Boolean values)
« or (logical combining of two Boolean values)

¢ () (brackets)

Important

It is very important to notice that the condition is evaluated before the very first iteration
takes place. The loop therefore can be executed 0-n times according to the condition
value.

14.5. Repeat until true

Quite similar to the previously described iterate container this repeating container will execute its
actions in a loop according to an ending condition. The condition describes a Boolean expression
using the operators as described in the previous chapter.

Note

The loop continues its work until the provided condition evaluates to true. It is very
important to notice that the repeat loop will execute the actions before evaluating the
condition. This means the actions get executed 1-n times.

XML DSL

Citrus Framework (2.5.2) 125

Containers

<t estcase nane="iterateTest">

<actions>
<repeat-until-true index="i" condition="(i = 3) or (i = 5)">
<echo>
<nessage>i ndex is: ${i}</nessage>
</ echo>

</repeat-until-true>
</ actions>
</testcase>

Java DSL designer and runner

@0 trusTest
public void repeatTest() {
repeat().until ("(i gt 5) or (i = 3)").index("i"))
.actions(
echo("index is: ${i}")

DB

14.6. Repeat on error until true

The next looping container is called repeat-on-error-until-true. This container repeats a group of
actions in case one embedded action failed with error. In case of an error inside the container the
loop will try to execute all embedded actions again in order to seek for overall success. The
execution continues until all embedded actions were processed successfully or the ending condition
evaluates to true and the error-loop will lead to final failure.

XML DSL

<testcase nanme="iterateTest">
<actions>
<repeat-onerror-until-true index="i" condition="i = 5">
<echo>
<nessage>i ndex is: ${i}</nmessage>
</ echo>
<fail/>
</repeat-onerror-until-true>
</ actions>
</testcase>

Java DSL designer

@0 trusTest
public void repeat OnErrorTest() {
repeat OnError (
echo("index is: ${i}"),
fail ("Force loop to fail!")
).until ("i = 5").index("i");

Java DSL runner

@0 trusTest
public void repeat OnErrorTest() {
repeat OnError (). until ("i = 5").index("i"))
.actions(
echo("index is: ${i}"),
fail ("Force loop to fail!")
DE
}

In the code example the error-loop continues four times as the <fail> action definitely fails the test.

Citrus Framework (2.5.2) 126

Containers

During the fifth iteration The condition "i=5" evaluates to true and the loop breaks its processing
leading to a final failure as the test actions were not successful.

Note

The overall success of the test case depends on the error situation inside the
repeat-onerror-until-true container. In case the loop breaks because of failing actions and
the loop will discontinue its work the whole test case is failing too. The error loop
processing is successful in case all embedded actions were not raising any errors during
an iteration.

The repeat-on-error container also offers an automatic sleep mechanism. This auto-sleep property
will force the container to wait a given amount of time before executing the next iteration. We used
this mechanism a lot when validating database entries. Let's say we want to check the existence of
an order entry in the database. Unfortunately the system under test is not very well performing and
may need some time to store the new order. This amount of time is not predictable, especially when
dealing with different hardware on our test environments (local testing vs. server testing). Following
from that our test case may fail unpredictable only because of runtime conditions.

We can avoid unstable test cases that are based on these runtime conditions with the auto-sleep
functionality.

XML DSL

<repeat-onerror-until-true auto-sleep="1000" condition="i = 5" index="i">
<echo>
<sql datasource="t est Dat aSour ce">
<st at ement >
SELECT COUNT(1) AS CNT_ORDERS
FROM ORDERS
WHERE CUSTOMER | D=' ${ cust oner | d}'
</ st at enent >
<val i dat e col unmm="CNT_ORDERS" val ue="1"/>
</ sql >
</ echo>
</repeat-onerror-until-true>

Java DSL designer and runner

@@ trusTest
public void repeat OnErrorTest() {
repeat OnError (). until ("i = 5").index("i").autoSl eep(1000))
.actions(
query(action -> action. dat aSource(test Dat aSour ce)
.statement ("SELECT COUNT(1) AS CNT_ORDERS FROM ORDERS WHERE CUSTOMER | D=' ${custoner|d}'")
.val i dat e(" CNT_ORDERS", "1"))

We surrounded the database check with a repeat-onerror container having the auto-sleep property
set to 1000 milliseconds. The repeat container will try to check the database up to five times with an
automatic sleep of 1 second before every iteration. This gives the system under test up to five
seconds time to store the new entry to the database. The test case is very stable and just fits to the
hardware environment. On slow test environments the test may need several iterations to
successfully read the database entry. On very fast environments the test may succeed right on the
first try.

Important

Citrus Framework (2.5.2) 127

Containers

We changed auto sleep time from seconds to milliseconds with Citrus 2.0 release. So if
you are coming from previous Citrus versions be sure to now use proper millisecond
values.

So fast environments are not slowed down by static sleep operations and slower environments are
still able to execute this test case with high stability.

14.7. Timer

Timers are very useful containers when you wish to execute a collection of test actions several times
at regular intervals. The timer component generates an event which in turn triggers the execution of
the nested test actions associated with timer. This can be useful in a number of test scenarios for
example when Citrus needs to simulate a heart beat or if you are debugging a test and you wist to
query the contents of the database, to mention just a few. The following code sample should
demonstrate the power and flexibility of timers:

XML DSL

<t estcase nanme="ti nmerTest">
<acti ons>
<tiner id="forkedTiner" interval="100" fork="true">

<echo>
<nessage>l'mgoing to run in the background and | et sone other test actions run (nested action run ${for
</ echo>
<sleep mlliseconds="50" />
</tiner>

<tinmer repeat Count="3" interval ="100" del ay="50">
<sleep mlliseconds="50" />
<echo>
<nessage>l'mgoing to repeat this nessage 3 tinmes before the next test actions are executed</nessage>
</ echo>
</tinmer>

<echo>
<nessage>Test al nost conplete. Make sure all tiners running in the background are stopped</nessage>
</ echo>
</ actions>
<finally>
<stop-tinmer tinmerld="forkedTinmer" />
</finally>
</t estcase>

Java DSL designer and runner

@z trusTest
public void tinmerTest() {

tinmer()
Ltimerld("forkedTi mer")
.interval (100L)
.fork(true)

.actions(
echo("l1'mgoing to run in the background and | et some other test actions run (nested action run ${forked
sl eep(50L)

)

tinmer()
. repeat Count (3)
.interval (100L)
. del ay(50L)
.actions(
sl eep(50L)
echo("l"mgoing to repeat this nessage 3 tines before the next test actions are executed")

Citrus Framework (2.5.2) 128

Containers

echo("Test al nost conplete. Make sure all tiners running in the background are stopped");

doFi nal ly().actions(
st opTi ner (" f orkedTi ner")
)

In the above example the first timer (timerld = forkedTimer) is started in the background. By default
timers are run in the current thread of execution but to start it in the background just use "fork=true".
Every 100 milliseconds this timer emits an event which will result in the nested actions being
executed. The nested 'echo’ action outputs the number of times this timer has already been
executed. It does this with the help of an 'index' variable, in this example ${forkedTimer-index}, which
is named according to the timer id with the suffix -index'. No limit is set on the number of times this
timer should run so it will keep on running until either a nested test action fails or it is instructed to
stop (more on this below).

The second timer is configured to run 3 times with a delay of 100 milliseconds between each
iteration. Using the attribute 'delay' we can get the timer pause for 50 milliseconds before running the
nested actions for the first time. The timer is configured to run in the current thread of execution so
the last test action, the 'echo’, has to wait for this timer to complete before it is executed.

So how do we tell the forked timer to stop running? If we forget to do this the timer will just execute
indefinitely. To help us out here we can use the 'stop-timer' action. By adding this to the finally block
we ensure that the timer will be stopped, even if some nested test action fails. We could have easily
added it as a nested test action, to the forkedTimer for example, but if some other test action failed
before the stop-timer was called, the timer would never stop.

Note

You can also configure timers to run in the background using the 'parallel' container,
rather than setting the attribute ‘fork' to true. Using parallel allows more fine-grained
control of the test and has the added advantage that all errors generated from a nester
timer action are visible to the test executer. If an error occurs within the timer then the test
status is set to failed. Using fork=true an error causes the timer to stop executing, but the
test status is not influenced by this error.

Citrus Framework (2.5.2) 129

Chapter 15. Finally section

This chapter deals with a special section inside the test case that is executed even in case errors did
occur during the test. Lets say you have started a Jetty web server instance at the beginning of the
test case and you need to shutdown the server when the test has finished its work. Or as a second
example imagine that you have prepared some data inside the database at the beginning of your test
and you want to make sure that the data is cleaned up at the end of the test case.

In both situations we might run into some problems when the test failed. We face the problem that
the whole test case will terminate immediately in case of errors. Cleanup tasks at the end of the test
action chain may not be executed correctly.

Dirty states inside the database or still running server instances then might cause problems for
following test cases. To avoid this problems you should use the finally block of the test case. The
<finally> section contains actions that are executed even in case the test fails. Using this strategy the
database cleaning tasks mentioned before will find execution in every case (success or failure).

The following example shows how to use the finally section at the end of a test:

XML DSL

<testcase nanme="finallyTest">
<vari abl es>
<vari abl e nanme="orderld" val ue="citrus:random\unber (5)"/>
<vari abl e name="date" val ue="citrus:currentDate('dd. MM yyyy')"/>
</vari abl es>
<acti ons>
<sgl datasource="t est Dat aSource">
<st at ement >
| NSERT | NTO ORDERS VALUES (${orderld}, 1, 1, '${date}')
</ st at ement >
</ sql >

<echo>
<nessage>
ORDER creation time: ${date}
</ nessage>
</ echo>
</ actions>
<finally>
<sql datasource="t est Dat aSource">
<st at ement >
DELETE FROM ORDERS WHERE ORDER | D=' ${ order|d}"
</ st at enent >
</ sql >
</finally>
</t estcase>

In the example the first action creates an entry in the database using an | NSERT statement. To be
sure that the entry in the database is deleted after the test, the finally section contains the respective
DELETE statement that is always executed regardless the test case state (successful or failed).

Of course you can also use the finally block in the Java test case DSL. Find following example to see
how it works:

Java DSL designer

@i t rusTest

public void finallySectionTest() {
variabl e("orderld", "citrus:randomunber(5)");
variabl e("date", "citrus:currentDate('dd. WM yyyy')");

sql (dat aSour ce)
.statement ("1 NSERT | NTO ORDERS VALUES (${orderld}, 1, 1, '${date}')");

Citrus Framework (2.5.2) 130

Finally section

echo("ORDER creation tine: citrus:currentDate('dd. M yyyy')");

doFi nal | y(
sql (dat aSour ce) . st at ement (" DELETE FROM ORDERS WHERE ORDER | D=' ${order|d}'")
)

Java DSL runner

@z trusTest
public void finallySectionTest() {
variabl e("orderld", "citrus:random\unber(5)");
vari abl e("date", "citrus:currentDate('dd. MM yyyy')");

sql (action -> action. dat aSour ce(dat aSour ce)
.statenment ("1 NSERT | NTO ORDERS VALUES (${orderld}, 1, 1, '${date}')"));

echo("ORDER creation tine: citrus:currentDate('dd. M yyyy')");

doFi nal 1'y()
.actions(
sqgl (action -> action. dat aSour ce(dat aSour ce) . st at ement (" DELETE FROM ORDERS WHERE ORDER | D=" ${orderld}' "))

)

Note

Java developers might ask why not use try-finally Java block instead? The answer is
simple yet very important to understand. The @CitrusTest annotated method is called at
design time of the test case. The method builds the test case afterwards the test is
executed at runtime. This means that a try-finally block within the @CitrusTest annotated
method will never perform during the test run but at design time before the test gets
executed. This is why we have to add the finally section as part of the test case with
doFinally().

Citrus Framework (2.5.2) 131

Chapter 16. JMS support

Citrus provides support for sending and receiving JMS messages. We have to separate between
synchronous and asynchronous communication. So in this chapter we explain how to setup JMS
message endpoints for synchronous and asynchronous outbound and inbound communication

Note

The JMS components in Citrus are kept in a separate Maven module. If not already done
so you have to include the module as Maven dependency to your project

<dependency>
<gr oupl d>com consol . ci t rus</ groupl d>
<artifactld>citrus-jnms</artifactld>
<versi on>2. 5. 2</ ver si on>

</ dependency>

Citrus provides a "citrus-jms" configuration namespace and schema definition for JMS
related components and features. Include this namespace into your Spring configuration
in order to use the Citrus JMS configuration elements. The namespace URI and schema
location are added to the Spring configuration XML file as follows.

<beans xm ns="http://wwm. spri ngframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xmns:citrus-jms="http://ww. citrusframework. org/schema/jns/config"
xsi : schenalLocati on="
http://wwm. springframewor k. or g/ schema/ beans
http://wwm. spri ngframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://wwm. citrusframework. org/ schema/j ns/ config
http://ww. citrusfranework. org/ schena/jnms/ config/citrus-jns-config.xsd">

[-..]

</ beans>

After that you are able to use customized Citrus XML elements in order to define the
Spring beans.

16.1. JMS endpoints

By default Citrus JMS endpoints are asynchronous. So let us first of all deal with asynchronous
messaging which means that we will not wait for any response message after sending or receiving a
message.

The test case itself should not know about JMS transport details like queue names or connection
credentials. This information is stored in the endpoint component configuration that lives in the basic
Spring configuration file in Citrus. So let us have a look at a simple JMS message endpoint
configuration in Citrus.

<citrus-j ms: endpoi nt id="hel |l oServi ceQueueEndpoi nt"
destination-nanme="Ci trus. Hel | oServi ce. Request . Queue"
ti meout =" 10000"/ >

The endpoint component receives an unique id and a JMS destination name. This can be a queue or
topic destination. We will deal with JMS topics later on. For now the timeout setting completes our

Citrus Framework (2.5.2) 132

JMS support

first IMS endpoint component definition.

The endpoint needs a JMS connection factory for connecting to a JMS message broker. The
connection factory is also added as Spring bean to the Citrus Spring application context.

<bean i d="connecti onFactory"
cl ass="org. apache. acti veng. Acti veMQConnect i onFact ory" >
<property nanme="broker URL" val ue="tcp://Iocal host:61616" />
</ bean>

The JMS connection factory receives the JMS message broker URL and is able to hold many other
connection specific options. In this example we use the Apache ActiveMQ connection factory
implementation as we want to use the ActiveMQ message broker. Citrus works by default with a
bean id connectionFactory. All Citrus JMS component will automatically recognize this connection
factory.

Tip

Spring makes it very easy to connect to other JMS broker implementations too (e.g.
Apache ActiveMQ, TIBCO Enterprise Messaging Service, IBM Websphere MQ). Just add
the required connection factory implementation as connectionFactory bean.

Note

All of the Citrus JMS endpoint components will automatically look for a bean named
connectionFactory by default. You can use the connection-factory endpoint attribute in
order to use another connection factory instance with different bean names.

<citrus-j ms: endpoi nt id="hell oServi ceQueueEndpoi nt"
destination-nanme="Ci trus. Hel | oServi ce. Request . Queue"
connect i on-factory="nyConnecti onFacotry"/>

As an alternative to that you may want to use a special Spring jms template
implementation as custom bean in your endpoint.

<citrus-jns: endpoi nt id="hell oServi ceQueueEndpoi nt"
desti nation-nane="Ci trus. Hel | oServi ce. Request . Queue"
j ms-tenpl at e="nyJmsTenpl ate"/ >

The endpoint is now ready to be used inside a test case. Inside a test case you can send or receive
messages using this endpoint. The test actions can reference the JMS endpoint using its identifier.
When sending a message the message endpoint creates a JMS message producer and will simply
publish the message to the defined JMS destination. As the communication is asynchronous by
default producer does not wait for a synchronous response.

When receiving a messages with this endpoint the endpoint creates a JMS consumer on the JMS
destination. The endpoint then acts as a message driven listener. This means that the message
consumer connects to the given destination and waits for messages to arrive.

Note

Besides the destination-name attribute you can also provide a reference to a destination
implementation.

Citrus Framework (2.5.2) 133

JMS support

<citrus-jns: endpoi nt id="hell oServi ceQueueEndpoi nt"
destinati on="hel | oServi ceQueue"/>

<ang: queue i d="hel | oServi ceQueue" physi cal Nane="Ci trus. Hel | oServi ce. Request. Queue"/ >

The destination attribute references to a JMS destination object in the Spring application
context. In the example above we used the ActiveMQ queue destination component. The
destination reference can also refer to a JNDI lookup for instance.

16.2. JMS synchronous endpoints

When using synchronous message endpoints Citrus will manage a reply destination for receiving a
synchronous response message on the reply destination. The following figure illustrates that we now
have two destinations in our communication scenario.

The synchronous message endpoint component is similar to the asynchronous brother that we have
discussed before. The only difference is that the endpoint will automatically manage a reply
destination behind the scenes. By default Citrus uses temporary reply destinations that get
automatically deleted after the communication handshake is done. Again we need to use a JMS
connection factory in the Spring XML configuration as the component need to connect to a JMS
message broker.

<citrus-jns:sync-endpoi nt i d="hel | oServi ceSyncEndpoi nt"
desti nation-nane="Ci trus. Hel | oServi ce. | nQut. Queue"
ti neout =" 10000"/ >

The synchronous component defines a target destination which again is either a queue or topic
destination. If nothing else is defined the endpoint will create temporary reply destinations on its own.
When the endpoint has sent a message it waits synchronously for the response message to arrive on
the reply destination. You can receive this reply message in your test case by referencing this same
endooint in a receive test action. In case no reply message arrives in time a message timeout error is
raised respectively.

See the following example test case which references the synchronous message endpoint in its send
and receive test action in order to send out a message and wait for the synchronous response.

<t est case name="synchr onousMessagi ngTest" >
<actions>
<send endpoi nt ="hel | oSer vi ceSyncEndpoi nt" >
<nessage>
<dat a>
[...]
</ dat a>
</ message>
</ send>

<recei ve endpoi nt ="hel | oServi ceSyncEndpoi nt ">
<nessage>
<dat a>
[...]
</ dat a>
</ nessage>
</receive>
</ actions>
</testcase>

We initiated the synchronous communication by sending a message on the synchronous endpoint.

Citrus Framework (2.5.2) 134

JMS support

The second step then receives the synchronous message on the temporary reply destination that
was automatically created for us.

If you rather want to define a static reply destination you can do so, too. The static reply destination is
not deleted after communication handshake. You may need to work with message selectors then in
order to pick the right response message that belongs to a specific communication handshake. You
can define a static reply destination on the synchronous endpoint component as follows.

<citrus-jns:sync-endpoint id="hell oServi ceSyncEndpoi nt"
desti nation-nane="Ci trus. Hel | oServi ce. | nQut. Queue"
reply-destination-name="Citrus. Hel | oServi ce. Repl y. Queue"
ti meout ="10000"/ >

Instead of using the reply-destination-name feel free to use the destination reference with
reply-destination attribute. Again you can use a JNDI lookup then to reference a destination object.

Important

Be aware of permissions that are mandatory for creating temporary destinations. Citrus
tries to create temporary queues on the JMS message broker. Following from that the
Citrus JMS user has to have the permission to do so. Be sure that the user has the
sufficient rights when using temporary reply destinations.

Up to now we have sent a message and waited for a synchronous response in the next step. Now it
is also possible to switch the directions of send and receive actions. Then we have the situation
where Citrus receives a JMS message first and then Citrus is in charge of providing a proper
synchronous response message to the initial sender.

In this scenario the foreign message producer has stored a dynamic JMS reply queue destination to
the JMS header. So Citrus has to send the reply message to this specific reply destination, which is
dynamic of course. Fortunately the heavy lift is done with the JMS message endpoint and we do not
have to change anything in our configuration. Again we just define a synchronous message endpoint
in the application context.

<ci trus-jns:sync-endpoi nt id="hell oServi ceSyncEndpoi nt"
destinati on-nane="Citrus. Hel | oServi ce. | nQut. Queue"
ti meout ="10000"/ >

Now the only thing that changes here is that we first receive a message in our test case on this
endpoint. The second step is a send message action that references this same endpoint and we are
done. Citrus automatically manages the reply destinations for us.

<t est case name="synchronousMessagi ngTest" >
<actions>
<recei ve endpoi nt ="hel | oServi ceSyncEndpoi nt ">
<nessage>
<dat a>
[...]
</ dat a>
</ message>
</receive>

<send endpoi nt ="hel | oSer vi ceSyncEndpoi nt" >
<nessage>
<dat a>
[...]
</ dat a>
</ nessage>
</ send>
</ actions>

Citrus Framework (2.5.2) 135

JMS support

</testcase>

16.3. JMS topics

Up to now we have used JMS queue destinations on our endpoints. Citrus is also able to connect to
JMS topic destinations. In contrary to JMS queues which represents the point-to-point
communication JMS topics use publish-subscribe mechanism in order to spread messages over
JMS. A JMS topic producer publishes messages to the topic, while the topic accepts multiple
message subscriptions and delivers the message to all subscribers.

The Citrus JMS endpoints offer the attribute ‘pub-sub-domain’. Once this attribute is set to true Citrus
will use JMS topics instead of queue destinations. See the following example where the
publish-subscribe attribute is set to true in JIMS message endpoint components.

<ci trus-jns: endpoi nt id="hell oServi ceQueueEndpoi nt"
desti nati on="hel | oSer vi ceQueue"
pub- sub- domai n="true"/>

When using JMS topics you will be able to subscribe several test actions to the topic destination and
receive a message multiple times as all subscribers will receive the message.

Important

It is very important to keep in mind that Citrus does not deal with durable subscribers. This
means that messages that were sent in advance to the message subscription are not
delivered to the message endpoint. So racing conditions may cause problems when using
JMS topic endpoints in Citrus. Be sure to let Citrus subscribe to the topic before
messages are sent to it. Otherwise you may loose some messages that were sent in
advance to the subscription.

16.4. JIMS message headers

The JMS specification defines a set of special message header entries that can go into your JMS
message. These JMS headers are stored differently in a JMS message header than other custom
header entries do. Therefore these special header values should be set in a special syntax that we
discuss in the next paragraphs.

<header >
<el ement nanme="citrus_jnms_correl ationld" value="${correlationld}"/>
<el ement nane="citrus_j ms_nessagel d* val ue="${nmessagel d}"/>
<el enent name="citrus_jns_redelivered" value="${redelivered}"/>
<el ement nane="citrus_jns_tinestanp" val ue="${ti nestanp}"/>
</ header >

As you see all IMS specific message headers use the citrus_jms_ prefix. This prefix comes from
Spring Integration message header mappers that take care of setting those headers in the JMS
message header properly.

Typing of message header entries may also be of interest in order to meet the JMS standards of
typed message headers. For instance the following message header is of type double and is
therefore transferred via JMS as a double value.

Citrus Framework (2.5.2) 136

JMS support

<header >
<el ement nane="anount" val ue="19. 75" type="double"/>

</ header >

16.5. SOAP over JMS

When sending SOAP messages you have to deal with proper envelope, body and header
construction. In Citrus you can add a special message converter that performs the heavy lift for you.
Just add the message converter to the JMS endpoint as shown in the next program listing:

<citrus-jns: endpoi nt id="hell oServi ceSoapJnsEndpoi nt"
destination-name="Ci trus. Hel | oServi ce. Request . Queue"
message- convert er =" soapJnsMessageConverter"/>

<bean id="soapJnmsMessageConverter" class="com consol.citrus.jns.message. SoapJnsMessageConverter"/>

With this message converter you can skip the SOAP envelope completely in your test case. You just
deal with the message body payload and the header entries. The rest is done by the message
converter. So you get proper SOAP messages on the producer and consumer side.

Citrus Framework (2.5.2) 137

Chapter 17. HTTP REST support

REST APIs have gained more and more significance regarding client-server interfaces. The REST
client is nothing but a HTTP client sending HTTP requests usually in JSON data format to a HTTP
server. As HTTP is a synchronous protocol by nature the client receives the server response
synchronously. Citrus is able to connect with HTTP services and test REST APIs on both client and
server side with a powerful JSON message data support. In the next sections you will learn how to
invoke HTTP services as a client and how to handle REST HTTP requests in a test case. We deal
with setting up a HTTP server in order to accept client requests and provide proper HTTP responses
with GET, PUT, DELETE or POST request method.

Note

The http components in Citrus are kept in a separate Maven module. So you should add
the module as Maven dependency to your project accordingly.

<dependency>
<groupl d>com consol . ci t rus</ groupl d>
<artifactld>citrus-http</artifactld>
<versi on>2. 5. 2</ ver si on>

</ dependency>

As Citrus provides a customized HTTP configuration schema for the Spring application
context configuration files we have to add name to the top level beans element. Simply
include the http-config namespace in the configuration XML files as follows.

<beans xm ns="http://ww. springfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: citrus="http://ww. citrusframework. org/ schema/ config"
xmns:citrus-http="http://ww.citrusframework. org/schema/http/config"
xsi : schemaLocat i on="
http://wwm. springframewor k. or g/ schema/ beans
http://wwm. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://wwm. citrusframework. org/ schema/ config
http://ww. citrusfranework. org/ schena/ config/citrus-config.xsd
http://wwm. citrusframework. org/ schema/ http/config
http://ww. ci trusfranework. org/ schena/ http/ config/citrus-http-config.xsd">

[...]

</ beans>

Now we are ready to use the customized Citrus HTTP configuration elements with the
citrus-http namespace prefix.

17.1. HTTP REST client

On the client side we have a simple HTTP message client component connecting to the server. The
request-url attribute defines the HTTP server endpoint URL to connect to. As usual you can
reference this client in your test case in order to send and receive messages. Citrus as client waits
for the response message from server. After that the response message goes through the validation
process as usual. Let us see how a Citrus HTTP client component looks like:

<citrus-http:client id="helloHttpdient"
request-url="http://I1 ocal host: 8080/ hel | 0"
request - net hod=" GET"
content-type="application/xm"
ti meout =" 60000"/ >

Citrus Framework (2.5.2) 138

HTTP REST support

The request-method defines the HTTP method to use. In addition to that we can specify the
content-type of the request we are about to send. The client builds the HTTP request and sends it to
the HTTP server. While the client is waiting for the synchronous HTTP response to arrive we are able
to poll several times for the response message in our test case. As usual aou can use the same
client endpoint in your test case to send and receive messages synchronously. In case the reply
message comes in too late according to the timeout settings a respective timeout error is raised.

Http defines several request methods that a client can use to access Http server resources. In the
example client above we are using GET as default request method. Of course you can overwrite this
setting in a test case action by setting the HTTP request method inside the sending test action. The
Http client component can be used as normal endpoint in a sending test action. Use something like
this in your test:

XML DSL
<send endpoi nt="hel | oHt t pCl i ent ">
<nessage>
<payl oad>

<Test Message>
<Text>Hel | o Htt pServer</ Text >
</ Test Message>
</ payl oad>
</ message>
<header >
<el enent name="citrus_http_net hod" val ue="POST"/>
</ header >
</ send>

Tip

Citrus uses the Spring REST template mechanism for sending out HTTP requests. This
means you have great customizing opportunities with a special REST template
configuration. You can think of basic HTTP authentication, read timeouts and special
message factory implementations. Just use the custom REST template attribute in client
configuration like this:

<citrus-http:client id="helloHttpdient"
request-url="http://Ilocal host: 8080/ hel | 0"
request - net hod=" GET"
content-type="text/plain"
rest-tenpl at e="cust oni zedRest Tenpl ate"/ >

<l-- Customi zed rest tenplate -->
<bean name="cust oni zedRest Tenpl ate" cl ass="org. spri ngframewor k. web. cl i ent. Rest Tenpl ate" >
<property nanme="nmessageConverters">
<util:list id="converter">
<bean cl ass="org. springfranmework. http.converter. StringHttpMessageConverter">
<property nanme="supportedMedi aTypes" >

<util:list id="types">
<val ue>t ext/ pl ai n</ val ue>
<futil:list>
</ property>
</ bean>
<futil:list>

</ property>
<property nanme="errorHandl er">
<l-- Customerror handler -->
</ property>
<property nanme="request Factory">
<bean cl ass="org. springframework. http.client. HttpConponentsd ientHtpRequest Factory">
<property nanme="readTi neout" val ue="9000" />
</ bean>
</ property>
</ bean>

Citrus Framework (2.5.2) 139

HTTP REST support

Up to now we have used a normal send test action to send Http requests as a client. This is
completely valid strategy as the Citrus Http client is a normal endpoint. But we might want to set
some more Http REST specific properties and settings. In order to simplify the Http usage in a test
case we can use a special test action implementation. The Citrus Http specific actions are located in
a separate XML namespace. So wen need to add this namespace to our test case XML first.

<beans xm ns="http://wwmv spri ngframework. or g/ schema/ beans”
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: http="http://ww. citrusfranmework. org/schema/ http/testcase”
xsi : schenalLocati on="
http://ww. springframewor k. or g/ schema/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. citrusfranmework. org/ schena/ http/testcase
http://ww. ci trusfranmework. org/ schema/ http/testcase/citrus-http-testcase. xsd">

[...]

</ beans>

The test case is how ready to use the specific Http test actions by using the prefix http:.

XML DSL

<http: send-request client="httpdient">
<ht t p: POST pat h="/cust oner" >
<htt p: headers content-type="application/xm" accept="application/xm,k */*">
<htt p: header nane="Cust onHeader | d" val ue="${cust om header _id}"/>
</ http: header s>
<ht t p: body>
<htt p: dat a>
<! [CDATA[
<cust oner >
<i d>ci trus: randomNunber () </i d>
<nane>t est user </ nane>
</ cust oner >
11>
</ http: data>
</ http: body>
</ http: PCST>
</ http: send- r equest >

The action above uses several Http specific settings such as the request method POST as well as
the content-type and accept headers. As usual the send action needs a target Http client endpoint
component. We can specify a request path attribute that added as relative path to the base uri used
on the client.

When using a GET request we can specify some request uri parameters.

XML DSL

<http: send-request client="httpdient">
<htt p: GET path="/custoner/ ${cust om header _i d}">
<http: paranms content-type="application/xm" accept="application/xm, */*">
<htt p: param name="t ype" val ue="active"/>
</ http: params>
</ http: GET>
</ http: send- r equest >

The send action above uses a GET request on the endpoint uri
http://localhost:8080/customer/1234?type=active.

Of course when sending Http client requests we are also interested in receiving Http response
messages. We want to validate the success response with Http status code.

Citrus Framework (2.5.2) 140

HTTP REST support

XML DSL

<http:recei ve-response client="httpCient">
<http: headers status="200" reason-phrase="0OK" version="HTTP/1.1">
<htt p: header nanme="Cust onHeader|d" val ue="${custom header_id}"/>
</ http: header s>
<htt p: body>
<htt p: dat a>
<! [CDATA[
<cust oner Response>
<success>t rue</ success>
</ cust oner Response>
11>
</ http: dat a>
</ http: body>
</ http:receive-response>

The receive-response test action also uses a client component. We can expect response status code
information such as status and reason-phrase. Of course Citrus will raise a validation exception in
case Http status codes mismatch.

Up to now we have used XML DSL test cases. The Java DSL in Citrus also works with specific Http
test actions. See following example and find out how this works:

XML DSL

@i trusTest
public void httpActionTest() {
http().client("httpdient")
. post ("/custoner")
. payl oad(" <cust oner >" +
"<id>citrus: randomNunber () </id>" +
"<nane>t est user </ nane>" +
"</ cust oner>")
. header (" Cust ontHeader 1 d", "${custom header_id}")
.content Type("text/xm")
.accept ("text/xm, */*");

http().client("httpdient")
.response(HttpSt at us. OK)
. payl oad(" <cust omer Response>" +
" <success>true</success>" +
"</ cust omer Response>")
. header (" Cust ontHeader |1 d", "${custom header_id}")
.version("HTTP/ 1.1");

Now we can send and receive messages as Http client with specific test actions. Now lets move on
to the Http server.

17.2. HTTP REST server

The HTTP client was quite easy and straight forward. Receiving HTTP messages is a little bit more
complicated because Citrus has to provide server functionality listening on a local port for client
connections. Therefore Citrus offers an embedded HTTP server which is capable of handling
incoming HTTP requests. Once a client connection is accepted the HTTP server must also provide a
proper HTTP response to the client. In the next few lines you will see how to simulate server side
HTTP REST service with Citrus.

<citrus-http:server id="helloHttpServer"
port ="8080"
auto-start="true"
resour ce- base="src/it/resources"/>

Citrus Framework (2.5.2) 141

HTTP REST support

Citrus uses an embedded Jetty server that will automatically start when the Spring application
context is loaded (auto-start="true"). The basic connector is listening on port 8080 for requests. Test
cases can interact with this server instance via message channels by default. The server provides an
inbound channel that holds incoming request messages. The test case can receive those requests
from the channel with a normal receive test action. In a second step the test case can provide a
synchronous response message as reply which will be automatically sent back to the HTTP client as
response.

The figure above shows the basic setup with inbound channel and reply channel. You as a tester
should not worry about this to much. By default you as a tester just use the server as synchronous
endpoint in your test case. This means that you simply receive a message from the server and send
a response back.

<t est case nanme="htt pServer Test">
<acti ons>
<recei ve endpoi nt="hel | oHt t pServer">
<nessage>
<dat a>

[...]
</ dat a>
</ nessage>
</receive>

<send endpoi nt ="hel | oHt t pSer ver" >
<nessage>
<dat a>
[...]
</ dat a>
</ nessage>
</ send>
</ actions>
</testcase>

As you can see we reference the server id in both receive and send actions. The Citrus server
instance will automatically send the response back to the calling HTTP client. In most cases this is
exactly what we want to do - send back a response message that is specified inside the test. The
HTTP server component by default uses a channel endpoint adapter in order to forward all incoming
requests to an in memory message channel. This is done completely behind the scenes. The Http
server component provides some more customization possibilities when it comes to endpoint adapter
implementations. This topic is discussed in a separate section Chapter 32, Endpoint adapter. Up to
now we keep it simple by synchronously receiving and sending messages in the test case.

Tip

The default channel endpoint adapter automatically creates an inbound message channel
where incoming messages are stored to internally. So if you need to clean up a server
that has already stored some incoming messages you can do this easily by purging the
internal message channel. The message channel follows a naming convention
{serverName}.inbound where {serverName} is the Spring bean name of the Citrus server
endpoint component. If you purge this internal channel in a before test nature you are sure
that obsolete messages on a server instance get purged before each test is executed.

So lets get back to our mission of providing response messages as server to connected clients. As
you might know Http REST works with some characteristic properties when it comes to send and
receive messages. For instance a client can send different request methods GET, POST, PUT,
DELETE, HEAD and so on. The Citrus server may verify this method when receiving client requests.
Therefore we have introduced special Http test actions for server communication. Have a look at a

Citrus Framework (2.5.2) 142

HTTP REST support

simple example:

<http:receive-request server="hell oHttpServer">
<http: POST path="/test">
<htt p: headers content-type="application/xm" accept="application/xm,6 */*">
<ht t p: header nanme="Cust ontHeader|d" val ue="${custom header _id}"/>
<ht t p: header nanme="Aut hori zation" val ue="Basic c29t ZWzZXJuYWLI OnNvbW/QYXNzd29yZA=="/ >
</ http: header s>
<htt p: body>
<htt p: dat a>
<! [CDATA[
<t est Request Message>
<text>Hel | o HttpServer</text>
</t est Request Message>
11>
</ http: data>
</ http: body>
</ http: POST>
<http: extract>
<htt p: header nanme="X- Messagel d" vari abl e="nmessage_i d"/ >
</ http:extract>
</ http:receive-request>

<htt p: send-response server="hel | oHt t pServer">
<htt p: headers status="200" reason-phrase="CK" version="HTTP/1.1">
<htt p: header nane="X- Messagel d" val ue="${nessage_i d}"/>
<htt p: header name="Custonteader|d" val ue="${custom header_id}"/>
<htt p: header nane="Content - Type" val ue="application/xm "/>
</ http: header s>
<ht t p: body>
<ht t p: dat a>
<! [CDATA[
<t est ResponseMessage>
<text>Hello Citrus</text>
</t est ResponseMessage>
11>
</ http: dat a>
</ htt p: body>
</ http: send- response>

We receive a client request and validate that the request method is POST on request path /test. Now
we can validate special message headers such as content-type. In addition to that we can check
custom headers and basic authorization headers. As usual the optional message body is compared
to an expected message template. The custom X-Messageld header is saved to a test variable
message_id for later usage in the response.

The response message defines Http typical entities such as status and reason-phrase. Here the
tester can simulate 404 NOT_FOUND errors or similar other status codes that get send back to the
client. In our example everything is OK and we send back a response body and some custom header
entries.

That is basically how Citrus simulates Http server operations. We receive the client request and
validate the request properties. Then we send back a response with a Http status code.

As usual all these Http specific actions are also available in Java DSL.

@z trusTest
public void httpServerActionTest() {
http().server("hell oHtt pServer")
.post("/test")
. payl oad(" <t est Request Message<" +
"<text<Hell o HttpServer</text<" +
"</t est Request Message<")

.content Type("application/xm")
.accept("application/xm, */*")
. header (" Cust onHeader | d", "${custom header_id}")
. header (" Aut hori zati on", "Basic c29t ZVWzZXJuYWL.| OnNvbWQYXNzd29y ZA=="
.extract FronHeader (" X- Messagel d", "nessage_id");

http().server("hell oHtt pServer")
.respond(Htt pSt at us. OK)

Citrus Framework (2.5.2) 143

HTTP REST support

. payl oad(" <t est ResponseMessage<" +
"<text<Hello Citrus</text<" +
"</t est ResponseMessage<")
.version("HTTP/ 1. 1")
.content Type("application/xm")
. header (" Cust onmtHeader |1 d", "${custom header_id}")
. header (" X- Messagel d*, "${nmessage_id}");

This is the exact same example in Java DSL. We select server actions first and receive client
requests. Then we send back a response with a HttpStatus.OK status. This completes the server
actions on Http message transport. Now we continue with some more Http specific settings and
features.

17.3. HTTP headers

When dealing with HTTP request/response communication we always deal with HTTP specific
headers. The HTTP protocol defines a group of header attributes that both client and server need to
be able to handle. You can set and validate these HTTP headers in Citrus quite easy. Let us have a
look at a client operation in Citrus where some HTTP headers are explicitly set before the request is
sent out.

<http: send-request client="httpdient">
<htt p: POST>
<htt p: header s>
<htt p: header nane="Cust onHeader|d" val ue="${cust om header _id}"/>
<htt p: header nanme="Content- Type" val ue="text/xm"/>
<htt p: header nanme="Accept" val ue="text/xm ,6 */*"/>
</ http: header s>
<ht t p: body>
<ht t p: payl oad>
<t est Request Message>
<text>Hell o HttpServer</text>
</ t est Request Message>
</ http: payl oad>
</ http: body>
</ http: PCST>
</ http: send- r equest >

We are able to set custom headers (CustomHeaderld) that go directly into the HTTP header section
of the request. In addition to that testers can explicity set HTTP reserved headers such as
Content-Type. Fortunately you do not have to set all headers on your own. Citrus will automatically
set the required HTTP headers for the request. So we have the following HTTP request which is sent
to the server:

POST /test HITP/1.1
Accept: text/xm, */*
Cont ent - Type: text/xni
Cust onHeader | d: 123456789
Accept - Char set: macr oman
User - Agent: Jakarta Commons-HttpCient/3.1
Host: | ocal host: 8091
Cont ent - Lengt h: 175
<t est Request Message>
<text>Hell o HttpServer</text>
</ t est Request Message>

On server side testers are interested in validating the HTTP headers. Within Citrus receive action you
simply define the expected header entries. The HTTP specific headers are automatically available for
validation as you can see in this example:

<http:recei ve-request server="httpServer">
<htt p: POST>

Citrus Framework (2.5.2) 144

HTTP REST support

<ht t p: header s>
<htt p: header nane="Cust onHeader|d" val ue="${cust om header id}"/>
<ht t p: header nane="Cont ent - Type" val ue="text/xm"/>
<htt p: header nanme="Accept" val ue="text/xm 6 */*"/>
</ http: header s>
<htt p: body>
<ht t p: payl oad>
<t est Request Message>
<text>Hell o HttpServer</text>
</t est Request Message>
</ htt p: payl oad>
</ http: body>
</ http: POST>
</ http:recei ve-request>

The test checks on custom headers and HTTP specific headers to meet the expected values.

Now that we have accepted the client request and validated the contents we are able to send back a
proper HTTP response message. Same thing here with HTTP specific headers. The HTTP protocol
defines several headers marking the success or failure of the server operation. In the test case you
can set those headers for the response message with conventional Citrus header names. See the
following example to find out how that works for you.

<htt p: send-response server="httpServer">
<http: headers status="200" reason-phrase="0">
<htt p: header nane="Cust onHeader|d" val ue="${custom header _id}"/>
<htt p: header nane="Content- Type" val ue="text/xm "/>
</ http: header s>
<ht t p: body>
<htt p: payl oad>
<t est ResponseMessage>
<text>Hello Citrus dient</text>
</t est ResponseMessage>
</ htt p: payl oad>
</ http: body>
</ http: send-response>

Once more we set the custom header entry (CustomHeaderld) and a HTTP reserved header
(Content-Type) for the response message. On top of this we are able to set the response status for
the HTTP response. We use the reserved header names status in order to mark the success of the
server operation. With this mechanism we can easily simulate different server behaviour such as
HTTP error response codes (e.g. 404 - Not found, 500 - Internal error). Let us have a closer look at
the generated response message:

HTTP/ 1.1 200 K
Cont ent - Type: text/xnl;charset=UTF-8
Accept - Char set: macroman
Cont ent - Lengt h: 205
Server: Jetty(7.0.0.preb)
<t est ResponseMessage>
<text>Hello Citrus Cdient</text>
</t est ResponseMessage>

Tip

You do not have to set the reason phrase all the time. It is sufficient to only set the HTTP
status code. Citrus will automatically add the proper reason phrase for well known HTTP
status codes.

The only thing that is missing right now is the validation of HTTP status codes when receiving the
server response in a Citrus test case. It is very easy as you can use the Citrus reserved header
names for validation, too.

Citrus Framework (2.5.2) 145

HTTP REST support

<http:receive-response client="httpdient">
<htt p: headers status="200" reason-phrase="OK" version="HITTP/ 1. 1">
<htt p: header nane="Cust onHeader|d" val ue="${custom header_id}"/>
</ http: header s>
<ht t p: body>
<ht t p: payl oad>
<t est ResponseMessage>
<text>Hel | o Test Franework</text>
</t est ResponseMessage>
</ http: payl oad>
</ http: body>
</ http:recei ve-response>

Up to now we have used some of the basic Citrus reserved HTTP header names (status, version,
reason-phrase). In HTTP RESTful services some other header names are essential for validation.
These are request attributes like query parameters, context path and request URI. The Citrus server
side REST message controller will automatically add all this information to the message header for
you. So all you need to do is validate the header entries in your test.

The next example receives a HTTP GET method request on server side. Here the GET request does
not have any message payload, so the validation just works on the information given in the message
header. We assume the client to call http://localhost:8080/app/users?id=123456789. As a tester we
need to validate the request method, request URI, context path and the query parameters.

<http:receive-request server="httpServer">
<htt p: GET pat h="/app/ users" context-path="/app">
<htt p: par ans>
<htt p: param nane="i d" val ue="123456789"/ >
</ http: par ans>
<ht t p: header s>
<htt p: header nane="Host" val ue="| ocal host: 8080"/ >
<htt p: header nanme="Cont ent- Type" val ue="text/htm"/>
<htt p: header nane="Accept" val ue="text/xm ,h */*"/>
</ http: header s>
<htt p: body>
<htt p: dat a></ htt p: dat a>
</ http: body>
</ http: GET>
</ http:receive-request>

Tip

Be aware of the slight differences in request URI and context path. The context path gives
you the web application context path within the servlet container for your web application.
The request URI always gives you the complete path that was called for this request.

As you can see we are able to validate all parts of the initial request endpoint URI the client was
calling. This completes the HTTP header processing within Citrus. On both client and server side
Citrus is able to set and validate HTTP specific header entries which is essential for simulating HTTP
communication.

17.4. HTTP form urlencoded data

HTML form data can be sent to the server using different methods and content types. One of them is
a POST method with x-www-form-urlencoded body content. The form data elements are sent to the
server using key-value pairs POST data where the form control name is the key and the control data
is the url encoded value.

Form urlencoded form data content could look like this:

Citrus Framework (2.5.2) 146

HTTP REST support

passwor d=s%21cr %21t &user nane=f 0o

A you can see the form data is automatically encoded. In the example above we transmit two form
controls password and username with respective values scrt and foo. In case we would validate
this form data in Citrus we are able to do this with plaintext message validation.

<recei ve endpoi nt="httpServer">
<message type="pl ai ntext">
<dat a>
<! [CDATA[
passwor d=s%21cr %21t &user nane=${ user nane}
11>
</ dat a>
</ message>
<header >
<el enent name="citrus_http_net hod" val ue="POST"/>
<el enent name="citrus_http_request_uri" value="/formtest"/>
<el enent name="Cont ent - Type" val ue="appl i cati on/ x- ww f or m url encoded"/ >
</ header >
</receive>

Obviously validating these key-value pair character sequences can be hard especially when having
HTML forms with lots of form controls. This is why Citrus provides a special message validator for
x-www-form-urlencoded contents. First of all we have to add citrus-http module as dependency to our
project if not done so yet. After that we can add the validator implementation to the list of message
validators used in Citrus.

<ci trus: nessage-val i dat or s>
<citrus:validator class="com consol.citrus.http.validation.FormnmJr| EncodedMessageVal i dator"/>
</citrus: message-val i dat or s>

Now we are able to receive the urlencoded form data message in a test.

<recei ve endpoi nt="httpServer">
<nessage type="x-wwformurl encoded" >
<payl oad>
<formdata xm ns="http://ww.citrusfranmework. org/schema/ http/ message" >
<cont ent -t ype>appl i cati on/ x- ww+ f or m ur | encoded</ cont ent - t ype>
<action>/formtest</action>
<control s>
<control name="password">
<val ue>${ passwor d} </ val ue>
</control >
<control name="usernane">
<val ue>${ user nane} </ val ue>
</control >
</ control s>
</ f orm dat a>
</ payl oad>
</ message>
<header >
<el enent name="citrus_http_net hod" val ue="POST"/>
<el enent name="citrus_http_request_uri" value="/formtest"/>
<el enent name="Cont ent - Type" val ue="appl i cati on/ x- ww f or m url encoded"/ >
</ header >
</receive>

We use a special message type x-www-form-urlencoded so the new message validator will take
action. The form url encoded message validator is able to handle a special XML representation of the
form data. This enables the very powerful XML message validation capabilities of Citrus such as
ignoring elements and usage of test variables inline.

Each form control is translated to a control element with respective name and value properties. The
form data is validated in a more comfortable way as the plaintext message validator would be able to
offer.

Citrus Framework (2.5.2) 147

HTTP REST support

17.5. HTTP error handling

So far we have received response messages with HTTP status code 200 OK. How to deal with
server errors like 404 Not Found or 500 Internal server error? The default HTTP message client error
strategy is to propagate server error response messages to the receive action for validation. We
simply check on HTTP status code and status text for error validation.

<http: send-request client="httpdient">
<ht t p: body>
<ht t p: payl oad>
<t est Request Message>
<text>Hel |l o HttpServer</text>
</t est Request Message>
</ http: payl oad>
</ http: body>
</ http: send-request >

<http:receive-request client="httpdient">
<htt p: body>
<htt p: dat a><! [CDATA[]] ></ ht t p: dat a>
</ http: body>
<htt p: headers status="403" reason-phrase="FORBI DDEN"/ >
</ http:receive>

The message data can be empty depending on the server logic for these error situations. If we
receive additional error information as message payload just add validation assertions as usual.

Instead of receiving such empty messages with checks on HTTP status header information we can
change the error strategy in the message sender component in order to automatically raise
exceptions on response messages other than 200 OK. Therefore we go back to the HTTP message
sender configuration for changing the error strategy.

<citrus-http:client id="httpdient"
request-url="http://I| ocal host: 8080/ test"
error-strategy="t hrowsException"/>

Now we expect an exception to be thrown because of the error response. Following from that we
have to change our test case. Instead of receiving the error message with receive action we assert
the client exception and check on the HTTP status code and status text.

<assert exception="org.springframework.web.client.HttpCientErrorException"
nessage="403 For bi dden">
<http: send-request client="httpdient">
<ht t p: body>
<ht t p: payl oad>
<t est Request Message>
<text>Hell o HttpServer</text>
</ t est Request Message>
</ http: payl oad>
</ htt p: body>
</ http: send-request >
</ assert>

Both ways of handling HTTP error messages on client side are valid for expecting the server to raise
HTTP error codes. Choose the preferred way according to your test project requirements.

17.6. HTTP client basic authentication

As client you may have to use basic authentication in order to access a resource on the server. In
most cases this will be username/password authentication where the credentials are transmitted in

Citrus Framework (2.5.2) 148

HTTP REST support

the request header section as base64 encoding.

The easiest approach to set the Authorization header for a basic authentication HTTP request would
be to set it on your own in the send action definition. Of course you have to use the correct basic
authentication header syntax with base64 encoding for the username:password phrase. See this
simple example.

<htt p: header s>
<htt p: header nanme="Aut hori zati on" val ue="Basi c c29t ZWzZXJuYWLI OnNvbW/QYXNzd29yZA=="/ >
</ http: header s>

Citrus will add this header to the HTTP requests and the server will read the Authorization username
and password. For more convenient base64 encoding you can also use a Citrus function, see
Section 33.23, “citrus:encodeBase64()”

Now there is a more comfortable way to set the basic authentication header in all the Citrus requests.
As Citrus uses Spring's REST support with the RestTemplate and ClientHttpRequestFactory the
basic authentication is already covered there in a more generic way. You simply have to configure
the basic authentication credentials on the RestTemplate's ClientHttpRequestFactory. Just see the
following example and learn how to do that.

<citrus-http:client id="httpdient"
request - net hod=" POST"
request-url="http://Ilocal host: 8080/test"
request - f act or y="basi cAut hFact ory"/>

<bean i d="basi cAut hFact ory"
class="com consol .citrus. http.client.Basi cAut hCl ientHtt pRequest Fact ory">
<property name="aut hScope" >
<bean cl ass="org. apache. http. aut h. Aut hScope" >
<constructor-arg val ue="Il ocal host"/>
<constructor-arg val ue="8072"/>
<constructor-arg val ue=""/>
<constructor-arg val ue="basic"/>
</ bean>
</ property>
<property nanme="credential s">
<bean cl ass="org. apache. http. aut h. User nanePasswor dCr edenti al s">
<constructor-arg val ue="soneUser name"/ >
<constructor-arg val ue="sonePassword"/>
</ bean>
</ property>
</ bean>

The advantages of this method is obvious. Now all sending test actions that reference the client
component will automatically add the basic authentication header.

Important

Since Citrus has upgraded to Spring 3.1.x the Jakarta commons HTTP client is
deprecated with Citrus version 1.2. The formerly used
UserCredentialsClientHttpRequestFactory is therefore also deprecated and will not
continue with next versions. Please update your configuration if you are coming from
Citrus 1.1 or earlier versions.

The above configuration results in HTTP client requests with authentication headers properly set for
basic authentication. The client request factory takes care on adding the proper basic authentication
header to each request that is sent with this Citrus message sender. Citrus uses preemtive
authentication. The message sender only sends a single request to the server with all authentication

Citrus Framework (2.5.2) 149

HTTP REST support

information set in the message header. The request which determines the authentication scheme on
the server is skipped. This is why you have to add some auth scope in the client request factory so
Citrus can setup an authentication cache within the HTTP context in order to have preemtive
authentication.

As a result of the basic auth client request factory the following example request that is created by
the Citrus HTTP client has the Authorization header set. This is done now automatically for all
requests with this HTTP client.

POST /test HTTP/1.1
Accept: text/xm, */*
Cont ent - Type: text/xni
Accept - Charset: iso0-8859-1, us-ascii, utf-8
Aut hori zation: Basic ¢29t ZWzZXJuYWL.| OnNvbWQYXNzd29y ZA==
User - Agent : Jakarta Commons-Htpdient/3.1
Host: | ocal host: 8080
Content-Length: 175
<t est Request Message>
<text>Hel |l o Htt pServer</text>
</t est Request Message>

17.7. HTTP server basic authentication

Citrus as a server can also set basic authentication so clients need to authenticate properly when
accessing server resources.

<citrus-http:server id="basi cAuthHttpServer"
port="8090"
auto-start="true"
resour ce- base="src/it/resources"
security-handl er="basi cSecuri t yHandl er"/ >

<bean id="securityHandl er" class="com consol.citrus. http.security. SecurityHandl er Factory">
<property nanme="users">
<list>
<bean cl ass="com consol .citrus. http.security.User">
<property name="name" val ue="citrus"/>
<property nanme="password" val ue="secret"/>
<property nanme="rol es" val ue="C trusRol e"/>
</ bean>
</list>
</ property>
<property nane="constraints">
<map>
<entry key="/fool/*">
<bean cl ass="com consol .citrus. http.security.Basi cAuthConstraint">
<constructor-arg value="C trusRol e"/>
</ bean>
</entry>
</ map>
</ property>
</ bean>

We have set a security handler on the server web container with a constraint on all resources with
ffoof*. Following from that the server requires basic authentication for these resources. The granted
users and roles are specified within the security handler bean definition. Connecting clients have to
set the basic auth HTTP header properly using the correct user and role for accessing the Citrus
server now.

You can customize the security handler for your very specific needs (e.g. load users and roles with
JDBC from a database). Just have a look at the code base and inspect the settings and properties
offered by the security handler interface.

Citrus Framework (2.5.2) 150

HTTP REST support

Tip

This mechanism is not restricted to basic authentication only. With other settings you can
also set up digest or form-based authentication constraints very easy.

17.8. HTTP servlet context customization

The Citrus HTTP server uses Spring application context loading on startup. For high customizations
you can provide a custom servlet context file which holds all custom configurations as Spring beans
for the server. Here is a sample servlet context with some basic Spring MVC components and the
central HttpMessageController which is responsible for handling incoming requests (GET, PUT,
DELETE, POST, etc.).

<bean id="citrusHandl er Mappi ng" cl ass="org. spri ngfranmewor k. web. servl et. mvc. met hod. annot at i on. Request Mappi ngHandl er Ma

<bean id="citrusMet hodHandl er Adapter" cl ass="org. spri ngfranmework. web. servl et. m/c. net hod. annot ati on. Request Mappi ngHan
<property nanme="nmessageConverters">
<util:list id="converters">
<bean cl ass="org. springfranmework. http.converter. StringHttpMessageConverter">
<property nanme="supportedMedi aTypes" >

<util:list>
<val ue>t ext / xm </ val ue>
<futil:list>
</ property>
</ bean>
</util:list>
</ property>

</ bean>

<bean id="citrusHtt pMessageControl |l er" class="com consol.citrus.http.controller.HtpMssageController">
<property nanme="endpoi nt Adapt er">
<bean
cl ass="com consol . ci trus. endpoi nt . adapt er . Enpt yResponseEndpoi nt Adapter"/>
</ property>
</ bean>

The beans above are responsible for proper HTTP server configuration. In general you do not need
to adjust those beans, but we have the possibility to do so which gives us a great customization and
extension points. The important part is the endpoint adapter definition inside the
HttpMessageController. Once a client request was accepted the adapter is responsible for generating
a proper response to the client.

You can add the custom servlet context as file resource to the Citrus HTTP server component. Just
use the context-config-location attribute as follows:

<citrus-http:server id="helloHttpServer"
port ="8080"
auto-start="true"
cont ext-config-1ocation="cl asspat h: conmf consol /ci trus/http/customservlet-context.xn"
resour ce- base="src/it/resources"/>

Citrus Framework (2.5.2) 151

Chapter 18. WebSocket support

The WebSocket message protocol builds on top of Http standard and brings bidirectional
communication to the Http client-server world. Citrus is able to send and receive messages with
WebSocket connections as client and server. The Http server implementation is now able to define
multiple WebSocket endpoints. The new Citrus WebSocket client is able to publish and consumer
messages via bidirectional WebSocket protocol.

The new WebSocket support is located in the module citrus-websocket. Therefore we need to add
this module to our project as dependency when we are about to use the WebSocket features in
Citrus.

<dependency>
<groupl d>com consol . ci trus</ groupl d>
<artifactld>citrus-websocket</artifactld>
<ver si on>2. 5. 2</ ver si on>

</ dependency>

As Citrus provides a customized WebSocket configuration schema for the Spring application context
configuration files we have to add name to the top level beans element. Simply include the
websocket-config namespace in the configuration XML files as follows.

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
xm ns:citrus="http://ww.citrusfranework. org/schenma/ config"
xm ns: citrus-websocket ="http://ww. citrusfranmework. or g/ schema/ websocket / confi g"
xsi : schemaLocat i on="
http://ww. spri ngfranmework. or g/ schenma/ beans
http://ww. springfranmewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. citrusframework. org/ schema/ config
http://ww. citrusfranework. or g/ schema/ confi g/ citrus-config. xsd
http://ww. citrusfranework. or g/ schena/ websocket/ confi g
http://ww. citrusfranework. or g/ schema/ websocket / confi g/ ci trus-websocket -confi g. xsd">

[-..]

</ beans>

Now our project is ready to use the Citrus WebSocket support. First of all let us send a message via
WebSocket connection to some server.

18.1. WebSocket client

On the client side Citrus offers a client component that goes directly to the Spring bean application
context. The client needs a server endpoint uri. This is a WebSocket protocol endpoint uri.

<ci trus-websocket:client id="hell oWwbSocketd ient"
url ="http://1ocal host: 8080/ hel | 0"
ti meout ="5000"/ >

The url defines the endpoint to send messages to. The server has to be a WebSocket ready web
server that supports Http connection upgrade for WebSocket protocols. WebSocket by its nature is
an asynchronous bidirectional protocol. This means that the connection between client and server
remains open and both server and client can send and receive messages. So when the Citrus client
is waiting for a message we need a timeout that stops the asynchronous waiting. The receiving test
action and the test case will fail when such a timeout is raised.

Citrus Framework (2.5.2) 152

WebSocket support

The WebSocket client will automatically open a connection to the server and ask for a connection
upgrade to WebSocket protocol. This handshake is done once when the connection to the server is
established. After that the client can push messages to the server and on the other side the server
can push messages to the client. Now lets first push some messages to the server:

<send endpoi nt ="hel | oWwbSocket C i ent ">
<nessage>
<payl oad>
<Test Message>
<Text >Hel | o WebSocket Server </ Text >
</ Test Message>
</ payl oad>
</ message>
</ send>

The connection handshake and the connection upgrade is done automatically by the client. After that
the message is pushed to the server. As WebSocket is a bidirectional protocol we can also receive
messages on the WebSocket client. These messages are pushed from server to all connected
clients.

<recei ve endpoi nt ="hel | oWbSocket d i ent" >
<nessage>
<payl oad>
<Test Message>
<Text >Hel | o WebSocket O i ent </ Text >
</ Test Message>
</ payl oad>
</ nessage>
</receive>

We just use the very same client endpoint component in a message receive action. The client will
wait for messages from the server and once received perform the well known message validation.
Here we expect some XML message payload. This completes the client side as we are able to push
and consumer messages via WebSocket connections.

Tip

Up to now we have used static WebSocket endpoint URIs in our client component
configurations. This can be done with a more powerful dynamic endpoint URI in
WebSocket client. Similar to the endpoint resolving mechanism in SOAP you can
dynamically set the called endpoint uri at test runtime through message header values. By
default Citrus will check a specific header entry for dynamic endpoint URI which is simply
defined for each message sending action inside the test.

The dynamicEndpointResolver bean must implement the EndpointUriResolver interface in
order to resolve dynamic endpoint uri values. Citrus offers a default implementation, the
DynamicEndpointUriResolver, which uses a specific message header for setting dynamic
endpoint uri. The message header needs to specify the header citrus_endpoint_uri with a
valid request uri.

<header >
<el enent nanme="citrus_endpoint _uri" val ue="ws://I|ocal host: 8080/ cust oners/ ${custonerld}"/>
</ header >

The specific send action above will send its message to the dynamic endpoint
(ws://localhost:8080/customers/${customerld}) which is set in the header
citrus_endpoint_uri.

Citrus Framework (2.5.2) 153

WebSocket support

18.2. WebSocket server endpoints

On the server side Citrus has a Http server implementation that we can easily start during test
runtime. The Http server accepts connections from clients and also supports WebSocket upgrade
strategies. This means clients can ask for a upgrade to the WebSocket standard. In this handshake
the server will upgrade the connection to WebSocket and afterwards client and server can exchange
messages over this connection. This means the connection is kept alive and multiple messages can
be exchanged. Lets see how WebSocket endpoints are added to a Http server component in Citrus.

<ci trus-websocket: server id="helloHttpServer"
port="8080"
auto-start="true"
resour ce- base="src/it/resources">
<ci t rus-websocket : endpoi nt s>
<ci trus-websocket : endpoi nt ref="websocket1"/>
<ci trus-websocket : endpoi nt ref="websocket 2"/ >
</ ci trus-websocket : endpoi nt s>
</ ci trus-websocket: server>

<ci trus-websocket : endpoi nt i d="websocket1" path="/test1"/>
<ci trus-websocket : endpoi nt i d="websocket2" path="/test2" timeout="10000"/>

The embedded Jetty WebSocket server component in Citrus now is able to define multiple
WebSocket endpoints. The WebSocket endpoints match to a request path on the server and are
referenced by a unique id. Each WebSocket endpoint can follow individual timeout settings. In a test
we can use these endpoints directly to receive messages.

<t estcase name="htt pWbSocket Server Test" >
<actions>
<recei ve endpoi nt ="websocket 1" >
<nessage>
<dat a>

[...]
</ dat a>
</ message>
</receive>

<send endpoi nt ="websocket 1" >
<nmessage>
<dat a>
[...]
</ dat a>
</ message>
</ send>
</ actions>
</testcase>

As you can see we reference the endpoint id in both receive and send actions. Each WebSocket
endpoint holds one or more open connections to its clients. Each message that is sent is pushed to
all connected clients. Each client can send messages to the WebSocket endpoint.

The WebSocket endpoint component handles connection handshakes automatically and caches all
open sessions in memory. By default all connected clients will receive the messages pushed from
server. This is done completely behind the scenes. The Citrus server is able to handle multiple
WebSocket endpoints with different clients connected to it at the same time. This is why we have to
choose the WebSocket endpoint on the server by its identifier when sending and receiving
messages.

With this WebSocket endpoints we change the Citrus server behavior so that clients can upgrade to
WebSocket connection. Now we have a bidirectional connection where the server can push
messages to the client and vice versa.

Citrus Framework (2.5.2) 154

WebSocket support

18.3. WebSocket headers

The WebSocket standard defines some default headers to use during connection upgrade. These
headers are made available to the test case in both directions. Citrus will handle these header values
with special care when WebSocket support is activated on a server or client. Now WebSocket
messages can also be split into multiple pieces. Each message part is pushed separately to the
server but still is considered to be a single message payload. The server has to collect and
aggregate all messages until a special message header isLast is set in one of the message parts.

The Citrus WebSocket client can slice messages into several parts.

<send endpoi nt ="webSocket C i ent ">
<nmessage type="json">

<dat a>
[
{
"event" : "client_nessage_1"
"tinmestanmp" : "citrus:currentDate()"
o
</ dat a
</ nessage>
<header >
<el ement nane="citrus_websocket is_|ast" val ue="fal se"/>
</ header >
</ send>
<sleep m|liseconds="500"/>

<send endpoi nt ="webSocket Cl i ent ">
<nmessage type="json">

<dat a>
{
"event" : "client_nessage_2"
"tinestanmp" : "citrus:currentDate()"
}
]
</ dat a>
</ message>
<header >
<el ement nane="citrus_websocket _is_last" value="true"/>
</ header >
</ send>

The test above has two separate send operations both sending to a WebSocket endpoint. The first
sending action sets the header citrus_websocket_is_last to false which indicates that the message is
not complete yet. The 2nd send action pushes the rest of the message to the server and set the
citrus_websocket_is_last header to true. Now the server is able to aggregate the message pieces to
a single message payload. The result is a valida JSON array with both events in it.

[

"event" : "client_nessage_1"
“timestanp” : "2015-01-01"

"event" : "client_nessage_2"
“timestanp” : "2015-01-01"

Now the server part in Citrus is able to handle these sliced messages, too. The server will
automatically aggregate those message parts before passing it to the test case for validation.

Citrus Framework (2.5.2) 155

Chapter 19. SOAP WebServices

SOAP Web Services over HTTP is a widely used communication scenario in modern enterprise
applications. A SOAP Web Service client is posting a SOAP request via HTTP to a server. SOAP via
HTTP is a synchronous message protocol by default so the client is waiting synchronously for the
response message. Citrus provides both SOAP client and server components in order to meet both
directions of this scenario. The components used are very similar to the HTTP components that were
have discussed in the sections before.

Note

The SOAP WebService components in Citrus are kept in a separate Maven module. So
you should add the module as Maven dependency to your project accordingly.

<dependency>
<gr oupl d>com consol . ci trus</ gr oupl d>
<artifactld>citrus-ws</artifactld>
<versi on>2. 5. 2</ ver si on>

</ dependency>

In order to use the SOAP WebService support you need to include the specific XML
configuration schema provided by Citrus. See following XML definition to find out how to
include the citrus-ws namespace.

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns:citrus="http://ww.citrusfranework. org/schema/ config"
xm ns:citrus-ws="http://ww.citrusframework. org/schema/ ws/config"
xsi : schemaLocat i on="
http://ww. springframework. or g/ schena/ beans
http://ww. springfranmework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusframework. org/ schena/ config
http://ww. citrusfranmework. org/ schena/ confi g/ citrus-config. xsd
http://ww. citrusfranmework. org/ schena/ ws/ config
http://ww. citrusfranmework. or g/ schena/ ws/ confi g/ citrus-ws-config.xsd">

[...]

</ beans>

Now you are ready to use the customized soap configuration elements - all using the
citrus-ws prefix - in your Spring configuration.

19.1. SOAP client

Citrus is able to form a proper SOAP request in order to pass it to the server via HTTP and validate
the respective SOAP response message. Let us see how a message client for SOAP looks like in the
Spring configuration:

<citrus-ws:client id="soapdient"

request-url="http://1 ocal host: 8090/ test"
ti meout =" 60000"/ >

The client component uses the request-url in order to access the server resource. The client will
automatically build a proper SOAP request message including the SOAP envelope, SOAP header
and the message payload as SOAP body. This means that you as a tester do not care about SOAP

Citrus Framework (2.5.2) 156

SOAP WebServices

envelope specific logic in the test case. The client endpoint component saves the synchronous SOAP
response so the test case can receive this message with a normal receive test action.

In detail you as a tester just send and receive using the same client endpoint reference just as you
would do with a synchronous JMS or channel communication. In case no response message is
available in time according to the timeout settings Citrus raises a timeout error and the test will fail.

Important

The SOAP client component uses a SoapMessageFactory implementation in order to
create the SOAP messages. This is a Spring bean added to the Citrus Spring application
context. Spring offers several reference implementations as message factories so you can
choose one of them (e.g. for SOAP 1.1 or 1.2 implementations).

<I-- Default SOAP Message Factory (SOAP 1.1) -->
<bean id="nessageFactory" class="org.springfranework.ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<I-- SOAP 1.2 Message Factory -->
<bean i d="soapl2MessageFactory" class="org.springfranmework.ws. soap. saaj . Saaj SoapMessageFact ory" >
<property name="soapVersion">
<util:constant static-field="org.springfranework.ws. soap. SoapVer si on. SOAP_12"/ >
</ property>
</ bean>

By default Citrus will search for a bean with id 'messageFactory'. In case you intend to use
different identifiers you need to tell the SOAP client component which message factory to
use:

<citrus-ws:client id="soapdient"
request-url="http://l ocal host: 8090/ test"
nessage- f act or y="soapl2MessageFact ory"/ >

Tip

Up to now we have used a static endpoint request url for the SOAP message sender.
Besides that we can use dynamic endpoint uri in configuration. We just use an endpoint
uri resolver instead of the static request url like this:

<citrus-ws:client id="soapCient"
endpoi nt - resol ver =" dynamni cEndpoi nt Resol ver"
nessage- f act or y="soapl2MessageFact ory"/ >

<bean i d="dynan cEndpoi nt Resol ver"
cl ass="com consol . ci trus. endpoi nt. resol ver. Dynani cEndpoi nt Uri Resol ver"/>

The dynamicEndpointResolver bean must implement the EndpointUriResolver interface in
order to resolve dynamic endpoint uri values. Citrus offers a default implementation, the
DynamicEndpointUriResolver, which uses a specific message header for setting the
dynamic endpoint uri for each message. The message header needs to specify the
header citrus_endpoint_uri with a valid request uri. Just like this:

<header >
<el enent nane="citrus_endpoi nt _uri"
val ue="http://I ocal host: ${port}/ ${context}" />
</ header >

As you can see you can use dynamic test variables then in order to build the request uri to
use. The SOAP client evaluates the endpoint uri header and sends the message to this

Citrus Framework (2.5.2) 157

SOAP WebServices

server resource. You can use a different uri value then in different test cases and send
actions.

19.2. SOAP server

Every client need a server to talk to. When receiving SOAP messages we require a web server
instance listening on a port. Citrus is using an embedded Jetty server instance in combination with
the Spring Web Service API in order to accept SOAP request calls asa server. See how the Citrus
SOAP server is configured in the Spring configuration.

<citrus-ws:server id="helloSoapServer"

port="8080"
auto-start="true"
resour ce- base="src/it/resources"/>

The server component is able to start automatically when application starts up. In the example above
the server is listening for requests on port 8080. This setup uses the standard connector configuration
for the Jetty server. For detailed customization the Citrus Jetty server configuration also supports
explicit connector configurations (@connector and @connectors attributes). For more information
please see the Jetty connector documentation.

Test cases interact with this server instance via message channels by default. The server component
provides an inbound channel that holds incoming request messages. The test case can receive those
requests from the channel with a normal receive test action. In a second step the test case can
provide a synchronous response message as reply which will be automatically sent back to the
calling SOAP client as response.

The figure above shows the basic setup with inbound channel and reply channel. You as a tester
should not worry about this to much. By default you as a tester just use the server as synchronous
endpoint in your test case. This means that you simply receive a message from the server and send
a response back.

<t est case nanme="soapServer Test">
<actions>
<recei ve endpoi nt ="hel | oSoapServer">
<nessage>
<dat a>
[...]
</ dat a>
</ message>
</receive>

<send endpoi nt =" hel | oSoapServer">
<nessage>
<dat a>
[...]
</ dat a>
</ message>
</ send>
</ actions>
</testcase>

As you can see we reference the server id in both receive and send actions. The Citrus server
instance will automatically send the response back to the calling client. In most cases this is what you
need to simulate a SOAP server instance in Citrus. Of course we have some more customization
possibilities that we will go over later on. This customizations are optional so you can also skip the

Citrus Framework (2.5.2) 158

SOAP WebServices

next description on endpoint adapters if you are happy with just what you have learned about the
SOAP server component in Citrus.

Just like the HTTP server component the SOAP server component by default uses the channel
endpoint adapter in order to forward all incoming requests to an in memory message channel. This is
done completely behind the scenes. The Citrus configuration has become a lot easier here so you do
not have to configure this by default. When nothing else is set the test case does not worry about that
settings on the server and just uses the server id reference as synchronous endpoint.

Tip

The default channel endpoint adapter automatically creates an inbound message channel
where incoming messages are stored to internally. So if you need to clean up a server
that has already stored some incoming messages you can do this easily by purging the
internal message channel. The message channel follows a naming convention
{serverName}.inbound where {serverName} is the Spring bean name of the Citrus server
endpoint component. If you purge this internal channel in a before test nature you are sure
that obsolete messages on a server instance get purged before each test is executed.

However we do not want to loose the great extendability and customizing capabilities of the Citrus
server component. This is why you can optionally define the endpoint adapter implementation used
by the Citrus SOAP server. We provide several message endpoint adapter implementations for
different simulation strategies. With these endpoint adapters you should be able to generate proper
SOAP response messages for the client in various ways. Before we have a closer look at the
different adapter implementations we want to show how you can set a custom endpoint adapter on
the server component.

<citrus-ws:server id="hell oSoapServer"
port ="8080"
auto-start="true"
endpoi nt - adapt er =" enpt yResponseEndpoi nt Adapt er "
resour ce-base="src/it/resources"/>

<citrus:enpty-response-adapter id="enptyResponseEndpoi nt Adapter"/>

With this endpoint adapter configuration above we change the Citrus server behavior from scratch.
Now the server automatically sends back an empty SOAP response message every time. Setting a
custom endpoint adapter implementation with custom logic is easy as defining a custom endpoint
adapter Spring bean and reference it in the server attribute. You can read more about endpoint
adapters in Chapter 32, Endpoint adapter.

19.3. SOAP headers

SOAP defines several header variations that we discuss in the following sections. First of all we deal
with the special SOAP action header. In case we need to set this SOAP action header we simply
need to use the special header key called citrus_soap_acti on in our test. The special header key in
combination with a underlying SOAP client endpoint component constructs the SOAP action in the
SOAP message as intended.

<header >

<el enent name="citrus_soap_action" val ue="sayHello"/>
</ header >

Citrus Framework (2.5.2) 159

SOAP WebServices

Secondly a SOAP message is able to contain customized SOAP headers. These are key-value pairs
where the key is a qualified name (QName) and the value a normal String value.

<header >
<el ement nanme="{http://ww. consol . de/ sayHel | o} h1l: Operati on" val ue="sayHell 0"/ >
<el ement nanme="{http://ww. consol . de/ sayHel | o} hl: Request" val ue="Hel | oRequest" />
</ header >

The key is defined as qualified QName character sequence which has a mandatory XML namespace
and a prefix along with a header name. Last not least a SOAP header can contain whole XML
fragment values. The next example shows how to set these XML fragments as SOAP header in
Citrus:

<header >
<dat a>
<! [CDATA[
<User xm ns="http://ww. consol .de/ schemas/sayHel | 0" >
<User| d>123456789</ User | d>
<Handshake>S123456789</ Handshake>
</ User >
11>
</ dat a>
</ header >

You can also use external file resources to set this SOAP header XML fragment as shown in this last
example code:

<header >
<resource file="cl asspat h: request-soap- header.xm "/ >
</ header >

This completes the SOAP header possibilities for sending SOAP messages with Citrus. Of course
you can also use these variants in SOAP message header validation. You define expected SOAP
headers, SOAP action and XML fragments and Citrus will match incoming request to that. Just use
citrus_soap_action header key in your receiving message action and you validate this SOAP header
accordingly.

When validating SOAP header XML fragments you need to define the whole XML header fragment
as expected header data like this:

<recei ve endpoi nt =" soapMessageEndpoi nt ">
<nessage>
<dat a>
<! [CDATA[
<ResponseMessage xm ns="http://citrusframework. org/schem">
<resul t Code>OK</r esul t Code>
</ ResponseMessage>

11>
</ dat a>
</ nessage>
<header >
<dat a>
<! [CDATA]
<SOAP- ENV: Header
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ ">
<cust onHeader xml ns="http://citrusframework. org/ headerschema">
<correl ationld>${correl ationld}</correl ati onl d>
<appl i cationl d>${appli cati onl d}</applicationld>
<tracki ngl d>${tracki ngl d} </ tracki ngl d>
<servi cel d>${servi cel d} </ servi cel d>
<i nterfaceVersion>1. 0</interfaceVersi on>
<ti mest anp>@ gnor e@/ ti mest anp>
</ cust onHeader >
</ SOAP- ENV: Header >
11>
</ dat a>

<el ement nane="citrus_soap_action" val ue="doResponse"/ >

Citrus Framework (2.5.2) 160

SOAP WebServices

</ header >
</receive>

As you can see the SOAP XML header validation can combine header element and XML fragment
validation. This is also likely to be used when dealing with WS-Security message headers.

19.4. SOAP HTTP mime headers

Besides the SOAP specific header elements the HTTP mime headers (e.g. Content-Type,
Content-Length, Authorization) might be candidates for validation, too. When using HTTP as
transport layer the SOAP message may define those mime headers. The tester is able to send and
validate these headers inside the test case, although these HTTP headers are located outside of the
SOAP envelope. Let us first of all speak about validating the HTTP mime headers. This feature is not
enabled by default. We have enable this in our SOAP server configuration.

<citrus-ws:server id="hell oSoapServer"
port ="8080"
auto-start="true"
handl e- m nme- header s="t rue"
resour ce-base="src/it/resources"/>

With this configuration Citrus will handle all available mime headers and pass those to the test case
for normal header validation.

<ws: receive endpoi nt ="hel | oSoapServer">
<nessage>
<payl oad>
<SoapMessageRequest xm ns="http://ww. consol . de/ schemas/ sanpl e. xsd" >
<Oper ation>Val i date m ne header s</ Qper ati on>
</ SoapMessageRequest >
</ payl oad>
</ nessage>
<header >
<el ement nane="Content-Type" val ue="text/xm ; charset=utf-8"/>
</ header >
</ws:receive>

The validation of these HTTP mime headers is as usual now that we have enabled the mime header
handling in the SOAP server. The transport HTTP headers are available in the header just like the
normal SOAP header elements do. So you can validate the headers as usual.

So much for receiving and validating HTTP mime message headers with SOAP communication. Now
we want to send special mime headers on client side. We overwrite or add mime headers to our
sending action. We mark some headers with following prefix “citrus_http_". This tells the SOAP
client to add these headers to the HTTP header section outside the SOAP envelope. Keep in mind
that header elements without this prefix go right into the SOAP header section by default.

<ws: send endpoi nt ="soapd i ent">
[oool
<header >
<el ement nane="citrus_http_operation" val ue="foo"/>
</ header >

(-]

</ ws: send>

The listing above defines a HTTP mime header operation. The header prefix citrus_http_ is cut off
before the header goes into the HTTP header section. With this feature we can decide where exactly
our header information is located in our resulting client message.

Citrus Framework (2.5.2) 161

SOAP WebServices

19.5. SOAP Envelope handling

By default Citrus will remove the SOAP envelope in message converter. Following from that the
Citrus test case is independent from SOAP message formats and is not bothered with handling of
SOAP envelope at all. This is great in most cases but sometimes it might be mandatory to also see
the whole SOAP envelope inside the test case receive action. Therefore you can keep the SOAP
envelope for incoming messages by configuration on the SOAP server side.

<citrus-ws:server id="hell oSoapServer"
port="8080"
auto-start="true"
keep- soap- envel ope="true"/>

With this configuration Citrus will handle all available mime headers and pass those to the test case
for normal header validation.

<ws: receive endpoi nt ="hel | oSoapServer">
<nessage>
<payl oad>
<SOAP- ENV: Envel ope xml ns: SOAP- ENV="ht t p: / / schenmas. xnl soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Header />
<SOAP- ENV: Body>
<SoapMessageRequest xm ns="http://ww. consol . de/ schemas/ sanpl e. xsd" >
<COperation>Val i date m nme header s</ Operati on>
</ SoapMessageRequest >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>
</ payl oad>
</ nessage>
</ws:receive>

So now you are able to validate the whole SOAP envelope as is. This might be of interest in very
special cases. As mentioned by default the Citrus server will automatically remove the SOAP
envelope and translate the SOAP body to the message payload for straight forward validation inside
the test cases.

19.6. SOAP 1.2

By default Citrus components use SOAP 1.1 version. Fortunately SOAP 1.2 is supported same way.
As we already mentioned before the Citrus SOAP components do use a SOAP message factory for
creating messages in SOAP format.

<l-- SOAP 1.1 Message Factory -->
<bean i d="soapMessageFactory" class="org. springframework.ws. soap. saaj . Saaj SoapMessageFact ory" >
<property nane="soapVersi on">
<util:constant static-field="org.springframework.ws. soap. SoapVer si on. SOAP_11"/ >
</ property>
</ bean>

<l-- SOAP 1.2 Message Factory -->
<bean id="soapl2MessageFactory" class="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory" >
<property nanme="soapVersion">
<util:constant static-field="org.springframework.ws. soap. SoapVer si on. SOAP_12"/ >
</ property>
</ bean>

As you can see the SOAP message factory can either create SOAP 1.1 or SOAP 1.2 messages. This
is how Citrus can create both SOAP 1.1 and SOAP 1.2 messages. Of course you can have multiple
message factories configured in your project. Just set the message factory on a WebService client or
server component in order to define which version should be used.

Citrus Framework (2.5.2) 162

SOAP WebServices

<citrus-ws:client id="soapl2dient"
request-url="http://Ilocal host: 8080/ echo"
nmessage- f act ory="soapl2MessageFact ory"
ti meout ="1000"/>

<citrus-ws:server id="soapl2Server"
port ="8080"
auto-start="true"
nessage- f act or y="soapl2MessageFact ory"/ >

By default Citrus components do connect with a message factory called messageFactory no matter
what SOAP version this factory is using.

19.7. SOAP faults

SOAP faults describe a failed communication in SOAP WebServices world. Citrus is able to send and
receive SOAP fault messages. On server side Citrus can simulate SOAP faults with fault-code,
fault-reason, fault-actor and fault-detail. On client side Citrus is able to handle and validate SOAP
faults in response messages. The next section describes how to deal with SOAP faults in Citrus.

19.7.1. Send SOAP faults

As Citrus simulates SOAP server endpoints you also need to think about sending a SOAP fault to the
calling client. In case Citrus receives a SOAP request as a server you can respond with a proper
SOAP fault if necessary.

Please keep in mind that we use the citrus-ws extension for sending SOAP faults in our test case, as
shown in this very simple example:

<ws: send-faul t endpoi nt ="hel | oSoapServer" >
<ws: faul t>
<ws: faul t-code>{http://ww.citrusframework.org/faults}citrus: TEC-1000</ ws: faul t - code>
<ws: fault-string>lnvalid request</ws:fault-string>
<ws: faul t-act or >SERVER</ ws: f aul t - act or >
<ws: fault-detail >
<! [CDATA[
<Faul t Detai | xm ns="http://ww. consol . de/ schemas/ sayHel | 0. xsd" >
<Messagel d>${ nessagel d} </ Messagel d>
<Correl ationld>${correl ati onld}</Correl ationl d>
<Err or Code>TEC- 1000</ Er r or Code>
<Text >l nval id request </ Text >
</ Faul t Detai | >
11>
</ws:fault-detail >
</ws: faul t>
<ws: header >
<ws: el enent nanme="citrus_soap_action" val ue="sayHel |l 0"/ >
</ ws: header >
</ws:send-faul t>

The example generates a simple SOAP fault that is sent back to the calling client. The fault-actor and
the fault-detail elements are optional. Same with the soap action declared in the special Citrus
header ci trus_soap_acti on. In the sample above the fault-detail data is placed inline as XML data. As
an alternative to that you can also set the fault-detail via external file resource. Just use the file
attribute as fault detail instead of the inline CDATA definition.

<ws: send-fault endpoi nt ="hel | oSoapServer">
<ws: faul t>
<ws: faul t-code>{http://wmv citrusframework.org/faults}citrus: TEC 1000</ ws: f aul t - code>
<ws: faul t-string>lnvalid request</ws:fault-string>
<ws: faul t - act or >SERVER</ ws: f aul t - act or >
<ws: fault-detail file="classpath:nmyFaultDetail.xm"/>

Citrus Framework (2.5.2) 163

SOAP WebServices

</ws:fault>
<ws: header >
<ws: el enent nanme="citrus_soap_action" val ue="sayHel |l 0"/ >
</ ws: header >
</ ws: send-faul t >

The generated SOAP fault looks like follows:

HTTP/ 1.1 500 Internal Server Error

Accept: text/xm, text/html, image/gif, image/jpeg, *; g=.2, */*; Q=2
SOAPAct i on: "sayHel | o"

Cont ent - Type: text/xm; charset=utf-8

Cont ent - Lengt h: 680

Server: Jetty(7.0.0.preb)

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schemas. xnl soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Header / >
<SOAP- ENV: Body>
<SOAP- ENV: Faul t >
<faul tcode xm ns:citrus="http://ww.citrusfranework.org/faults">citrus: TEC 1000</f aul t code>
<faultstring xm :lang="en">lInvalid request</faultstring>
<det ai | >
<Faul t Detai | xm ns="http://ww. consol . de/ schenas/ sayHel | 0. xsd" >
<Messagel d>9277832563</ Messagel d>
<Correl ati onl d>4346806225</ Correl ati onl d>
<Er r or Code>TEC- 1000</ Er r or Code>
<Text >l nval i d request </ Text >
</ Faul t Det ai | >
</ detail >
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Important

Notice that the send action uses a special XML namespace (ws:send). This ws
namespace belongs to the Citrus WebService extension and adds SOAP specific features
to the normal send action. When you use such ws extensions you need to define the
additional namespace in your test case. This is usually done in the root <spring:beans>
element where we simply declare the citrus-ws specific namespace like follows.

<spring: beans xm ns="http://ww. citrusframework. org/schema/testcase"
xm ns: spring="http://ww.springfranmework. org/ schema/ beans"
xm ns:ws="http://ww. citrusfranework. org/ schena/ ws/testcase"
xsi : schenmalLocati on="http://wwm. spri ngframewor k. or g/ schema/ beans
http://wwm springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://wwm citrusframework. org/ schema/ t est case
http://wwm citrusframework. org/ schema/t est case/ ci trus-testcase. xsd
http://wwm citrusframework. org/ schema/ ws/ t est case
http://wwm citrusframework. org/ schema/ ws/ t est case/ ci trus-ws-testcase. xsd">

19.7.2. Receive SOAP faults

In case you receive SOAP response messages as a client endpoint you may need to handle and
validate SOAP faults in error situations. Citrus can validate SOAP faults with fault-code, fault-actor,
fault-string and fault-detail values.

As a client we send out a request and receive a SOAP fault as response. By default the client
sending action in Citrus throws a specific exception when the SOAP response is a SOAP fault
element. This exception is called SoapFaul t O i ent Excepti on coming from the Spring API. You as a
tester can assert this kind of exception in a test case in order to expect the SOAP error.

<assert class="org.springfranmework.ws. soap. client. SoapFaul tCl i ent Exception">
<send endpoi nt ="soapd ient">
<nessage>
<payl oad>

Citrus Framework (2.5.2) 164

SOAP WebServices

<SoapFaul t For ci ngRequest
xm ns="http://ww. consol . de/ schemas/ soap" >
<Message>Thi s is invalid</Mssage>
</ SoapFaul t For ci ngRequest >
</ payl oad>
</ nessage>
</ send>
</ assert>

The SOAP message sending action is surrounded by a simple assert action. The asserted exception
class is the SoapFaul t O i ent Exception that we have mentioned before. This means that the test
expects the exception to be thrown during the communication. In case the exception is missing the
test is fails.

So far we have used the Citrus core capabilities of asserting an exception. This basic assertion test
action is not able to offer direct access to the SOAP fault-code and fault-string values for validation.
The basic assert action simply has no access to the actual SOAP fault elements. Fortunately we can
use the citrus-ws namespace again which offers a special assert action implementation especially
designed for SOAP faults in this case.

<ws:assert fault-code="{http://wwm.citrusframework.org/faults}TEC 1001"
fault-string="Invalid request">
faul t - act or =" SERVER" >
<send endpoi nt ="soapCient">
<nessage>
<payl oad>
<SoapFaul t For ci ngRequest
xm ns="http://ww. consol . de/ schenas/ soap" >
<Message>Thi s is invalid</Mssage>
</ SoapFaul t For ci ngRequest >
</ payl oad>
</ message>
</ send>
</ws:assert>

The special assert action offers several attributes to validate the expected SOAP fault. Namely these
are "fault-code", "fault-string" and "fault-actor". The fault-code is defined as a QName string and is
mandatory for the validation. The fault assertion also supports test variable replacement as usual
(e.g. fault-code="{http://www.citrusframework.org/faults}${myFaultCode}").

The time you use SOAP fault validation you need to tell Citrus how to validate the SOAP faults.
Citrus needs an instance of a SoapFaul tValitator that we need to add to the Spring application
context. By default Citrus is searching for a bean with the id 'soapFaultValidator'.

<bean id="soapFaul t Val i dator" cl ass="com consol .citrus.ws.validation.Sinpl eSoapAttachnentValidator"/>

Citrus offers several reference implementations for these SOAP fault validators. These are:

e com.consol.citrus.ws.validation.SimpleSoapAttachmentValidator
» com.consol.citrus.ws.validation.SimpleSoapFaultValidator
» com.consol.citrus.ws.validation.XmlSoapFaultValidator

Please see the API documentation for details on the available reference implementations. Of course
you can also define your own SOAP validator logic (would be great if you could share your ideas!). In
the test case you can explicitly choose the validator to use:

<ws:assert fault-code="{http://ww.citrusframework.org/faults}TEC 1001"

faul t-string="Invalid request"
faul t-validator="nySpeci al SoapFaul t Val i dat or ">

Citrus Framework (2.5.2) 165

SOAP WebServices

[...]

</ ws: assert>

Important

Another important thing to notice when asserting SOAP faults is the fact, that Citrus needs
to have a SoapMessageFact ory available in the Spring application context. If you deal with
SOAP messaging in general you will already have such a bean in the context.

<bean id="nessageFactory" class="org.springfranework.ws. soap. saaj . Saaj SoapMessageFactory"/>

Choose one of Spring's reference implementations or some other implementation as
SOAP message factory. Citrus will search for a bean with id 'messageFactory' by default.
In case you have other beans with different identifiers please choose the messageFactory
in the test case assert action:

<ws:assert fault-code="{http://wwv.citrusframework.org/faults}TEC 1001"
faul t-string="Invalid request"
nessage- f act or y="nySpeci al MessageFact ory" >
[...]

</ ws: assert>

Important

Notice the ws specific namespace that belongs to the Citrus WebService extensions. As
the ws:assert action uses SOAP specific features we need to refer to the citrus-ws
namespace. You can find the namespace declaration in the root element in your test
case.

<spring: beans xm ns="http://ww. citrusframework. org/schema/testcase"
xm ns: spring="http://ww.springframework. org/ schema/ beans"
xm ns:ws="http://ww. citrusfranework. org/ schema/ ws/t est case"
xsi : schemaLocation="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusfranework. org/ schena/t est case
http://ww. citrusfranework. org/ schena/testcase/citrus-testcase. xsd
http://ww. citrusfranework. or g/ schena/ ws/ t est case
http://ww. ci trusfranmework. org/ schema/ ws/ t est case/ ci trus-ws-testcase. xsd">

Citrus is also able to validate SOAP fault details. See the following example for understanding how to
do it:

<ws:assert fault-code="{http://wwm.citrusframework.org/faults}TEC 1001"
fault-string="Invalid request">
<ws: faul t-detail >
<! [CDATA[
<Faul t Detail xm ns="http://ww. consol . de/ schenas/ soap" >
<Er r or Code>TEC- 1000</ Er r or Code>
<Text >l nval i d request</Text>
</ Faul t Detai | >
11>
</ws: fault-detail >
<send endpoi nt ="soapdient">
<nessage>
<payl oad>
<SoapFaul t For ci ngRequest
xm ns="http://ww. consol . de/ schemas/ soap" >
<Message>This is invalid</Mssage>
</ SoapFaul t For ci ngRequest >
</ payl oad>
</ nessage>
</ send>
</ws:assert>

Citrus Framework (2.5.2) 166

SOAP WebServices

The expected SOAP fault detail content is simply added to the ws:assert action. The
SoapFaul t Val i dat or implementation defined in the Spring application context is responsible for
checking the SOAP fault detail with validation algorithm. The validator implementation checks the
detail content to meet the expected template. Citrus provides some default SoapFaul t Val i dat or
implementations. Supported algorithms are pure String comparison
(com.consol.citrus.ws.validation.SimpleSoapFaultValidator) as well as XML tree walk-through
(com.consol.citrus.ws.validation.XmlSoapFaultValidator).

When using the XML validation algorithm you have the complete power as known from normal
message validation in receive actions. This includes schema validation or ignoring elements for
instance. On the fault-detail element you are able to add some validation settings such as
schema-validation=enabled/disabled, custom schema-repository and so on.

<ws:assert fault-code="{http://ww.citrusframework.org/faults}TEC 1001"
fault-string="Invalid request">
<ws: fault-detail schenm-validation="false">
<! [CDATA[
<Faul t Detail xm ns="http://ww. consol . de/ schenas/ soap" >
<Er r or Code>TEC- 1000</ Er r or Code>
<Text >l nvalid request</Text>
</ Faul t Det ai | >
11>
</ws: fault-detail >
<send endpoi nt ="soapdient">
[ooo]
</ send
</ ws: assert>

Please see also the Citrus APl documentation for available validator implementations and validation
algorithms.

So far we have used assert action wrapper in order to catch SOAP fault exceptions and validate the
SOAP fault content. Now we have an alternative way of handling SOAP faults in Citrus. With
exceptions the send action aborts and we do not have a receive action for the SOAP fault. This might
be inadequate if we need to validate the SOAP message content (SOAPHeader and SOAPBody)
coming with the SOAP fault. Therefore the web service message sender component offers several
fault strategy options. In the following we discuss the propagation of SOAP fault as messages to the
receive action as we would do with normal SOAP messages.

<citrus-ws:client id="soapCient"
request-url="http://Ilocal host: 8090/ test"
faul t-strategy="propagateError"/>

We have configured a fault strategy propagateError so the message sender will not raise client
exceptions but inform the receive action with SOAP fault message contents. By default the fault
strategy raises client exceptions (fault-strategy=throwsException).

So now that we do not raise exceptions we can leave out the assert action wrapper in our test.
Instead we simply use a receive action and validate the SOAP fault like this.

<send endpoi nt ="soapCient">
<nessage>
<payl oad>
<SoapFaul t For ci ngRequest xm ns="http://ww. consol . de/ schenas/ sanpl e. xsd" >
<Message>Thi s is invalid</Mssage>
</ SoapFaul t For ci ngRequest >
</ payl oad>
</ nessage>
</ send>

<recei ve endpoi nt="soapCient" tineout="5000">
<message>

Citrus Framework (2.5.2) 167

SOAP WebServices

<payl oad>
<SOAP- ENV: Faul t xm ns: SOAP- ENV="ht t p: / / schemas. xnm soap. or g/ soap/ envel ope/ ">
<faul tcode xm ns: Cl TRUS="htt p://citrus. org/ soap">Cl TRUS: ${ soapFaul t Code} </ f aul t code>
<faul tstring xm:|ang="en">${soapFaul t String}</faul tstring>
</ SOAP- ENV: Faul t >
</ payl oad>
</ nessage>
</receive>

So choose the preferred way of handling SOAP faults either by asserting client exceptions or
propagating fault messages to the receive action on a SOAP client.

19.7.3. Multiple SOAP fault details

SOAP fault messages can hold multiple SOAP fault detail elements. In the previous sections we
have used SOAP fault details in sending and receiving actions as single element. In order to meet
the SOAP specification Citrus is also able to handle multiple SOAP fault detail elements in a
message. You just use multiple fault-detail elements in your test action like this:

<ws: send-faul t endpoi nt ="hel | oSoapServer" >
<ws: fault>
<ws: faul t-code>{http://ww.citrusframework. org/faults}citrus: TEC-1000</ ws: f aul t - code>
<ws: fault-string> nvalid request</ws:fault-string>
<ws: faul t -act or >SERVER</ ws: f aul t - act or >
<ws: fault-detail >
<! [CDATA[
<Faul t Detai |l xm ns="http://ww. consol .de/ schenas/ sayHel | 0. xsd" >
<Messagel d>${ messagel d} </ Messagel d>
<Correl ationld>${correl ati onld}</Correl ati onl d>
<Er r or Code>TEC- 1000</ Er r or Code>
<Text>lnval i d request </ Text >
</ Faul t Det ai | >
11>
</ws:fault-detail >
<ws: fault-detail >
<! [CDATA[
<ErrorDetail xm ns="http://ww.consol.de/schenas/sayHel | 0. xsd">
<Er r or Code>TEC- 1000</ Er r or Code>
</ ErrorDetail >
1>
</ws:faul t-detail>
</ws: fault>
<ws: header >
<ws: el enent nanme="citrus_soap_action" val ue="sayHel |l 0"/ >
</ ws: header >
</ws:send-faul t>

This will result in following SOAP envelope message:

HTTP/ 1.1 500 Internal Server Error

Accept: text/xm, text/html, inmage/gif, inage/jpeg, *; g=.2, */*; g=.
SOAPAct i on: "sayHel | 0"

Cont ent - Type: text/xm; charset=utf-8

Cont ent - Lengt h: 680

Server: Jetty(7.0.0.preb)

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schenas. xnl soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Header / >
<SOAP- ENV: Body>
<SOAP- ENV: Faul t >
<faul tcode xm ns:citrus="http://ww.citrusfranmework.org/faults">citrus: TEC- 1000</ f aul t code>
<faultstring xm:lang="en">lInvalid request</faultstring>
<det ai | >
<Faul t Detai | xm ns="http://ww. consol . de/ schemas/ sayHel | 0. xsd" >
<Messagel d>9277832563</ Messagel d>
<Correl ati onl d>4346806225</ Correl ati onl d>
<Err or Code>TEC- 1000</ Er r or Code>
<Text >l nval i d request </ Text >
</ Faul t Det ai | >
<ErrorDetail xm ns="http://ww.consol.de/schemas/sayHel | 0. xsd">
<Er r or Code>TEC- 1000</ Er r or Code>
</ErrorDetail >

Citrus Framework (2.5.2) 168

SOAP WebServices

</ detail>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Of course we can also expect several fault detail elements when receiving a SOAP fault.

<ws:assert fault-code="{http://ww.citrusframework.org/faults}TEC 1001"
fault-string="Invalid request">
<ws: faul t-detail schema-validation="false">
<! [CDATA[
<Faul t Detail xm ns="http://ww.consol . de/ schenas/ soap" >
<Err or Code>TEC- 1000</ Er r or Code>
<Text >l nvalid request </ Text >
</ Faul t Det ai | >
11>
</ws:fault-detail>
<ws: fault-detail >
<! [CDATA[
<ErrorDetail xm ns="http://ww.consol.de/schenas/soap">
<Er r or Code>TEC- 1000</ Er r or Code>
</ErrorDetail >
11>
</ws:fault-detail >
<send endpoi nt ="soapdient">
[...]
</ send
</ws:assert>

As you can see we can individually use validation settings for each fault detail. In the example above
we disabled schema validation for the first fault detail element.

19.8. Send HTTP error codes with SOAP

The SOAP server logic in Citrus is able to simulate pure HTTP error codes such as 404 "Not found"
or 500 "Internal server error". The good thing is that the Citrus server is able to receive a request for
proper validation in a receive action and then simulate HTTP errors on demand.

The mechanism on HTTP error code simulation is not different to the usual SOAP request/response
handling in Citrus. We receive the request as usual and we provide a response. The HTTP error
situation is simulated according to the special HTTP header citrus_http_status in the Citrus SOAP
response definition. In case this header is set to a value other than 200 OK the Citrus SOAP server
sends an empty SOAP response with HTTP error status code set accordingly.

<recei ve endpoi nt ="hel | oSoapServer">
<nessage>
<payl oad>
<Message xm ns="http://consol .de/schemas/sanpl e. xsd">
<Text>Hel | o SOAP server </ Text >
</ Message>
</ payl oad>
</ nessage>
</receive>

<send endpoi nt ="hel | oSoapSer ver" >
<nessage>
<dat a></ dat a>
</ message>
<header >
<el enent name="citrus_http_status_code" val ue="500"/>
</ header >
</ send>

The SOAP response must be empty and the HTTP status code is set to a value other than 200, like
500. This results in a HTTP error sent to the calling client with error 500 "Internal server error"”.

Citrus Framework (2.5.2) 169

SOAP WebServices

19.9. SOAP attachment support

Citrus is able to add attachments to a SOAP request on client and server side. As usual you can
validate the SOAP attachment content on a received SOAP message. The next chapters describe
how to handle SOAP attachments in Citrus.

19.9.1. Send SOAP attachments

As client Citrus is able to add attachments to the SOAP message. | think it is best to go straight into
an example in order to understand how it works.

<ws: send endpoi nt ="soapd i ent">
<nessage>
<payl oad>
<SoapMessageW t hAt t achnent xm ns="http://consol . de/ schemas/ sanpl e. xsd" >
<Cper ati on>Read the attachnment </ Operati on>
</ SoapMessageW t hAt t achnent >
</ payl oad>
</ message>
<ws: attachnent content-id="M/SoapAttachment" content-type="text/plain">
<ws:resource file="classpath: conf consol/citrus/ws/soapAttachment.txt"/>
</ws: attachment >
</ ws: send>

Note

In the previous chapters you may have already noticed the citrus-ws namespace that
stands for the SOAP extensions in Citrus. Please include the citrus-ws namespace in your
test case as described earlier in this chapter so you can use the attachment support.

The special send action of the SOAP extension namespace is aware of SOAP attachments. The
attachment content usually consists of a content-id a content-type and the actual content as plain text
or binary content. Inside the test case you can use external file resources or inline CDATA sections
for the attachment content. As you are familiar with Citrus you may know this already from other
actions.

Citrus will construct a SOAP message with the SOAP attachment. Currently only one attachment per
message is supported.

19.9.2. Receive SOAP attachments

When Citrus calls SOAP WebServices as a client we may receive SOAP responses with
attachments. The tester can validate those received SOAP messages with attachment content quite
easy. As usual let us have a look at an example first.

<ws:recei ve endpoi nt="soapd ient">
<nessage>
<payl oad>
<SoapMessageW t hAt t achnent Request xm ns="http://consol . de/ schemas/ sanpl e. xsd" >
<Cper ati on>Read the attachnment </ Operati on>
</ SoapMessageW t hAt t achnent Request >
</ payl oad>
</ nessage>
<ws: attachnent content-id="M/SoapAttachment"
content-type="text/plain"
val i dat or =" mySoapAt t achnment Val i dat or " >
<ws:resource file="classpath: conf consol/citrus/ws/soapAttachment.txt"/>
</ws: attachnment >
</ws:receive>

Citrus Framework (2.5.2) 170

SOAP WebServices

Again we use the Citrus SOAP extension namespace with the specific receive action that is aware of
SOAP attachment validation. The tester can validate the content-id, the content-type and the
attachment content. Instead of using the external file resource you could also define an expected
attachment template directly in the test case as inline CDATA section.

Note

The ws:attachment element specifies a validator instance. This validator determines how
to validate the attachment content. SOAP attachments are not limited to XML content.
Plain text content and binary content is possible, too. So each SOAP attachment
validating action can use a different SoapAttachnentVvalidator instance which is
responsible for validating and comparing received attachments to expected template
attachments. In the Citrus configuration the validator is set as normal Spring bean with the
respective identifier.

<bean i d="soapAttachnent Val i dator" class="com consol.citrus.ws.validation. Si npl eSoapAttachnentValidator"/>
<bean i d="nySoapAttachnentValidator" class="com conpany.ws. val i dati on. M/SoapAttachnent Val i dator"/>

You can define several validator instances in the Citrus configuration. The validator with
the general id "soapAttachmentValidator" is the default validator for all actions that do not
explicitly set a validator instance. Citrus offers a set of reference validator
implementations. The Sinpl eSoapAttachnentValidator will use a simple plain text
comparison. Of course you are able to add individual validator implementations, too.

19.9.3. SOAP MTOM support

MTOM (Message Transmission Optimization Mechanism) enables you to send and receive large
SOAP message content using streamed data handlers. This optimizes the resource allocation on
server and client side where not all data is loaded into memory when marshalling/unmarshalling the
message payload data. In detail MTOM enabled messages do have a XOP package inside the
message payload replacing the actual large content data. The content is then streamed aas separate
attachment. Server and client can operate with a data handler providing access to the streamed
content. This is very helpful when using large binary content inside a SOAP message for instance.

Citrus is able to both send and receive MTOM enabled SOAP messages on client and server. Just
use the mtom-enabled flag when sending a SOAP message:

<ws: send endpoi nt ="soapM onCl i ent" ntom enabl ed="true">
<nessage>
<dat a>
<! [CDATA[
<i mage: addl mage xm ns:i mage="http://ww. ci trusframework. org/i nageServi ce/">
<i mage>ci d: | MAGE</ | nage>
</i mage: addl mage>
11>
</ dat a>
</ message>
<ws: attachment content-id="1MAGE" content-type="application/octet-streani>
<ws:resource file="classpath: cont consol/citrus/hugel mageDat a. png"/ >
</ ws: at t achment >
</ ws: send>

As you can see the example above sends a SOAP message that contains a large binary image
content. The actual binary image data is referenced with a content id marker cid:IMAGE inside the
message payload. The actual image content is added as attachment with a separate file resource.

Citrus Framework (2.5.2) 171

SOAP WebServices

Important is here the content-id which matches the id marker in the SOAP message payload
(IMAGE).

Citrus builds a proper SOAP MTOM enabled message automatically adding the XOP package inside
the message. The binary data is sent as separate SOAP attachment accordingly. The resulting
SOAP message looks like this:

<SOAP- ENV: Envel ope xnl ns: SOAP- ENV="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Header ></ SOAP- ENV: Header >
<SOAP- ENV: Body>
<i nage: addl mage xmi ns:image="http://wwm. citrusframework. org/i mageService/">
<i mage><xop: | ncl ude xm ns: xop="http://ww. w3. or g/ 2004/ 08/ xop/ i ncl ude" href="ci d: | MAGE"/ ></ | mage>
</'i mage: addl mage>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

On the server side Citrus is also able to handle MTOM enabled SOAP messages. In a server receive
action you can specify the MTOM SOAP attachment content as follows.

<ws: receive endpoi nt="soapM onServer" ntom enabl ed="true">
<nessage schenm-validation="fal se">
<dat a>
<! [CDATA[
<i mage: addl mage xm ns:i mage="http://ww. ci trusframework. org/i mageServi ce/ ">
<i mage><xop: | ncl ude xm ns: xop="http://ww. w3. or g/ 2004/ 08/ xop/ i ncl ude" href="ci d: | MAGE"/ ></ i mage>
</ i mage: addl mage>
11>
</ dat a>
</ message>
<ws: attachment content-id="1MAGE" content-type="application/octet-streant>
<ws:resource file="classpath: conl consol/citrus/hugel mageDat a. png"/ >
</ws: attachnment >
</ws:receive>

We define the MTOM attachment content as separate SOAP attachment. The content-id is
referenced somewhere in the SOAP message payload data. At runtime Citrus will add the XOP
package definition automatically and perform validation on the message and its streamed MTOM
attachment data.

Next thing that we have to talk about is inline MTOM data. This means that the content should be
added as either base64Binary or hexBinary encoded String data directly to the message content.
See the following example that uses the mtom-inline setting:

<ws: send endpoi nt ="soapM onCl i ent" ntom enabl ed="true">

<nessage>

<dat a>

<! [CDATA[
<i mage: addl mage xni ns:image="http://wwm citrusframework. org/i mageService/">
<i mage>ci d: | MAGE</ i mage>
<i con>ci d: | CON</ i con>
</ i mage: addl mage>
11>

</ dat a>
</ message>
<ws: attachment content-id="IMAGE" content-type="application/octet-streant

ntominline="true" encodi ng-type="base64Bi nary">

<ws:resource file="classpath: conl consol/citrus/inage.png"/>
</ ws: attachment >
<ws: attachnment content-id="1CON' content-type="application/octet-streant

ntominline="true" encodi ng-type="hexBi nary">

<ws:resource file="classpath: con consol/citrus/icon.ico"/>

</ws: attachnment >
</ ws: send>

The listing above defines two inline MTOM attachments. The first attachment cid:IMAGE uses the
encoding type base64Binary which is the default. The second attachment cid:ICON uses hexBinary
encoding. Both attachments are added as inline data before the message is sent. The final SOAP

Citrus Framework (2.5.2) 172

SOAP WebServices

message looks like follows:

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schenas. xnm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Header ></ SOAP- ENV: Header >
<SOAP- ENV: Body>
<i mage: addl nage xm ns:i nmage="http://ww. ci trusframework. org/i nageService/">
<i mage>VChpcyBpcyBhl GlpbnfFyeSBpbWnZSBhdHRhY2ht ZW501 QpWYXIpYWIsZXMgJ Xt 0ZXNOf SBza®1bGQgbnmd0I GJI | HII cGxhY2Vkl Q=
<i con>5468697320697320612062696E6172792069636F6E206174746163686D656E74210A5661726961626C657320257B746573747D20
</i mage: addl mage>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

The image content is a base64Binary String and the icon a heyBinary String. Of course this
mechanism also is supported in receive actions on the server side where the expected message
content is added als inline MTOM data before validation takes place.

19.10. SOAP client basic authentication

As a SOAP client you may have to use basic authentication in order to access a server resource.
Basic authentication via HTTP stands for username/password authentication where the credentials
are transmitted in the HTTP request header section as base64 encoded entry. As Citrus uses the
Spring WebService stack we can use the basic authentication support there. We set the user
credentials on the HitpClient message sender which is used inside the Spring WebSer vi ceTenpl at e.

Citrus provides a comfortable way to set the HTTP message sender with basic authentication
credentials on the websSer vi ceTenpl at e. Just see the following example and learn how to do that.

<citrus-ws:client id="soapdient"
request-url="http://local host: 8090/ test"
nessage- sender ="basi cAuthd ient"/>

<bean id="basi cAuthd ient" class="org.springfranmework.ws.transport.http. HttpConponent sMessageSender ">
<property nanme="aut hScope" >
<bean cl ass="org. apache. http. aut h. Aut hScope" >
<constructor-arg val ue="Il ocal host"/>
<constructor-arg val ue="8090"/ >
<constructor-arg val ue=""/>
<constructor-arg val ue="basic"/>
</ bean>
</ property>
<property nanme="credential s">
<bean cl ass="org. apache. http. aut h. User nanePasswor dCr edenti al s">
<constructor-arg val ue="soneUser nane"/ >
<constructor-arg val ue="sonePassword"/ >
</ bean>
</ property>
</ bean>

The above configuration results in SOAP requests with authentication headers properly set for basic
authentication. The special message sender takes care on adding the proper basic authentication
header to each request that is sent with this Citrus message sender. By default preemtive
authentication is used. The message sender only sends a single request to the server with all
authentication information set in the message header. The request which determines the
authentication scheme on the server is skipped. This is why you have to add some auth scope so
Citrus can setup an authentication cache within the HTTP context in order to have preemtive
authentication.

Tip

You can also skip the message sender configuration and set the Authorization header on
each request in your send action definition on your own. Be aware of setting the header

Citrus Framework (2.5.2) 173

SOAP WebServices

as HTTP mime header using the correct prefix and take care on using the correct basic
authentication with base64 encoding for the username:password phrase.

<header >

<el ement nanme="citrus_http_Authorization" val ue="Basi ¢ ¢c29t ZWzZXJuYWLI OnNvbWQYXNzd29yZA=="/ >
</ header >

For base64 encoding you can also use a Citrus function, see Section 33.23,
“citrus:encodeBase64()”

19.11. SOAP server basic authentication

When providing SOAP WebService server functionality Citrus can also set basic authentication so all
clients need to authenticate properly when accessing the server resource.

<citrus-ws:server id="sinpl eSoapServer"
port="8080"
auto-start="true"
resour ce-base="src/it/resources"
securi ty-handl er ="basi cSecurityHandl er"/ >

<bean id="securityHandl er" class="com consol.citrus.ws.security. SecurityHandl er Factory">
<property name="users">
<list>
<bean cl ass="com consol .citrus.ws.security.User">
<property nanme="nanme" val ue="citrus"/>
<property nanme="password" val ue="secret"/>
<property nanme="rol es" val ue="C trusRol e"/>
</ bean>
</list>
</ property>
<property nanme="constraints">
<r|"ap>
<entry key="/fool/*">
<bean cl ass="com consol . citrus.ws. security. Basi cAut hConstraint">
<constructor-arg val ue="Ci trusRol e"/>
</ bean>
</entry>
</ map>
</ property>
</ bean>

We have set a security handler on the server web container with a constraint on all resources with
ffoo/*. Following from that the server requires basic authentication for these resources. The granted
users and roles are specified within the security handler bean definition. Connecting clients have to
set the basic auth HTTP header properly using the correct user and role for accessing the Citrus
server now.

You can customize the security handler for your very specific needs (e.g. load users and roles with
JDBC from a database). Just have a look at the code base and inspect the settings and properties
offered by the security handler interface.

Tip

This mechanism is not restricted to basic authentication only. With other settings you can
also set up digest or form-based authentication constraints very easy.

Citrus Framework (2.5.2) 174

SOAP WebServices

19.12. WS-Addressing support

The web service stack offers a lot of different technologies and standards within the context of SOAP
WebServices. We speak of WS-* specifications in particular. One of these specifications deals with
addressing. On client side you may add wsa header information to the request in order to give the
server instructions how to deal with SOAP faults for instance.

In Citrus WebService client you can add those header information using the common configuration
like this:

<citrus-ws:client id="soapCient"
request-url="http://local host: 8090/test"
nmessage- convert er =" wsAddr essi ngMessageConverter"/ >

<bean i d="wsAddr essi ngMessageConverter" class="com consol .citrus.ws. message. converter.\WAddressi ngMessageConverter">
<constructor-arg>
<bean i d="wsAddr essi ng200408" cl ass="com consol . citrus. ws. addr essi ng. WAddr essi ngHeader s" >
<property nanme="version" val ue="VERSI ON200408"/ >
<property name="action"
val ue="http://citrus. sanpl e/ sayHel | 0"/ >
<property name="to"
val ue="http://citrus. sanpl e/ server"/>
<property nanme="froni>
<bean cl ass="org. spri ngfranmewor k. ws. soap. addr essi ng. cor e. Endpoi nt Ref er ence" >
<constructor-arg value="http://citrus.sanple/client"/>
</ bean>
</ property>
<property name="replyTo">
<bean cl ass="org. spri ngfranmewor k. ws. soap. addr essi ng. cor e. Endpoi nt Ref er ence" >
<constructor-arg value="http://citrus.sanple/client"/>
</ bean>
</ property>
<property nanme="faul t To">
<bean cl ass="org. spri ngfranmewor k. ws. soap. addr essi ng. cor e. Endpoi nt Ref er ence" >
<constructor-arg value="http://citrus.sanple/fault/resolver"/>
</ bean>
</ property>
</ bean>
</ constructor-arg>
</ bean>

Note

The WS-Addressing specification knows several versions. Supported version are
VERSION10 (WS-Addressing 1.0 May 2006) and VERSION200408 (August 2004 edition
of the WS-Addressing specification).

The addressing headers find a place in the SOAP message header with respective namespaces and
values. A possible SOAP request with WS addressing headers looks like follows:

<SOAP- ENV: Envel ope xnl ns: SOAP- ENV="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Header xml ns:wsa="http://schemas. xnl soap. or g/ ws/ 2004/ 08/ addr essi ng" >

<wsa: Frons
<wsa: Address>http://citrus. sanpl e/client</wsa: Addr ess>
</ wsa: Frone
<wsa: Repl yTo>
<wsa: Address>http://citrus. sanpl e/client</wsa: Addr ess>
</ wsa: Repl yTo>
<wsa: Faul t To>
<wsa: Address>http://citrus. sanpl e/fault/resol ver </ wsa: Addr ess>
</wsa: Faul t To>
<wsa: Action>http://citrus. sanpl e/ sayHel | o</ wsa: Acti on>
<wsa: Messagel D>ur n: uui d: 4c4d8af 2- b402- 4bc0- a2e3- ad33b910e394</ wsa: Messagel D>
</ SOAP- ENV: Header >
<SOAP- ENV: Body>
<cit:Hell oRequest xmins:cit="http://citrus/sanple/sayHell o">
<cit:Text>Hello Citrus!</cit: Text>

Citrus Framework (2.5.2) 175

SOAP WebServices

</cit:Hell oRequest >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Important

The message id property is automatically generated for each request. If you need to set a
static message id you can do so in Spring application context message sender
configuration.

19.13. SOAP client fork mode

SOAP over HTTP uses synchronous communication by nature. This means that sending a SOAP
message in Citrus over HTTP will automatically block further test actions until the synchronous HTTP
response has been received. In test cases this synchronous blocking might cause problems for
several reasons. A simple reason would be that you need to do further test actions in parallel to the
synchronous HTTP SOAP communication (e.g. simulate another backend system in the test case).

You can separate the SOAP send action from the rest of the test case by using the "fork" mode. The
SOAP client will automatically open a new Java Thread for the synchronous communication and the
test is able to continue with execution although the synchronous HTTP SOAP response has not
arrived yet.

<ws: send endpoi nt ="soapdient" fork="true">
<nessage>
<payl oad>
<SoapRequest xm ns="http://ww. consol . de/ schenas/ sanpl e. xsd" >
<Oper ati on>Read the attachnent</Operation>
</ SoapRequest >
</ payl oad>
</ nessage>
</ws: send>

With the "fork™ mode enabled the test continues with execution while the sending action waits for the
synchronous response in a separate Java Thread. You could reach the same behaviour with a
complex <parallel>/<sequential> container construct, but forking the send action is much more
straight forward.

Important

It is highly recommended to use a proper "timeout" setting on the SOAP receive action
when using fork mode. The forked send operation might take some time and the
corresponding receive action might run into failure as the response was has not been
received yet. The result would be a broken test because of the missing response
message. A proper "timeout” setting for the receive action solves this problem as the
action waits for this time period and occasionally repeatedly asks for the SOAP response
message. The following listing sets the receive timeout to 10 seconds, so the action waits
for the forked send action to deliver the SOAP response in time.

<ws: receive endpoi nt="soapCient" tineout="10000">
<nessage>
<payl oad>
<SoapResponse xm ns="http://ww. consol . de/ schenas/ sanpl e. xsd" >
<Operation>Di d sonet hi ng</ Oper ati on>
<Success>t rue</ Success>
</ SoapResponse>
</ payl oad>

Citrus Framework (2.5.2) 176

SOAP WebServices

</ message>
</ws:receive>

19.14. SOAP servlet context customization

For highly customized SOAP server components in Citrus you can define a full servlet context
configuration file. Here you have the full power to add Spring endpoint mappings and custom
endpoint implementations. You can set the custom servlet context as external file resource on the
server component:

<citrus-ws:client id="soapCient"
context-config-1ocation="classpath:citrus-ws-servlet.xm"
nessage- f act ory="soapllMessageFact ory"/>

Now let us have a closer look at the context-config-location attribute. This configuration defines the
Spring application context file for endpoints, request mappings and other SpringWs specific
information. Please see the official SpringWS documentation for details on this Spring based
configuration. You can also just copy the following example application context which should work for
you in general.

<beans xm ns="http://ww. springfranmework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schemaLocat i on="
http://ww. spri ngfranmework. or g/ schena/ beans
http://ww. spri ngfranmework. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean id="1o0ggi ngl nterceptor"
cl ass="org. springframewor k. ws. server. endpoi nt. i nterceptor.Payl oadLoggi ngl nt ercept or">
<descri pti on>
This interceptor |ogs the nessage payl oad.
</ descri ption>
</ bean>

<bean i d="hel | oServi cePayl oadMappi ng"
cl ass="org. springframewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot QNaneEndpoi nt Mappi ng" >
<property nanme="mappi ngs">
<pr ops>
<prop
key="{http://ww. consol . de/ schenmas/ sayHel | o} Hel | oRequest " >
hel | oSer vi ceEndpoi nt
</ pr op>
</ props>
</ property>
<property nanme="interceptors">
<list>
<ref bean="1o0ggi ngl nterceptor"/>
</list>
</ property>
</ bean>

<bean i d="hel | oServi ceEndpoi nt" cl ass="com consol . citrus.ws.server.\WbServi ceEndpoi nt">
<property nanme="endpoi nt Adapter" ref="stati cResponseEndpoi nt Adapter"/>
</ bean>

<citrus:static-response-adapter id="stati cResponseEndpoi nt Adapter">
<ci trus: payl oad>
<! [CDATA[
<Hel | oResponse xm ns="http://ww. consol . de/ schemas/ sayHel | 0" >
<Messagel d>123456789</ Messagel d>
<Correl ati onl d>CORR123456789</ Correl ati onl d>
<User >WebSer ver </ User >
<Text>Hel | o User </ Text >
</ Hel | oResponse>
11>
</ ci trus: payl oad>
<ci trus: header >
<citrus:el ement nanme="{http://ww. consol . de/ schemas/sanpl es/ sayHel | 0. xsd} ns0: Oper at i on"

Citrus Framework (2.5.2) 177

SOAP WebServices

val ue="sayHel | oResponse"/ >

<ci trus: el ement nanme="{http://ww. consol . de/ schemas/ sanpl es/ sayHel | 0. xsd} ns0: Request "
val ue="Hel | oRequest "/ >

<ci trus:el enment name="citrus_soap_action"
val ue="sayHel | 0"/ >

</ citrus: header>
</citrus:static-response-adapter>
</ beans>

The program listing above describes a normal SpringWS request mapping with endpoint
configurations. The mapping is responsible to forward incoming requests to the endpoint which will
handle the request and provide a proper response message. First of all we add a logging interceptor
to the context so all incoming requests get logged to the console first. Then we use a payload
mapping (PayloadRootQNameEndpointMapping) in order to map all incoming ' Hel | oRequest' SOAP
messages to the ' helloServiceEndpoint'. Endpoints are of essential nature in Citrus SOAP
WebServices implementation. They are responsible for processing a request in order to provide a
proper response message that is sent back to the calling client. Citrus uses the endpoint in
combination with a message endpoint adapter implementation.

The endpoint works together with the message endpoint adapter that is responsible for providing a
response message for the client. The various message endpoint adapter implementations in Citrus
were already discussed in Chapter 32, Endpoint adapter.

In this example the ' hel | oServi ceEndpoi nt* uses the 'static-response-adapter' which is always
returning a static response message. In most cases static responses will not fit the test scenario and
you will have to respond more dynamically.

Regardless of which message endpoint adapter setup you are using in your test case the endpoint
transforms the response into a proper SOAP message. You can add as many request mappings and
endpoints as you want to the server context configuration. So you are able to handle different request
types with one single Jetty server instance.

That's it for connecting with SOAP WebServices! We saw how to send and receive SOAP messages
with Jetty and Spring WebServices. Have a look at the samples coming with your Citrus archive in
order to learn more about the SOAP message handling.

Citrus Framework (2.5.2) 178

Chapter 20. FTP support

Citrus is able to start a little ftp server accepting incoming client requests. Also Citrus is able to call
FTP commands as a client. The next sections deal with FTP connectivity.

Note

The FTP components in Citrus are kept in a separate Maven module. So you should add
the module as Maven dependency to your project accordingly.

<dependency>
<gr oupl d>com consol . ci t rus</ groupl d>
<artifactld>citrus-ftp</artifactld>
<ver si on>2. 5. 2</ ver si on>

</ dependency>

As Citrus provides a customized FTP configuration schema for the Spring application
context configuration files we have to add name to the top level beans element. Simply
include the ftp-config namespace in the configuration XML files as follows.

<beans xm ns="http://wwmv spri ngfranmework. or g/ schema/ beans”
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns:citrus="http://ww. citrusframework. org/schema/ config"
xm ns:citrus-ftp="http://wwmv citrusframework. org/schema/ftp/config"
xsi : schenmalLocati on="
http://ww. springfranework. or g/ schena/ beans
http://ww. springfranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. citrusfranework. org/ schena/ config
http://ww. ci trusfranework. or g/ schema/ confi g/ citrus-config. xsd
http://ww. citrusfranework. org/ schena/ http/config
http://wwmv citrusframework. org/ schema/ftp/config/citrus-ftp-config.xsd">

[...]

</ beans>

Now we are ready to use the customized Citrus FTP configuration elements with the
citrus-ftp namespace prefix.

20.1. FTP client

We want to use Citrus fo connect to dome FTP server as a client sending commands such as
creating a directory or listing all files. Citrus offers a client component doing exactly this FTP client
connection.

<citrus-ftp:client id="ftpdient"
host ="1 ocal host"
port="22222"
user name="adm n"
passwor d="admi n"
ti meout =" 10000"/ >

The configuration above describes a Citrus ftp client connected to a ftp server with
ftp://localhost:22222. For authentication username and password are defined as well as the global
connection timeout. The client will automatically send username and password for proper
authentication to the server when opening a new connection.

Citrus Framework (2.5.2) 179

FTP support

In a test case you are now able to use the client to push commands to the server.

<send endpoint="ftpdient" fork="true">
<nessage>
<dat a></ dat a>
</ message>
<header >
<el ement nane="citrus_ftp_conmmand" val ue="PWD'/>
<el ement nane="citrus_ftp_argunments" val ue="test"/>
</ header >
</ send>

<recei ve endpoi nt="ftpdient">
<nessage type="pl ai ntext">
<dat a>PWD</ dat a>
</ message>
<header >
<el enent nanme="citrus_ftp_command" val ue="PWD'/>
<el ement nanme="citrus_ftp_arguments" val ue="test"/>
<el ement nanme="citrus_ftp_reply_code" val ue="257"/>
<el ement name="citrus_ftp_reply_string" value="@ontains('is current directory')@/>
</ header >
</receive>

As you can see most of the ftp communication parameters are specified as special header elements
in the message. Citrus automatically converts those information to proper FTP commands and
response messages.

20.2. FTP server

Now that we are able to access FTP as a client we might also want to simulate the server side.
Therefore Citrus offers a server component that is listening on a port for incoming FTP connections.
The server has a default home directory on the local file system specified. But you can also define
home directories per user. For now let us have a look at the server configuration component:

<citrus-ftp:server id="ftpServer">
port="22222"
aut o-start="true"
user - manager - properti es="cl asspat h: ft p. server. properties"/>

The ftp server configuration is quite simple. The server starts automatically and binds to a port. The
user configuration is read from a user-manager-property file. Let us have a look at the content of this
user management file:

Password is "adm
ftpserver.user. adm
ftpserver.user. adm
ftpserver.user. adm
ftpserver.user. adm
ftpserver.user. adm
ftpserver.user. adm
ftpserver.user. adm
ftpserver.user. adm
ftpserver.user. adm

. user passwor d=21232F297A57A5A743894A0E4A801FC3
. honmedi rectory=t arget/ftp/user/adm n
.enabl ef | ag=t rue

writeperm ssion=true

max| ogi nnunber =0

. max| ogi nperi p=0

.idletime=0

. upl oadr at e=0

. downl oadr at e=0

5353533353335 35

ft pserver. user.anonynous. user passwor d=

ftpserver.user. anonynous. honedi rect ory=t arget/ft p/ user/anonynous
ftpserver.user. anonynous. enabl ef | ag=true

ftpserver. user.anonynous. w it eperm ssi on=f al se

ft pserver. user. anonynous. max| ogi nnunber =20

ft pserver. user. anonynous. max| ogi nperi p=2

ftpserver. user.anonynous. idl eti me=300
ftpserver.user. anonynous. upl oadr at e=4800

ft pserver. user. anonynous. downl oadr at e=4800

Citrus Framework (2.5.2) 180

FTP support

As you can see you are able to define as many user for the ftp server as you like. Username and
password define the authentication on the server. In addition to that you have plenty of configuration
possibilities per user. Citrus uses the Apache ftp server implementation. So for more details on
configuration capabilities please consult the official Apache ftp server documentation.

Now we would like to use the server in a test case. Very easy you just have to define a receive
message action within your test case that uses the server id as endpoint reference:

<echo>
<nessage>Recei ve user login on FTP server</nessage>
</ echo>

<recei ve endpoi nt="ftpServer">
<nmessage type="pl ai ntext">
<dat a>USER</ dat a>
</ nessage>
<header >
<el ement name="citrus_ftp_command" val ue="USER"'/>
<el ement nanme="citrus_ftp_argunments" val ue="adm n"/>
</ header >
</receive>

<send endpoi nt="ftpServer">
<nmessage type="pl ai ntext">
<dat a>OK</ dat a>
</ message>
</ send>

<echo>
<nmessage>Recei ve user password on FTP server</nessage>
</ echo>

<recei ve endpoi nt ="ftpServer">
<nessage type="pl ai ntext">
<dat a>PASS</ dat a>
</ message>
<header >
<el ement nane="citrus_ftp_commmand" val ue="PASS"'/>
<el ement nane="citrus_ftp_argunments" val ue="adm n"/>
</ header >
</receive>

<send endpoi nt="ft pServer">
<nmessage type="plaintext"">
<dat a>OK</ dat a>
</ message>
</ send>

The listing above shows two incoming commands representing a user login. We indicate with re send
actions that we would link the server to respond with positive feedback and to accept the login. As we
have a fully qualified ftp server running the client can also push files read directories and more. All
incoming commands can be validated inside a test case.

Citrus Framework (2.5.2) 181

Chapter 21. Message channel support

Message channels represent the in memory messaging solution in Citrus. Producer and consumer
components are linked via channels exchanging messages in memory. As this transport mechanism
comes from Spring Integration API (http://www.springsource.org/spring-integration) and Citrus itself
uses a lot of Spring APIs, especially those from Spring Integration you are able to connect to all
Spring messaging adapters via these in memory channels.

Citrus offers a channel components that can be used both by Citrus and Spring Integration. The
conclusion is that Citrus supports the sending and receiving of messages both to and from Spring
Integration message channel components. This opens up a lot of great possibilities to interact with
the Spring Integration transport adapters for FTP, TCP/IP and so on. In addition to that the message
channel support provides us a good way to exchange messages in memory.

Citrus provides support for sending and receiving JMS messages. We have to separate between
synchronous and asynchronous communication. So in this chapter we explain how to setup JMS
message endpoints for synchronous and asynchronous outbound and inbound communication

Note

The message channel configuration components use the default "citrus" configuration
namespace and schema definition. Include this namespace into your Spring configuration
in order to use the Citrus configuration elements. The namespace URI and schema
location are added to the Spring configuration XML file as follows.

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns:citrus-jnms="http://ww.citrusframework. org/schema/ config"
xsi : schemaLocat i on="
http://ww. spri ngfranmework. or g/ schenma/ beans
http://ww. springfranmewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusframework. org/ schema/ config
http://ww. citrusfranework. or g/ schema/ confi g/ citrus-config. xsd">

[-..]

</ beans>

After that you are able to use customized Citrus XML elements in order to define the
Spring beans.

21.1. Channel endpoint

Citrus offers a channel endpoint component that is able to create producer and consumer
components. Producer and consumer send and receive messages both to and from a channel
endpoint. By default the endpoint is asynchronous when configured in the Citrus application context.
With this component you are able to access message channels directly:

<ci trus: channel - endpoi nt i d="hel | oEndpoi nt" channel ="hel | oChannel "/ >

<si:channel id="hel | oChannel"/>

The Citrus channel endpoint references a Spring Integration channel directly. Inside your test case
you can reference the Citrus endpoint as usual to send and receive messages. We will see this later

Citrus Framework (2.5.2) 182

Message channel support

in some example code listings.
Note

The Spring Integration configuration components use a specific namespace that has to be
included into your Spring application context. You can use the following template which
holds all necessary namespaces and schema locations:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns:citrus="http://ww. citrusfranmework. org/schema/ config"
xm ns:si ="http://ww.springfranmework. org/ schena/i ntegration"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusfranmework. org/ schenma/ config
http://ww. ci trusfranmework. or g/ schema/ confi g/ citrus-config. xsd
http://ww. springfranmework. or g/ schenma/ i nt egration
http://ww. springfranmework. or g/ schenma/ i nt egrati on/ spring-integration.xsd">
</ beans>

The Citrus channel endpoint also supports a customized message channel template that will actually
send the messages. The customized template might give you access to special configuration
possibilities. However it is optional, so if no message channel template is defined in the configuration
Citrus will create a default template.

<ci trus: channel - endpoi nt id="hel | oEndpoi nt"
channel =" hel | oChannel "
nmessage- channel -t enpl at e=" nyMessageChannel Tenpl ate"/ >

The message sender is how ready to publish messages to the defined channel. The communication
is supposed to be asynchronous, so the producer is not able to process a reply message. We will
deal with synchronous communication and reply messages later in this chapter. The message
producer just publishes messages to the channel and is done. Interacting with the endpoints in a test
case is quite easy. Just reference the id of the endpoint in your send and receive test actions

<send endpoi nt ="hel | oEndpoi nt " >
<nessage>
<payl oad>
<vl: Hel | oRequest xm ns:v1="http://citrusframework. org/schemas/Hell oService. xsd">
<vl: Text>Hel l o Worl d! </ v1: Text>
</v1: Hel | oRequest >
</ payl oad>
</ message>
</ send>

<recei ve endpoi nt ="hel | oEndpoi nt ">
<nessage>
<payl oad>
<v1: Hel | oResponse xnml ns:v1="http://citrusfranmework. org/schenas/ Hel | oService. xsd">
<vl: Text>Hello Gitrus!</vl: Text>
</v1l: Hel | oResponse>
</ payl oad>
</ nessage>
</receive>

As you can see Citrus is also able to receive messages from the same Spring Integration message
channel destination. We just references the same channel-endpoint in the receive action.

As usual the receiver connects to the message destination and waits for messages to arrive. The
user can set a receive timeout which is set to 5000 milliseconds by default. In case no message was
received in this time frame the receiver raises timeout errors and the test fails.

Citrus Framework (2.5.2) 183

Message channel support

21.2. Synchronous channel endpoints

The synchronous channel producer publishes messages and waits synchronously for the response to
arrive on some reply channel destination. The reply channel name is set in the message's header
attributes so the counterpart in this communication can send its reply to that channel. The basic
configuration for a synchronous channel endpoint component looks like follows:

<ci trus: channel - sync-endpoi nt i d="hel | oSyncEndpoi nt"
channel =" hel | oChannel "
reply-tineout="1000"
pol I'i ng-i nterval ="1000"/ >

Synchronous message channel endpoints usually do poll for synchronous reply messages for
processing the reply messages. The poll interval is an optional setting in order to manage the amount
of reply message handshake attempts. Once the endpoint was able to receive the reply message
synchronously the test case can receive the reply. In case all message handshake attempts do fail
because the reply message is not available in time we raise some timeout error and the test will fail.

Note

By default the channel endpoint uses temporary reply channel destinations. The
temporary reply channels are only used once for a single communication handshake.
After that the reply channel is deleted again. Static reply channels are not supported as it
has not been in scope yet.

When sending a message to this endpoint in the first place the producer will wait synchronously for
the response message to arrive on the reply destination. You can receive the reply message in your
test case using the same endpoint component. So we have two actions on the same endpoint, first
send then receive.

<send endpoi nt ="hel | oSyncEndpoi nt ">
<nessage>
<payl oad>
<v1: Hel | oRequest xm ns:v1="http://citrusframework. org/schenas/ Hel | oService. xsd">
<vl: Text>Hell o Worl d! </v1: Text >
</ v1l: Hel | oRequest >
</ payl oad>
</ nessage>
</ send>

<recei ve endpoi nt ="hel | 0SyncEndpoi nt" >
<nessage>
<payl oad>
<v1l: Hel | oResponse xm ns:v1="http://citrusfranmework. org/schenas/ Hel | oServi ce. xsd">
<vl: Text>Hello G trus!</vl: Text>
</ v1: Hel | oResponse>
</ payl oad>
</ nessage>
</receive>

In the last section we saw that synchronous communication is based on reply messages on
temporary reply channels. We saw that Citrus is able to publish messages to channels and wait for
reply messages to arrive on temporary reply channels. This section deals with the same synchronous
communication over reply messages, but now Citrus has to send dynamic reply messages to
temporary channels.

The scenario we are talking about is that Citrus receives a message and we need to reply to a
temporary reply channel that is stored in the message header attributes. We handle this synchronous

Citrus Framework (2.5.2) 184

Message channel support

communication with the same synchronous channel endpoint component. When initiating the
communication by receiving a message from a synchronous channel endpoint you are able to send a
synchronous response back. Again just use the same endpoint reference in your test case. The
handling of temporary reply destinations is done automatically behind the scenes. So we have again
two actions in our test case, but this time first receive then send.

<recei ve endpoi nt ="hel | oSyncEndpoi nt ">
<nmessage>
<payl oad>
<vl: Hel | oRequest xm ns:v1="http://citrusframework.org/schemas/Hell oService. xsd">
<vl: Text>Hel l o Worl d! </ v1: Text>
</v1: Hel | oRequest >
</ payl oad>
</ message>
</receive>

<send endpoi nt ="hel | oSyncEndpoi nt ">
<nessage>
<payl oad>
<v1: Hel | oResponse xm ns:v1="http://citrusfranmework. org/schenmas/ Hel | oService. xsd" >
<vl: Text>Hello Citrus!</vl: Text>
</v1: Hel | oResponse>
</ payl oad>
</ nessage>
</ send>

The synchronous message channel endpoint will handle all reply channel destinations and provide
those behind the scenes.

21.3. Message selectors on channels

Unfortunately Spring Integration message channels do not support message selectors on header
values as described in ???. With Citrus version 1.2 we found a way to also add message selector
support on message channels. We had to introduce a special queue message channel
implementation. So first of all we use this new message channel implementation in our configuration.

<ci trus: channel id="orderChannel" capacity="5"/>

The Citrus message channel implementation extends the queue channel implementation from Spring
Integration. So we can add a capacity attribute for this channel. That's it! Now we use the message
channel that supports message selection. In our test we define message selectors on header values
as described in ??? and you will see that it works.

In addition to that we have implemented other message filter possibilities on message channels that

we discuss in the next sections.

21.3.1. Root QName Message Selector

You can use the XML root QName of your message as selection criteria. Let's see how this works in
a small example:

We have two different XML messages on a message channel waiting to be picked up by a consumer.

<Hel | oMessage xm ns="http://citrusframework.org/schema">Hello Citrus</Hell oMessage>
<GoodbyeMessage xm ns="http://citrusframework. org/schema">Goodbye C trus</ GoodbyeMessage>

We would like to pick up the GoodbyeMessage in our test case. The HelloMessage should be left on

Citrus Framework (2.5.2) 185

Message channel support

the message channel as we are not interested in it right now. We can define a root gname message
selector in the receive action like this:

<recei ve endpoi nt =" or der Channel Endpoi nt ">
<sel ect or >
<el ement nane="root-gnane" val ue="CGoodbyeMessage"/ >
</ sel ect or >
<nessage>
<payl oad>
<GoodbyeMessage xm ns="http://citrusframework. org/schema">CGoodbye C trus</ GoodbyeMessage>
</ payl oad>
</ message>
</receive>

The Citrus receiver picks up the GoodbyeMessage from the channel selected via the root gname of
the XML message payload. Of course you can also combine message header selectors and root
gname selectors as shown in this example below where a message header sequenceld is added to
the selection logic.

<sel ect or >
<el ement nane="root-qgnane" val ue="GoodbyeMessage"/ >
<el enent nanme="sequencel d" val ue="1234"/>

</ sel ect or >

As we deal with XML gname values, we can also use namespaces in our selector root gname
selection.

<sel ect or >
<el ement nane="r oot -qnane" val ue="{http://citrusframework. org/schema} CGoodbyeMessage"/>
</ sel ector>

21.3.2. XPath Evaluating Message Selector

It is also possible to evaluate some XPath expression on the message payload in order to select a
message from a message channel. The XPath expression outcome must match an expected value
and only then the message is consumed form the channel.

The syntax for the XPath expression is to be defined as the element name like this:

<sel ect or >
<el ement nane="xpath://Order/status" val ue="pending"/>
</ sel ect or >

The message selector looks for order messages with status="pending" in the message payload. This
means that following messages would get accepted/declined by the message selector.

<Or der ><st at us>pendi ng</ st at us></ Or der > = ACCEPTED
<Or der ><st at us>fi ni shed</ st at us></ Order> = NOT ACCEPTED

Of course you can also use XML namespaces in your XPath expressions when selecting messages
from channels.

<sel ect or >
<el enent name="xpat h://nsl: Order/nsl: status" val ue="pendi ng"/>
</ sel ect or >

Namespace prefixes must match the incoming message - otherwise the XPath expression will not
work as expected. In our example the message should look like this:

Citrus Framework (2.5.2) 186

Message channel support

<nsl: Order xm ns:nsl="http://citrus.org/schema"><nsl: status>pendi ng</nsl:status></nsl: O der>

Knowing the correct XML namespace prefix is not always easy. If you are not sure which namespace
prefix to choose Citrus ships with a dynamic namespace replacement for XPath expressions. The
XPath expression looks like this and is most flexible:
<sel ect or >
<el ement nanme="xpath://{http://citrus.org/schena}: Order/{http://citrus.org/schema}: status"

val ue="pendi ng"/ >
</ sel ect or >

This will match all incoming messages regardless the XML namespace prefix that is used.

Citrus Framework (2.5.2) 187

Chapter 22. File support

In chapter Chapter 21, Message channel support we discussed the native Spring Integration channel
support which enables Citrus to interact with all Spring Integration messaging adapter
implementations. This is a fantastic way to extend Citrus for additional transports. This interaction
now comes handy when writing and reading files from the file system in Citrus.

22.1. Write files

We want to use the Spring Integration file adapter for both reading and writing files with a local
directory. Citrus can easily connect to this file adapter implementation with its message channel
support. Citrus message sender and receiver speak to message channels that are connected to the
Spring Integration file adapters.

<ci trus: channel - endpoi nt id="fil eEndpoi nt" channel ="fil eChannel "/ >

<fil e: out bound- channel - adapter id="fil eCQutboundAdapter"
channel ="fil eChannel "
directory="file: ${sone.directory. property}"/>

<si:channel id="fil eChannel"/>

The configuration above describes a Citrus message channel endpoint connected to a Spring
Integration outbound file adapter that writes messages to a storage directory. With this combination
you are able to write files to a directory in your Citrus test case. The test case uses the channel
endpoint in its send action and the endpoint interacts with the Spring Integration file adapter so
sending out the file.

Note

The Spring Integration file adapter configuration components add a new namespace to
our Spring application context. See this template which holds all hecessary hamespaces
and schema locations:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns:citrus="http://ww. citrusframework. org/schema/ config"
xm ns:si ="http://ww.springfranework. org/ schena/integration"
xm ns: file="http://ww.springfranework. org/schena/integration/file"
xsi : schenmaLocati on="http://wwm. spri ngframewor k. or g/ schema/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. citrusframework. org/ schema/ config
http://ww. citrusfranework. org/ schena/ confi g/ citrus-config. xsd
http://wwm. springframework. org/ schema/ i nt egrati on
http://ww. springframework. or g/ schema/ i nt egrati on/spring-integration. xsd
http://ww. springfranework. org/ schena/integration/file
http://ww. springframework. org/ schema/integration/file/spring-integration-file.xsd">
</ beans>

22.2. Read files

The next program listing shows a possible inbound file communication. So the Spring Integration file
inbound adapter will read files from a storage directory and publish the file contents to a message
channel. Citrus can then receive those files as messages in a test case via the channel endpoint and

Citrus Framework (2.5.2) 188

File support

validate the file contents for instance.

<file:inbound-channel -adapter id="filelnboundAdapter"
channel ="fil eChannel "
directory="file: ${sone.directory. property}">
<si:poller fixed-rate="100"/>
</file:inbound-channel - adapt er >

<si :channel id="fileChannel">
<si:queue capacity="25"/>
<si:interceptors>
<bean cl ass="org. springfranmework.integration.transforner. MessageTransform ngChannel | nt erceptor">
<constructor-arg>
<bean cl ass="org. springframework.integration.file.transforner.FileToStringTransforner"/>
</ constructor-ar g>
</ bean>
</si:interceptors>
</ si : channel >

<ci trus: channel - endpoi nt id="fil eEndpoi nt" channel ="fil eChannel "/ >

Important

The file inbound adapter constructs Java file objects as the message payload by default.
Citrus can only work on String message payloads. So we need a file transformer that
converts the file objects to String payloads representing the file's content.

This file adapter example shows how easy Citrus can work hand in hand with Spring Integration
adapter implementations. The message channel support is a fantastic way to extend the transport
and protocol support in Citrus by connecting with the very good Spring Integration adapter
implementations. Have a closer look at the Spring Integration project for more details and other
adapter implementations that you can use with Citrus integration testing.

Citrus Framework (2.5.2) 189

Chapter 23. Apache Camel support

Apache Camel project implements the enterprise integration patterns for building mediation and
routing rules in your enterprise application. With the Citrus Camel support you are able to directly
interact with the Apache Camel components and route definitions. You can call Camel routes and
receive synchronous response messages. You can also simulate the Camel route endpoint with
receiving messages and providing simulated response messages.

Note

The camel components in Citrus are kept in a separate Maven module. So you should
add the module as Maven dependency to your project accordingly.

<dependency>
<gr oupl d>com consol . ci trus</ gr oupl d>
<artifactld>citrus-canel </artifactld>
<ver si on>2. 5. 2</ ver si on>

</ dependency>

Citrus provides a special Apache Camel configuration schema that is used in our Spring
configuration files. You have to include the citrus-camel namespace in your Spring
configuration XML files as follows.

<beans xm ns="http://ww. springfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: citrus="http://ww.citrusfranmework. org/schema/ config"
xm ns: citrus-canel ="http://ww. citrusfranework. org/ schena/ canel / confi g"
xsi : schenmalLocat i on="
http://ww. spri ngframewor k. or g/ schena/ beans
htt p: // www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://wwmv citrusframework. org/ schema/ config
http://wmv citrusframework. org/ schema/ confi g/ citrus-config. xsd
http://wwmv citrusframework. org/ schema/ canel / config
http://ww. citrusfranmework. org/ schena/ canel / confi g/ citrus-canel -config.xsd">

[...]

</ beans>

Now you are ready to use the Citrus Apache Camel configuration elements using the
citrus-camel namespace prefix.

The next sections explain the Citrus capabilities while working with Apache Camel.

23.1. Camel endpoint

Camel and Citrus both use the endpoint pattern in order to define message destinations. Users can
interact with these endpoints when creating the mediation and routing logic. The Citrus endpoint
component for Camel interaction is defined as follows in your Citrus Spring configuration.

<ci trus-canel : endpoi nt i d="direct Canel Endpoi nt "
endpoi nt-uri ="direct: news"/ >

Right next to that Citrus endpoint we need the Apache Camel route that is located inside a camel
context component.

Citrus Framework (2.5.2) 190

Apache Camel support

<canel Cont ext id="canel Context" xm ns="http://canel.apache. org/schema/spring">
<route id="newsRoute">

<fromuri="direct: news"/>
<to uri="lo0g:com consol .citrus.canel ?l evel =I NFO'/ >
<to uri="seda: news-feed"/>

</rout e>

</ canel Cont ext >

As you can see the Citrus camel endpoint is able to interact with the Camel route. In the example
above the Camel context is placed as Spring bean Camel context. This would be the easiest setup to
use Camel with Citrus as you can add the Camel context straight to the Spring bean application
context. Of course you can also import your Camel context and routes from other Spring bean
context files or you can start the Camel context routes with Java code.

In the example the Apache Camel route is listening on the route endpoint uri direct:news. Incoming
messages will be logged to the console using a log Camel component. After that the message is
forwarded to a seda Camel component which is a simple queue in memory. So we have a small
Camel routing logic with two different message transports.

The Citrus endpoint can interact with this sample route definition. The endpoint configuration holds
the endpoint uri information that tells Citrus how to access the Apache Camel route destination. This
endpoint uri can be any Camel endpoint uri that is used in a Camel route. Here we just use the direct
endpoint uri direct:news so the sample Camel route gets called directly. In your test case you can
use this endpoint component referenced by its id or name in order to send and receive messages on
the route address direct:news. The Camel route listening on this direct address will be invoked
accordingly.

The Apache Camel routes support asynchronous and synchronous message communication
patterns. By default Citrus uses asynchronous communication with Camel routes. This means that
the Citrus producer sends the exchange message to the route endpoint uri and is finished
immediately. There is no synchronous response to await. In contrary to that the synchronous
endpoint will send and receive a synchronous message on the Camel destination route. We will
discuss this later on in this chapter. For now we have a look on how to use the Citrus camel endpoint
in a test case in order to send a message to the Camel route:

<send endpoi nt ="di r ect Canel Endpoi nt ">
<nmessage type="pl ai ntext">
<payl oad>Hel l o from C trus! </ payl oad>
</ message>
</ send>

The Citrus camel endpoint component can also be used in a receive message action in your test
case. In this situation you would receive a message from the route endpoint. This is especially
designed for queueing endpoint routes such as the Camel seda component. In our example Camel
route above the seda Camel component is called with the endpoint uri seda:news-feed. This means
that the Camel route is sending a message to the seda component. Citrus is able to receive this route
message with a endpoint component like this:

<ci trus- canel : endpoi nt i d="sedaCanel Endpoi nt "
endpoi nt-uri ="seda: news-feed"/ >

You can use the Citrus camel endpoint in your test case receive action in order to consume the
message on the seda component.

<recei ve endpoi nt ="sedaCanel Endpoi nt ">
<nessage type="pl ai ntext">
<payl oad>Hel l o from C trus! </ payl oad>

Citrus Framework (2.5.2) 191

Apache Camel support

</ message>
</receive>

Tip

Instead of defining a static Citrus camel component you could also use the dynamic
endpoint components in Citrus. This would enable you to send your message directly
using the endpoint uri direct:news in your test case. Read more about this in Chapter 31,
Dynamic endpoint components.

Citrus is able to send and receive messages with Camel route endpoint uri. This enables you to
invoke a Camel route. The Camel components used is defined by the endpoint uri as usual. When
interacting with Camel routes you might need to send back some response messages in order to
simulate boundary applications. We will discuss the synchronous communication in the next section.

23.2. Synchronous Camel endpoint

The synchronous Apache Camel producer sends a message to some route and waits synchronously
for the response to arrive. In Camel this communication is represented with the exchange pattern
InOut. The basic configuration for a synchronous Apache Camel endpoint component looks like
follows:

<ci trus-canel : sync-endpoi nt i d="canel SyncEndpoi nt"
endpoi nt-uri ="direct: hello"
ti meout ="1000"
pol I'i ng-i nterval ="300"/ >

Synchronous endpoints poll for synchronous reply messages to arrive. The poll interval is an optional
setting in order to manage the amount of reply message handshake attempts. Once the endpoint
was able to receive the reply message synchronously the test case can receive the reply. In case the
reply message is not available in time we raise some timeout error and the test will fail.

In a first test scenario we write a test case the sends a message to the synchronous endpoint and
waits for the synchronous reply message to arrive. So we have two actions on the same Citrus
endpoint, first send then receive.

<send endpoi nt =" canel SyncEndpoi nt ">
<nessage type="pl ai ntext">
<payl oad>Hel l o from G trus! </ payl oad>
</ nessage>
</ send>

<recei ve endpoi nt ="canel SyncEndpoi nt">
<nmessage type="pl ai ntext">
<payl oad>This is the reply from Apache Canel ! </ payl oad>
</ nessage>
</receive>

The next variation deals with the same synchronous communication, but send and receive roles are
switched. Now Citrus receives a message from a Camel route and has to provide a reply message.
We handle this synchronous communication with the same synchronous Apache Camel endpoint
component. Only difference is that we initially start the communication by receiving a message from
the endpoint. Knowing this Citrus is able to send a synchronous response back. Again just use the
same endpoint reference in your test case. So we have again two actions in our test case, but this
time first receive then send.

Citrus Framework (2.5.2) 192

Apache Camel support

<recei ve endpoi nt ="canel SyncEndpoi nt ">
<nessage type="pl ai ntext">
<payl oad>Hel | o from Apache Canel ! </ payl oad>
</ nessage>
</receive>

<send endpoi nt =" canmel SyncEndpoi nt ">
<nessage type="pl ai ntext">
<payl oad>This is the reply from G trus!</payl oad>
</ message>
</ send>

This is pretty simple. Citrus takes care on setting the Apache Camel exchange pattern InOut while
using synchronous communications. The Camel routes do respond and Citrus is able to receive the
synchronous messages accordingly. With this pattern you can interact with Apache Camel routes
where Citrus simulates synchronous clients and consumers.

23.3. Camel exchange headers

Apache Camel uses exchanges when sending and receiving messages to and from routes. These
exchanges hold specific information on the communication outcome. Citrus automatically converts
these exchange information to special message header entries. You can validate those exchange
headers then easily in your test case:

<recei ve endpoi nt =" sedaCanel Endpoi nt ">
<nessage type="pl ai ntext">
<payl oad>Hel | o from Canel ! </ payl oad>
</ message>
<header >
<el ement nane="citrus_canel _route_id" val ue="newsRoute"/>
<el ement nane="citrus_canel _exchange_i d" val ue="1D-1ocal - 50532- 1402653725341- 0- 3"/ >
<el ement nane="citrus_canel _exchange failed" value="fal se"/>
<el ement nane="citrus_canel _exchange_pattern" val ue="|nOnly"/>
<el enent nane="Canel Correl ati onl d" val ue="1D-1| ocal - 50532- 1402653725341-0-1"/ >
<el ement nane="Canel ToEndpoi nt" val ue="seda: // news-feed"/>
</ header >
</receive>

Besides the Camel specific exchange information the Camel exchange does also hold some custom
properties. These properties such as CamelToEndpoint or CamelCorrelationld are also added
automatically to the Citrus message header so can expect them in a receive message action.

23.4. Camel exception handling

Let us suppose following route definition:

<canel Cont ext id="canel Context" xm ns="http://canel.apache. org/schema/spring">
<route id="newsRoute">
<fromuri="direct: news"/>
<to uri="log:com consol .citrus. canel ?l evel =I NFO'/ >
<to uri="seda: news-feed"/>
<onException>
<exception>com consol . citrus. exceptions. G trusRunti meExcepti on</exception>
<to uri="seda: exceptions"/>
</ onExcepti on>
</rout e>
</ canel Cont ext >

The route has an exception handling block defined that is called as soon as the exchange processing
ends up in some error or exception. With Citrus you can also simulate a exchange exception when

Citrus Framework (2.5.2) 193

Apache Camel support

sending back a synchronous response to a calling route.

<send endpoi nt =" sedaCanel Endpoi nt " >
<nmessage type="pl aintext">
<payl| oad>Sonet hi ng went w ong! </ payl oad>
</ message>
<header >
<el ement nane="ci trus_canel _exchange_exception"
val ue="com consol . ci trus. exceptions. G trusRunti meException"/>
<el ement nane="ci trus_canel _exchange_excepti on_nessage" val ue="Sonet hi ng went w ong!"/>
<el ement nane="citrus_canel _exchange_failed" value="true"/>
</ header >
</ send>

This message as response to the seda:news-feed route would cause Camel to enter the exception
handling in the route definition. The exception handling is activated and calls the error handling route
endpoint seda:exceptions. Of course Citrus would be able to receive such an exception exchange
validating the exception handling outcome.

In such failure scenarios the Apache Camel exchange holds the exception information
(CamelExceptionCaught) such as causing exception class and error message. These headers are
present in an error scenario and can be validated in Citrus when receiving error messages as follows:

<recei ve endpoi nt ="error Canel Endpoi nt ">
<nessage type="pl ai ntext">
<payl oad>Sonet hi ng went wr ong! </ payl oad>
</ message>
<header >
<el ement nane="citrus_canel _route_id" val ue="newsRoute"/>
<el ement nane="citrus_canel _exchange failed" value="true"/>
<el ement nane="Canel Excepti onCaught "
val ue="com consol . ci trus. exceptions. G trusRunti meExcepti on: Sonethi ng went wong!"/>
</ header >
</receive>

This completes the basic exception handling in Citrus when using the Apache Camel endpoints.

23.5. Camel context handling

In the previous samples we have used the Apache Camel context as Spring bean context that is
automatically loaded when Citrus starts up. Now when using a single Camel context instance Citrus
is able to automatically pick this Camel context for route interaction. If you use more that one Camel
context you have to tell the Citrus endpoint component which context to use. The endpoint offers an
optional attribute called camel-context.

<ci trus-canel : endpoi nt i d="direct Canel Endpoi nt"
canel - cont ext =" newsCont ext "
endpoi nt-uri ="direct:news"/>

<canel Cont ext id="newsContext" xml ns="http://canel.apache. org/schena/spring">
<route id="newsRoute">
<fromuri="direct: news"/>

<to uri="10g: com consol .citrus. canel ?| evel =I NFO'/ >
<to uri="seda: news-feed"/>
</route>

</ canel Cont ext >

<canel Cont ext id="helloContext" xm ns="http://canel.apache. org/schema/spring">
<route id="hel | oRoute">
<fromuri="direct:hello"/>

<to uri="log:com consol .citrus. canel ?| evel =I NFO'/ >
<to uri="seda: hell 0"/ >
</ rout e>

</ canel Cont ext >

Citrus Framework (2.5.2) 194

Apache Camel support

In the example abpove we have two Camel context instances loaded. The endpoint has to pick the
context to use with the attribute camel-context which resides to the Spring bean id of the Camel
context.

23.6. Camel route actions

Since Citrus 2.4 we introduced some Camel specific test actions that enable easy interaction with
Camel routes and the Camel context. The test actions do follow a specific XML namespace so we
have to add this namespace to the test case when using the actions.

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
xm ns: canmel ="http://ww. ci trusframewor k. org/ schema/ canel / t est case”
xsi : schenalLocati on="
http://ww. spri ngframewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusframework. org/ schena/ canel / t est case
http://ww. citrusframework. org/ schema/ canel / t est case/ ci trus-canel -t est case. xsd" >

[-..]

</ beans>

We added a special camel namespace with prefix camel: so now we can start to add Camel test
actions to the test case:

XML DSL

<t est case name="Canel Rout el T">
<acti ons>
<canel : creat e-rout es>
<rout eCont ext xm ns="http://canel.apache. org/ schema/ spri ng">

<route id="route_1">
<fromuri="direct:test1"/>
<to uri="nock:test1"/>

</route>

<route id="route_2">
<fromuri="direct:test2"/>
<to uri="nock:test2"/>
</rout e>
</ r out eCont ext >
</ canel : creat e-r out es>

<canel : creat e-rout es canel - cont ext ="canel Cont ext ">
<rout eCont ext xm ns="http://canel .apache. org/ schema/ spri ng">
<r out e>
<fromuri="direct:test3"/>
<to uri="nock:test3"/>
</route>
</ rout eCont ext >
</ canel : creat e-rout es>
</ actions>
</testcase>

In the example above we have used the camel:create-route test action that will create new Camel
routes at runtime in the Camel context. The target Camel context is specified with the optional
camel-context attribute. By default Citrus will search for a Camel context available in the Spring bean
application context. Removing routes at runtime is also supported.

XML DSL

<t est case name="Canel Rout el T">
<actions>
<canel : renove-rout es canel - cont ext ="canel Cont ext ">

Citrus Framework (2.5.2) 195

Apache Camel support

<route id="route_1"/>
<route id="route_2"/>
<route id="route_3"/>
</ canel : r enpve-r out es>
</ actions>
</testcase>

Next operation we will discuss is the start and stop of existing Camel routes:

XML DSL

<t est case name="Canel Rout el T">
<acti ons>
<canel : start-routes canel - cont ext ="canel Cont ext">
<route id="route_1"/>
</ canel : start-routes>

<canel : st op-rout es canel - cont ext =" canel Cont ext ">
<route id="route_2"/>
<route id="route_3"/>
</ canel : st op- r out es>
</ acti ons>
</testcase>

Starting and stopping Camel routes at runtime is important when temporarily Citrus need to receive a
message on a Camel endpoint URI. We can stop a route, use a Citrus camel endpoint instead for
validation and start the route after the test is done. This way wen can also simulate errors and failure
scenarios in a Camel route interaction.

Of course all Camel route actions are also available in Java DSL.

Java DSL

@\t ow red
private Canel Cont ext camel Cont ext;

@i trusTest
public void canel RouteTest () {
canel (). cont ext (canel Cont ext). create(new Rout eBui | der (canel Cont ext) {
@verride
public void configure() throws Exception {
from("direct: news")
.routeld("route_1")
.autoStartup(false)
. set Header ("headl i ne", sinple("This is Bl G news!"))
.to("nock: news");

from("direct:runors")
.routeld("route_2")
.autoStartup(fal se)

. set Header ("headl i ne", sinple("This is just a runor!"))
.to("nmock: runors");

1)
canel (). context(canel Context).start("route_1", "route_2");
canel (). cont ext (canel Cont ext).stop("route_2");

canel (). context (canel Context).renove("route_2");

As you can see we have access to the Camel route builder that adds 1-n new Camel routes to the
context. After that we can start, stop and remove the routes within the test case.

23.7. Camel controlbus actions

Citrus Framework (2.5.2) 196

Apache Camel support

The Camel controlbus component is a good way to access route statistics and route status
information within a Camel context. Citrus provides controlbus test actions to easily access the
controlbus operations at runtime.

XML DSL

<t est case nanme="Canel Control Busl T">
<acti ons>
<canel : control - bus>
<canel :route id="route_1" action="start"/>
</ canel : control - bus>

<canel : control - bus canel - cont ext =" canel Cont ext">
<canel :route id="route_2" action="status"/>
<canel : resul t >St opped</ canel : resul t >

</ canel : control - bus>

<canel : control - bus>
<canel : | anguage type="si npl e">${canel Cont ext.stop()}</canel : | anguage>
</ canel : control - bus>

<canel : control - bus canel - cont ext =" canel Cont ext">
<canel : | anguage type="si npl e">${canel Cont ext . get RouteSt atus('route_3')}</canel : | anguage>
<canel : resul t >St art ed</ canel : resul t >
</ canel : control - bus>
</ acti ons>
</testcase>

The example test case shows the controlbus access. Camel provides two different ways to specify
operations and parameters. The first option is the use of an action attribute. The Camel route id has
to be specified as mandatory attribute. As a result the controlbus action will be executed on the target
route during test runtime. This way we can also start and stop Camel routes in a Camel context.

In case an controlbus operation has a result such as the status action we can specify a control result
that is compared. Citrus will raise validation exceptions when the results differ. The second option for
executing a controlbus action is the language expression. We can use Camel language expressions
on the Camel context for accessing a controlbus operation. Also here we can define an optional
outcome as expected result.

The Java DSL also supports these controlbus operations as the next example shows:

Java DSL

@\t ow red
private Canel Cont ext camnel Cont ext;

@i trusTest
public void canel RouteTest () {
canel (). control Bus()
.route("ny_route", "start");

canel (). control Bus()
.l 'anguage(Si npl eBui | der. si npl e(" ${ canel Cont ext . get RouteStatus(' ny_route')}"))
.resul t(ServiceStatus. Started);

The Java DSL works with Camel language expression builders as well as ServiceStatus enum values
as expected result.

Citrus Framework (2.5.2) 197

Chapter 24. Vert.x event bus support

Vert.x is an application platform for the JVM that provides a network event bus for lightweight
scalable messaging solutions. The Citrus Vert.x components do participate on that event bus
messaging as producer or consumer. With these components you can access Vert.x instances
available in your network in order to test those Vert.x applications in some integration test scenario.

Note

The Vert.x components in Citrus are kept in a separate Maven module. So you should add
the module as Maven dependency to your project accordingly.

<dependency>
<gr oupl d>com consol . ci t rus</ gr oupl d>
<artifactld>citrus-vertx</artifactld>
<versi on>2. 5. 2</ ver si on>

</ dependency>

Citrus provides a special Vert.x configuration schema that is used in our Spring
configuration files. You have to include the citrus-vertx namespace in your Spring
configuration XML files as follows.

<beans xm ns="http://wwm. spri ngframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:citrus="http://ww. citrusframework. org/ schema/ confi g"
xm ns: citrus-vertx="http://ww.citrusfranmework. org/schena/vertx/config"
xsi : schemalLocat i on="
htt p: // ww. spri ngf ramewor k. or g/ schema/ beans
ht t p: // ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. citrusframework. org/ schena/ config
http://ww. citrusframework. org/ schena/ confi g/ citrus-config.xsd
http://ww. citrusframework. org/ schena/ vertx/config
http://ww. citrusframework. org/ schena/ vertx/ config/citrus-vertx-config.xsd">

[...]

</ beans>

Now you are ready to use the Citrus Vert.x configuration elements using the citrus-vertx
namespace prefix.

The next sections discuss sending and receiving operations on the Vert.x event bus with Citrus.

24.1. Vert.x endpoint

As usual Citrus uses an endpoint component in order to specify some message destination to send
and receive messages to and from. The Vert.x endpoint component is defined as follows in your
Citrus Spring configuration.

<ci trus-vertx: endpoi nt id="sinpl eVertxEndpoi nt"
host ="1 ocal host "
port="5001"
pubSubDonei n="f al se"
addr ess="news-f eed"/>

<bean id="vertxl nstanceFactory" class="com consol.citrus.vertx.factory.Cachi ngVert x| nstanceFactory"/>

The endpoint holds some general information how to access the Vert.x event bus. Host and port

Citrus Framework (2.5.2) 198

Vert.x event bus support

values define the Vert.x Hazelcast cluster hosthame and port. Citrus starts a new Vert.x instance
using this cluster. So all other Vert.x instances connected to this cluster host will receive the event
bus messages from Citrus during the test. In your test case you can use this endpoint component
referenced by its id or name in order to send and receive messages on the event bus address
news-feed. In Vert.x the event bus address defines the destination for event consumers to listen on.
As already mentioned cluster hosthname and port are optional, so Citrus will use localhost and a new
random port on the cluster host if nothing is specified.

The Vert.x event bus supports publish-subscribe and point-to-point message communication
patterns. By default the pubSubDomain in Citrus is false so the event bus sender will initiate a
point-to-point communication on the event bus address. This means that only one single consumer
on the event bus address will receive the message. If there are more consumers on the address the
first to come wins and receives the message. In contrary to that the publish-subscribe scenario would
deliver the message to all available consumers on the event bus address simultaneously. You can
enable the pubSubDomain on the Vert.x endpoint component for this communication pattern.

The Vert.x endpoint needs a instance factory implementation in order to create the embedded Vert.x
instance. By default the bean name vertxinstanceFactory is recognized by all Vert.x endpoint
components. We will talk about Vert.x instance factories in more detail later on in this chapter.

As message content you can send and receive JSON objects or simple character sequences to the
event bus. Let us have a look at a simple sample sending action that uses the new Vert.x endpoint
component:

<send endpoi nt ="si npl eVert xEndpoi nt ">
<nessage type="pl ai ntext">
<payl oad>Hel I o from G trus! </ payl oad>
</ nessage>
</ send>

As the Vert.x Citrus endpoint is bidirectional you can also receive messages from the event bus.

<recei ve endpoi nt ="si npl eVert xEndpoi nt ">
<nmessage type="pl aintext">
<payl oad>Hel I o from Vert. x! </ payl oad>
</ message>
<header >
<el ement nane="citrus_vertx_address" val ue="news-feed"/>
</ header >
</receive>

Citrus automatically adds some special message headers to the message, so you can validate the
Vert.x event bus address. This completes the simple send and receive operations on a Vert.x event
bus. Now lets move on to synchronous endpoints where Citrus waits for a reply on the event bus.

24.2. Synchronous Vert.x endpoint

The synchronous Vert.x event bus producer sends a message and waits synchronously for the
response to arrive on some reply address destination. The reply address name is generated
automatically and set in the request message header attributes so the receiving counterpart in this
communication can send its reply to that event bus address. The basic configuration for a
synchronous Vert.x endpoint component looks like follows:

<ci trus-vertx:sync-endpoi nt id="vertxSyncEndpoi nt"

addr ess="hel | 0"
ti meout =" 1000"

Citrus Framework (2.5.2) 199

Vert.x event bus support

pol I'i ng-i nterval ="300"/>

Synchronous endpoints poll for synchronous reply messages to arrive on the event bus reply
address. The poll interval is an optional setting in order to manage the amount of reply message
handshake attempts. Once the endpoint was able to receive the reply message synchronously the
test case can receive the reply. In case all message handshake attempts do fail because the reply
message is not available in time we raise some timeout error and the test will fail.

Note

The Vert.x endpoint uses temporary reply address destinations. The temporary reply
address in generated and is only used once for a single communication handshake. After
that the reply address is dismissed again.

When sending a message to the synchronous Vert.x endpoint the producer will wait synchronously
for the response message to arrive on the reply address. You can receive the reply message in your
test case using the same endpoint component. So we have two actions on the same endpoint, first
send then receive.

<send endpoi nt ="vertxSyncEndpoi nt">
<nmessage type="pl ai ntext">
<payl oad>Hel l o from C trus! </ payl oad>
</ nessage>
</ send>

<recei ve endpoi nt ="vertxSyncEndpoi nt">
<nmessage type="pl ai ntext">
<payl oad>This is the reply from Vert. x! </ payl oad>
</ message>
</receive>

In the last section we saw that synchronous communication is based on reply messages on
temporary reply event bus address. We saw that Citrus is able to send messages to event bus
address and wait for reply messages to arrive. This next section deals with the same synchronous
communication, but send and receive roles are switched. Now Citrus receives a message and has to
send a reply message to a temporary reply address.

We handle this synchronous communication with the same synchronous Vert.x endpoint component.
Only difference is that we initially start the communication by receiving a message from the endpoint.
Knowing this Citrus is able to send a synchronous response back. Again just use the same endpoint
reference in your test case. The handling of the temporary reply address is done automatically
behind the scenes. So we have again two actions in our test case, but this time first receive then
send.

<recei ve endpoi nt ="vertxSyncEndpoi nt">
<nmessage type="pl ai ntext">
<payl oad>Hel l o from Vert. x! </ payl oad>
</ nessage>
</receive>

<send endpoi nt ="vert xSyncEndpoi nt">
<nessage type="pl ai ntext">
<payl oad>This is the reply from G trus!</payl oad>
</ message>
</ send>

The synchronous message endpoint for Vert.x event bus communication will handle all reply address
destinations and provide those behind the scenes.

Citrus Framework (2.5.2) 200

Vert.x event bus support

24.3. Vert.x instance factory

Citrus starts an embedded Vert.x instance at runtime in order to participate in the Vert.x cluster.
Within this cluster multiple Vert.x instances are connected via the event bus. For starting the Vert.x
event bus Citrus uses a cluster hostname and port definition. You can customize this cluster host in
order to connect to a very special cluster in your network.

Now Citrus needs to manage the Vert.x instances created during the test run. By default Citrus will
look for a instance factory bean named vertxinstanceFactory. You can choose the factory
implementation to use in your project. By default you can use the caching factory implementation that
caches the Vert.x instances so we do not connect more than one Vert.x instance to the same cluster
host. Citrus offers following instance factory implementations:

e comconsol .citrus. vertx.factory. Cachi ngVertxl nstanceFactory - default implementation that
reuses the Vert.x instance based on given cluster host and port. With this implementation we
ensure to connect a single Citrus Vert.x instance to a cluster host.

e comconsol.citrus.vertx.factory. Singl eVert x| nstanceFactory - creates a single Vert.x instance
and reuses this instance for all endpoints. You can also set your very custom Vert.x instance via
configuration for custom Vert.x instantiation.

The instance factory implementations do implement the vert xI nst anceFact ory interface. So you can
also provide your very special implementation. By default Citrus looks for a bean named
vertxinstanceFactory but you can also define your very special factory implementation onm an
endpoint component. The Vert.x instance factory is set on the Vert.x endpoint as follows:

<ci trus-vertx: endpoi nt id="vertxHel | oEndpoint"
addr ess="hel | 0"
vertx-factory="singl eVert xl nst anceFact ory"/>

<bean id="singl eVert x|l nstanceFact ory"
cl ass="com consol . citrus. vertx. factory. Si ngl eVert x| nst anceFactory"/>

Citrus Framework (2.5.2) 201

Chapter 25. Mail support

Sending and receiving mails is the next interest we are going to talk about. When dealing with mail
communication you most certainly need to interact with some sort of IMAP or POP mail server. But in
Citrus we do not want to manage mails in a personal inbox. We just need to be able to exchange mail
messages the persisting in a user inbox is not part of our business.

This is why Citrus provides just a SMTP mail server which accepts mail messages from clients. Once
the SMTP server has accepted an incoming mail it forwards those data to the running test case. In
the test case you can receive the incoming mail message and perform message validation as usual.
The mail sending part is easy as Citrus offers a mail client that connects to some SMTP server for
sending mails to the outside world.

Note

The mail components in Citrus are kept in a separate Maven module. So you should
check that the module is available as Maven dependency in your project

<dependency>
<gr oupl d>com consol . ci trus</ gr oupl d>
<artifactld>citrus-mail</artifactld>
<versi on>2. 5. 2</ ver si on>

</ dependency>

As usual Citrus provides a customized mail configuration schema that is used in Spring
configuration files. Simply include the citrus-mail namespace in the configuration XML files
as follows.

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
xm ns:citrus="http://ww.citrusframework. org/schema/ config"
xm ns:citrus-nmail="http://ww.citrusframework. org/schema/ mail/config"
xsi : schemalLocat i on="
http://ww. springframewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusframework. org/ schena/ config
http://ww. citrusframework. org/ schena/ confi g/ citrus-config. xsd
http://ww. citrusframework. org/ schena/ mail /config
http://ww. citrusframework. org/ schena/ mai |/ config/citrus-mail-config.xsd">

[...]

</ beans>

Now you are ready to use the customized Http configuration elements with the citrus-mail
namespace prefix.

Read the next section in order to find out more about the mail message support in Citrus.

25.1. Mall client

The mail sending part is quite easy and straight forward. We just need to send a mail message to
some SMTP server. So Citrus provides a mail client that sends out mail messages.
<citrus-nmail:client id="sinpleMiildient"

host ="| ocal host "
por t ="25025"/ >

Citrus Framework (2.5.2) 202

Mail support

This is how a Citrus mail client component is defined in the Spring application context. You can use
this client referenced by its id or name in your test case in a message sending action. The client
defines a host and port attribute which should connect the client to some SMTP server instance.

We all know mail message contents. The mail message has some general properties set by the user:

» from: The message sender mail address

* to: The message recipient mail address. You can add multiple recipients by using a comma
separated list.

» cc: Copy recipient mail address. You can add multiple recipients by using a comma separated list.

e bcc: Blind copy recipient mail address. You can add multiple recipients by using a comma
separated list.

¢ subject: Some subject used as mail head line.

As a tester you are able to set these properties in your test case. Citrus defines a XML mail message
representation that you can use inside your send action. Let us have a look at this:

<send endpoi nt ="si npl eMai | Cl i ent">
<nessage>
<payl oad>
<mui | - message xm ns="http://ww. ci trusfranmework. or g/ schena/ nai | / mressage" >
<fronechri st oph@i t rusframework. conx/ fron»
<t o>dev@i t r usf ramewor k. conx/t 0>
<cc></cc>
<bcc></ bcc>
<subject>This is a test mail nessage</subject>
<body>
<cont ent Type>t ext/pl ai n; charset=utf-8</content Type>
<content>Hello Gitrus mail server!</content>
</ body>
</ mai | - nessage>
</ payl oad>
</ message>
</ send>

The basic XML mail message representation defines a list of basic mail properties such as from, to or
subject. In addition to that we define a text body which is either plain text or HTML. You can specify
the content type of the mail body very easy (e.g. text/plain or text/html). By default Citrus uses
text/plain content type.

Now when dealing with mail messages you often come to use multipart structures for attachments. In
Citrus you can define attachment content as base64 character sequence. The Citrus mail client will
automatically create a proper multipart mail mime message using the content types and body parts
specified.

<send endpoi nt ="si npl eMai | Cl i ent">
<nessage>
<payl oad>
<mui | - message xm ns="http://wwv. ci trusfranmework. org/ schena/ nai | / mressage" >
<fronmechri st oph@i t rusframewor k. conx/ fron»
<t o>dev@i t r usf ramewor k. conx/t 0>
<cc></cc>
<bcc></ bcec>
<subject>This is a test mail nessage</subject>
<body>
<cont ent Type>t ext/ pl ai n; charset =ut f - 8</ cont ent Type>
<content>Hello Gitrus mail server!</content>
<attachnent s>
<at t achnent >
<cont ent Type>t ext/pl ai n; charset=utf-8</content Type>

Citrus Framework (2.5.2) 203

Mail support

<content>This is attachment data</content>
<fileNane>attachnment.txt</fileNane>
</ attachnment >
</ attachnent s>
</ body>
</ mai | - nessage>
</ payl oad>
</ nessage>
</ send>

That completes the basic mail client capabilities. But wait we have not talked about error scenarios
where mail communication results in error. When running into mail error scenarios we have to handle
the error respectively with exception handling. When the mail server responded with errors Citrus will
raise mail exceptions automatically and your test case fails accordingly.

As a tester you can catch and assert these mail exceptions verifying your error scenario.

<assert exception="org.springframework. nail.Mil SendExcepti on">
<send endpoi nt="si npl eMai | d i ent">
<message>
<payl oad>
<nmui | - message xm ns="http://ww. ci trusfranework. org/ schena/ nai | / mressage" >

[...]

</ mai | - nessage>
</ payl oad>
</ nessage>
</ send>
<assert/>

We assert the mai | SendExcepti on from Spring to be thrown while sending the mail message to the
SMTP server. With exception message validation you are able to expect very specific mail send
errors on the client side. This is how you can handle some sort of error situation returned by the mail
server. Speaking of mail servers we need to also talk about providing a mail server endpoint in Citrus
for clients. This is part of our next section.

25.2. Mail server

Consuming mail messages is a more complicated task as we need to have some sort of server that
clients can connect to. In your mail client software you typically point to some IMAP or POP inbox
and receive mails from that endpoint. In Citrus we do not want to manage a whole personal mail
inbox such as IMAP or POP would provide. We just need a SMTP server endpoint for clients to send
mails to. The SMTP server accepts mail messages and forwards those to a running test case for
further validation.

Note

We have no user inbox where incoming mails are stored. The mail server just forwards
incoming mails to the running test for validation. After the test the incoming mail message
is gone.

And this is exactly what the Citrus mail server is capable of. The server is a very lightweight SMTP
server. All incoming mail client connections are accepted by default and the mail data is converted
into a Citrus XML mail interface representation. The XML mail message is then passed to the running
test for validation.

Let us have a look at the Citrus mail server component and how you can add it to the Spring
application context.

Citrus Framework (2.5.2) 204

Mail support

<citrus-nmuil:server id="sinpleMil Server"
port ="25025"
auto-start="true"/>

The mail server component receives several properties such as port or auto-start. Citrus starts a in
memory SMTP server that clients can connect to.

In your test case you can then receive the incoming mail messages on the server in order to perform
the well known XML validation mechanisms within Citrus. The message header and the payload
contain all mail information so you can verify the content with expected templates as usual:

<recei ve endpoi nt ="si npl eMai | Server">
<nessage>
<payl oad>
<nmui | - message xm ns="http://ww. ci trusfranework. org/ schena/ nai | / mressage" >
<fronmechri st oph@i t rusframewor k. conx/ f ron»
<t o>dev@i t r usf ramewor k. conx/ t 0>
<cc></cc>
<bcc></bcc>
<subj ect>This is a test mai | nessage</subject>
<body>
<cont ent Type>t ext/ pl ai n; charset =ut f - 8</ cont ent Type>
<content>Hello Gitrus mail server!</content>
</ body>
</ mai | - ressage>
</ payl oad>
<header >
<el ement nane="citrus_mail _from' val ue="chri stoph@itrusfranework.con'/>
<el ement nane="citrus_mail _to" val ue="dev@itrusfranmework.cont/>
<el ement nane="citrus_mail _subject" value="This is a test nail nessage"/>
<el ement nane="citrus_mail _content _type" val ue="text/plain; charset=utf-8"/>
</ header >
</ nessage>
</receive>

The general mail properties such as from, to, subject are available as elements in the mail payload
and in the message header information. The message header names do start with a common Citrus
mail prefix citrus_mail. Following from that you can verify these special mail message headers in your
test as shown above. Citrus offers following mail headers:

citrus_mail_from

e citrus_mail_to

e citrus_mail_cc

e citrus_mail_bcc
 citrus_mail_subject
e citrus_mail_replyTo
 citrus_mail_date

In addition to that Citrus converts the incoming mail data to a special XML mail representation which
is passed as message payload to the test. The mail body parts are represented as body and optional
attachment elements. As this is plain XML you can verify the mail message content as usual using
Citrus variables, functions and validation matchers.

Regardless of how the mail message has passed the validation the Citrus SMTP mail server will
automatically respond with success codes (SMTP 250 OK) to the calling client. This is the basic

Citrus Framework (2.5.2) 205

Mail support

Citrus mail server behavior where all client connections are accepted an all mail messages are
responded with SMTP 250 OK response codes.

Now in more advanced usage scenarios the tester may want to control the mail communication
outcome. User can force some error scenarios where mail clients are not accepted or mail
communication should fail with some SMTP error state for instance.

By using a more advanced mail server setup the tester gets more power to sending back mail server
response codes to the mail client. Just use the advanced mail adapter implementation in your mail
server component configuration:

<citrus-mail:server id="advancedMuil Server"
aut o- accept ="f al se"
split-multipart="true"
por t =" 25025"
auto-start="true"/>

We have disabled the auto-accept mode on the mail server. This means that we have to do some
additional steps in your test case to accept the incoming mail message first. So we can decide in our
test case whether to accept or decline the incoming mail message for a more powerful test. You
accept/decline a mail message with a special XML accept request/response exchange in your test
case:

<recei ve endpoi nt ="advancedMai | Server">
<nessage>
<payl oad>
<accept-request xm ns="http://ww.citrusfranmework. org/schema/ mai | / nessage" >
<fronechri stoph@i t rusframewor k. conx/ fron
<t o>dev@i t r usf ramewor k. conx/ t 0>
</ accept - request >
</ payl oad>
</ nessage>
</receive>

So before receiving the actual mail message we receive this simple accept-request in our test. The
accept request gives us the message from and to resources of the mail message. Now the test
decides to also decline a mail client connection. You can simulate that the server does not accept the
mail client connection by sending back a negative accept response.

<send endpoi nt ="advancedMi | Server">
<nessage>
<payl oad>
<accept-response xm ns="http://wwv. citrusfranmework. org/ schena/ mai | / message" >
<accept >t rue</ accept >
</ accept - r esponse>
</ payl oad>
</ nessage>
</ send>

Depending on the accept outcome the mail client will receive an error response with proper error
codes. If you accept the mail message with a positive accept response the next step in your test
receives the actual mail message as we have seen it before in this chapter.

Now besides not accepting a mail message in the first place you can als simulate another error
scenario with the mail server. In this scenario the mail server should respond with some sort of SMTP
error code after accepting the message. This is done with a special mail response message like this:

<recei ve endpoi nt ="advancedMi | Server">
<nessage>
<payl oad>
<mui | - message xm ns="http://ww. ci trusfranework. org/ schena/ nai | / mressage" >
<fronechri st oph@i t rusframework. conx/ fron>

Citrus Framework (2.5.2) 206

Mail support

<t o>dev@i t r usf r amewor k. conx/ t o>

<cc></cc>

<bcc></bcc>

<subj ect>This is a test mai | nessage</subject>

<body>
<cont ent Type>t ext/pl ai n; charset =utf-8</content Type>
<content>Hello Citrus mail server!</content>

</ body>

</ mai | - nessage>
</ payl oad>
</ nessage>
</receive>

<send endpoi nt ="advancedMi | Server">
<nessage>
<payl oad>
<nmui | -response xm ns="http://ww. citrusfranmework. org/schema/ mai | / nessage" >
<code>443</ code>
<nessage>Fai | ed! </ mnessage>
</ mai | -response>
</ payl oad>
</ message>
</ send>

As you can see from the example above we first accept the connection and receive the mail content
as usual. Now the test returns a negative mail response with some error code reason set. The Citrus
SMTP communication will then fail and the calling mail client receives the respective error.

If you skip the negative mail response the server will automatically response with positive SMTP
response codes to the calling client.

Citrus Framework (2.5.2) 207

Chapter 26. Arquillian support

Arquillian is a well known integration test framework that comes with a great feature set when it
comes to Java EE testing inside of a full qualified application server. With Arquiliian you can deploy
your Java EE services in a real application server of your choice and execute the tests inside the
application server boundaries. This makes it very easy to test your Java EE services in scope with
proper JNDI resource allocation and other resources provided by the application server. Citrus is able
to connect with the Arquillian test case. Speaking in more detail your Arquillian test is able to use a
Citrus extension in order to use the Citrus feature set inside the Arquillian boundaries.

Read the next section in order to find out more about the Citrus Arquillian extension.

26.1. Citrus Arquillian extension

Arquillian offers a fine mechanism for extensions adding features to the Arquillian test setup and test
execution. The Citrus extension respectively adds Citrus framework instance creation and Citrus test
execution to the Arquillian world. First of all lets have a look at the extension descriptor properties
settable via arquillian.xml:

<extension qualifier="citrus">

<property name="citrusVersion">2.5.2</property>

<property name="aut oPackage">true</ property>

<property name="suiteNane">citrus-arquillian-suite</property>
</ ext ensi on>

The Citrus extension uses a specific qualifier citrus for defining properties inside the Arquillian
descriptor. Following properties are settable in current version:

 citrusVersion: The explicit version of Citrus that should be used. Be sure to have the same library
version available in your project (e.g. as Maven dependency). This property is optional. By default
the extension just uses the latest stable version.

« autoPackage: When true (default setting) the extension will automatically add Citrus libraries and
all transitive dependencies to the test deployment. This automatically enables you to use the Citrus
API inside the Arquillian test even when the test is executed inside the application container.

« suiteName: This optional setting defines the name of the test suite that is used for the Citrus test
run. When using before/after suite functionality in Citrus this setting might be of interest.

» configurationClass: Full qualified Java class name of customized Citrus Spring bean configuration
to use when loading the Citrus Spring application context. As a user you can define a custom
configuration class that must be a subclass of com.consol.citrus.config.CitrusSpringConfig. When
specified the custom class is loaded otherwise the default
com.consol.citrus.config.CitrusSpringConfig is loaded to set up the Spring application context.

Now that we have added the extension descriptor with all properties we need to add the respective
Citrus Arquillian extension as library to our project. This is done via Maven in your project's POM file
as normal dependency:

<dependency>
<gr oupl d>com consol . ci t rus</ groupl d>
<artifactld>citrus-arquillian</artifactld>

<versi on>2. 5. 2</ ver si on>
<scope>t est </ scope>

Citrus Framework (2.5.2) 208

Arquillian support

</ dependency>

Now everything is set up to use Citrus within Arquillian. Lets use Citrus functionality in a Arquillian
test case.

26.2. Client side testing

Arquillian separates client and container side testing. When using client side testing the test case is
executed outside of the application container deployment. This means that your test case has no
direct access to container managed resources such as JNDI resources. On the plus side it is not
necessary to include your test in the container deployment. The test case interacts with the container
deployment as a normal client would do. Lets have a look at a first example:

@unW t h(Arquillian.class)
@RunAsd i ent
public class Enpl oyeeResourceTest {

@i t r usFr amewor k
private Ctrus citrusFramework;

@\rquillianResource
private URL baselri;

private String serviceUri;

@epl oynent
public static WebArchive createDepl oyment () {
return ShrinkW ap. creat e(\WebAr chi ve. cl ass)
. addCl asses(Regi stryApplication.class, Enpl oyeeResource. cl ass,
Enpl oyees. cl ass, Enpl oyee. cl ass, Enpl oyeeRepository.cl ass);

}

@Bef ore
public void setUp() throws Ml fornmedURLException {
serviceUri = new URL(baseUri, "registry/enployee").toExternal Form();

}

@rest
@ci trusTest
public void testCreateEnpl oyeeAndGet (@i t rusResour ce Test Desi gner designer) {
desi gner . send(serviceUri)
. message(new Htt pMessage(" nane=Penny&age=20")
. met hod(Ht t pMet hod. POST)
. cont ent Type(Medi aType. APPLI CATI ON_FORM URLENCODED)) ;

desi gner.recei ve(serviceUri)
. message(new Htt pMessage()
. statusCode(Htt pSt at us. NO_CONTENT)) ;

desi gner. send(serviceUri)
. message(new Htt pMessage()
. met hod(Ht t pMet hod. CGET)
.accept (Medi aType. APPLI CATI ON_XM.)) ;

desi gner. recei ve(servicelri)
. message(new Htt pMessage(" <enpl oyees>" +

"<enpl oyee>" +
"<age>20</ age>" +
" <nanme>Penny</ name>" +
"</ enpl oyee>" +

"</ enpl oyees>")
.statusCode(HttpStatus. OK));

ci trusFramewor k. run(desi gner. buil d());

First of all we use the basic Arquillian JUnit test runner @RunWith(Arquillian.class) in combination
with the @RunAsClient annotation telling Arquillian that this is a client side test case. As this is a

Citrus Framework (2.5.2) 209

Arquillian support

usual Arquillian test case we have access to Arquillian resources that automatically get injected such
as the base uri of the test deployment. The test deployment is a web deployment created via
ShrinkWrap. We add the application specific classes that build our remote RESTful service that we
would like to test.

The Citrus Arquillian extension is able to setup a proper Citrus test environment in the background.
As a result the test case can reference a Citrus framework instance with the @CitrusFramework
annotation. We will use this instance of Citrus later on when it comes to execute the Citrus testing
logic.

No we can focus on writing a test method which is again nothing but a normal JUnit test method. The
Citrus extension takes care on injecting the @CitrusResource annotated method parameter. With this
Citrus test designer instance we can build a Citrus test logic for sending and receiving messages via
Http in order to call the remote RESTful employee service of our test deployment. The Http endpoint
uri is injected via Arquillian and we are able to call the remote service as a client.

The Citrus test designer provides Java DSL methods for building the test logic. Please note that the
designer will aggregate all actions such as send or receive until the designer is called to build the test
case with build() method invocation. The resulting test case object can be executed by the Citrus
framework instance with run() method.

When the Citrus test case is executed the messages are sent over the wire. The respective response
message is received with well known Citrus receive message logic. We can validate the response
messages accordingly and make sure the client call was done right. In case something goes wrong
within Citrus test execution the framework will raise exceptions accordingly. As a result the JUnit test
method is successful or failed with errors coming from Citrus test execution.

This is how Citrus and Arquillian can interact in a test scenario where the test deployment is
managed by Arquillian and the client side actions take place within Citrus. This is a great way to
combine both frameworks with Citrus being able to call different service APl endpoints in addition
with validating the outcome. This was a client side test case where the test logic was executed
outside of the application container. Arquillian also supports container remote test cases where we
have direct access to container managed resources. The following section describes how this works
with Citrus.

26.3. Container side testing

In previous sections we have seen how to combine Citrus with Arquillian in a client side test case.
This is the way to go for all test cases that do not need to have access on container managed
resources. Lets have a look at a sample where we want to gain access to a JMS queue and
connection managed by the application container.

@unW th(Arquillian.class)
public class EchoServiceTest {

@i t rusFr amewor k
private Ctrus citrusFranmework;

@Resour ce(mappedNanme = "j ns/ queue/ test")
private Queue echoQueue;

@Resour ce(mappedNanme = "/ Connecti onFactory")
private Connecti onFactory connectionFactory;

private JmsSyncEndpoi nt j nsSyncEndpoi nt;

@epl oynent
@ver Protocol ("Servlet 3.0")

Citrus Framework (2.5.2) 210

Arquillian support

public static WebArchive createDepl oynent () throws Ml fornmedURLException {
return ShrinkW ap. creat e(WebAr chi ve. cl ass)
. addCl asses(EchoServi ce. cl ass) ;

}

@Bef ore

public void setUp() {
JnsSyncEndpoi nt Confi gurati on endpoi nt Configurati on = new JnmsSyncEndpoi nt Confi guration();
endpoi nt Confi gur ati on. set Connect i onFact ory(new Si ngl eConnecti onFact ory(connecti onFactory));
endpoi nt Confi gurati on. set Desti nati on(echoQueue);
j msSyncEndpoi nt = new JnsSyncEndpoi nt (endpoi nt Confi gurati on);

}

@\fter

public void cleanUp() {
cl oseConnecti ons();

}

@est

@Ci trusTest

public void shoul dBeAbl eToSendMessage(@i t r usResour ce Test Desi gner desi gner) throws Exception {
String nessageBody = "ping";

desi gner . send(j meSyncEndpoi nt)
. messageType(MessageType. PLAI NTEXT)
. message(new JnsMessage(nessageBody)) ;

desi gner . recei ve(j msSyncEndpoi nt)
. messageType(MessageType. PLAI NTEXT)
. message(new JnsMessage(nessageBody)) ;

ci trusFranmewor k. run(desi gner. buil d());

}

private void closeConnections() {
((Si ngl eConnecti onFact ory)j msSyncEndpoi nt . get Endpoi nt Conf i gurati on() . get Connecti onFactory()).destroy();
}

As you can see the test case accesses two container managed resources via JNDI. This is a JMS
queue and a JMS connection that get automatically injected as resources. In a before test annotated
method we can use these resources to build up a proper Citrus JMS endpoint. Inside the test method
we can use the JMS endpoint for sending and receiving JMS messages via Citrus. As usual
response messages received are validated and compared to an expected message. As usual we use
the Citrus TestDesigner method parameter that is injected by the framework. The designer is able to
build Citrus test logic with Java DSL methods. Once the complete test is designed we can build the
test case and run the test case with the framework instance. After the test we should close the IMS
connection in order to avoid exceptions when the application container is shutting down after the test.

The test is now part of the test deployment and is executed within the application container
boundaries. As usual we can use the Citrus extension to automatically inject the Citrus framework
instance as well as the Citrus test builder instance for building the Citrus test logic.

This is how to combine Citrus and Arquillian in order to build integration tests on Java EE services in
a real application container environment. With Citrus you are able to set up more complex test
scenarios with simulated services such as mail or ftp servers. We can build Citrus endpoints with
container managed resources.

26.4. Test runners

In the previous sections we have used the Citrus TestDesigner in order to construct a Citrus test
case to execute within the Arquillian boundaries. The nature of the test designer is to aggregate all
Java DSL method calls in order to build a complete Citrus test case before execution is done via the
Citrus framework. This approach can cause some unexpected behavior when mixing the Citrus Java

Citrus Framework (2.5.2) 211

Arquillian support

DSL method calls with Arquillian test logic. Lets describe this by having a look at an example where
th mixture of test designer and pure Java test logic causes unseen problems.

@est
@0 trusTest
public void testDesignRunti neM xture(@i trusResource Test Desi gner designer) throws Exception {
desi gner . send(serviceUri)
. nmessage(new Htt pMessage(" nanme=Penny&age=20")
. met hod(Ht t pMet hod. POST)
. cont ent Type(Medi aType. APPLI CATI ON_FORM URLENCODED)) ;

desi gner. recei ve(servicelri)
. message(new Htt pMessage())
.statusCode(Htt pStatus. NO CONTENT)) ;

Enpl oyee test Enpl oyee = enpl oyeeServi ce. fi ndEnpl oyee(" Penny") ;
enpl oyeeSer vi ce. addJob(t est Enpl oyee, "waitress");

desi gner. send(serviceUri)
. message(new Htt pMessage()
. met hod(Ht t pMet hod. GET)
.accept (Medi aType. APPLI CATI ON_XM.)) ;

desi gner. recei ve(servicelri)
. message(new Htt pMessage(" <enpl oyees>" +

"<enpl oyee>" +
" <age>20</ age>" +
" <nane>Penny</ nane>" +
"<j obs>" +

" <] ob>wai tress</j ob>" +

"</jobs>" +
"</ enpl oyee>" +

"</ enpl oyees>"))
.statusCode(HttpStatus. K));

ci trusFramewor k. run(desi gner. buil d());

As you can see in this example we create a new Employee named Penny via the Http REST API on
our service. We do this with Citrus Http send and receive message logic. Once this is done we would
like to add a job description to the employee. We use a service instance of EmployeeService which is
a service of our test domain that is injected to the Arquillian test as container JEE resource. First of
all we find the employee object and then we add some job description using the service. Now as a
result we would like to receive the employee as XML representation via a REST service call with
Citrus and we expect the job description to be present.

This combination of Citrus Java DSL methods and service call logic will not work with TestDesigner.
This is because the Citrus test logic is not executed immediately but aggregated to the very end
where the designer is called to build the test case. The combination of Citrus design time and Java
test runtime is tricky.

Fortunately we have solved this issue with providing a separate TestRunner component. The test
runner provides nearly the same Java DSL methods for constructing Citrus test logic as the test
designer. The difference though is that the test logic is executed immediately when calling the Java
DSL methods. So following from that we can mix Citrus Java DSL code with test runtime logic as
expected. See how this looks like with our example:

@est
@oi trusTest
public void testDesignRunti mreM xture(@C trusResource Test Runner runner) throws Exception {
runner . send(new Bui | der Support <SendMessageBui | der>() {
@verride
public void configure(SendMessageBuil der buil der) {
bui | der. endpoi nt (serviceUri)
. message(new Htt pMessage(" nanme=Penny&age=20")
. met hod(Ht t pMet hod. POST)
. cont ent Type(Medi aType. APPLI CATI ON_FORM_URLENCODED)) ;

1)

Citrus Framework (2.5.2) 212

Arquillian support

runner.recei ve(new Bui |l der Support <Recei veMessageBui | der>() {
@verride
public void configure(Recei veMessageBui | der buil der) {
bui | der . endpoi nt (servi ceUri)
. message(new Htt pMessage()
.statusCode(HttpStatus. NO CONTENT)) ;

1)

Enpl oyee test Enpl oyee = enpl oyeeServi ce. fi ndEnpl oyee(" Penny") ;
enpl oyeeSer vi ce. addJob(t est Enpl oyee, "waitress");

runner . send(new Bui | der Support <SendMessageBui | der>() {
@verride
public void configure(SendMessageBuil der buil der) {
bui | der . endpoi nt (serviceUri)
. message(new Htt pMessage()
. met hod(Ht t pMet hod. CGET)
.accept (Medi aType. APPLI CATI ON_XM.)) ;
}
1)

runner.recei ve(new Bui |l der Support <Recei veMessageBui | der >() {
@verride
public void configure(Recei veMessageBui | der builder) {
bui | der. endpoi nt (serviceUri)
. message(new Htt pMessage(" <enpl oyees>" +
"<enpl oyee>" +
"<age>20</ age>" +
"<name>Penny</ nane>" +
"<j obs>" +
"<j ob>wai tress</j ob>" +
"</jobs>" +
"</ enpl oyee>" +
"</ enpl oyees>")
.statusCode(HttpStatus. OK));

1)

The test logic has not changed significantly. We use the Citrus TestRunner as method injected
parameter instead of the TestDesigner. And this is pretty much the trick. Now the Java DSL methods
do execute the Citrus test logic immediately. This is why the syntax of the Citrus Java DSL methods
have changed a little bit. We now use a anonymous interface implementation for constructing the
send/receive test action logic. As a result we can use the Citrus Java DSL as normal code and we
can mix the runtime Java logic as each statement is executed immediately.

With Java 8 lambda expressions our code looks even more straight forward and less verbose as we
can skip the anonymous interface implementations. With Java 8 you can write the same test like this:

@est
@z trusTest
public void testDesignRunti mreM xture(@ trusResource Test Runner runner) throws Exception {
runner. send(buil der -> buil der. endpoi nt(serviceUri)
. message(new Htt pMessage(" nanme=Penny&age=20")
. met hod(Ht t pMet hod. POST)
. cont ent Type(Medi aType. APPLI CATI ON_FORM_URLENCODED)) ;

runner.recei ve(builder -> buil der.endpoint(serviceUri)
. message(new Htt pMessage()
.statusCode(HttpStatus. NO CONTENT)) ;

Enpl oyee test Enpl oyee = enpl oyeeServi ce. fi ndEnpl oyee(" Penny") ;
enpl oyeeSer vi ce. addJob(t est Enpl oyee, "waitress");

runner. send(buil der -> buil der. endpoi nt (serviceUri)
. message(new Htt pMessage()
. met hod(Ht t pMet hod. CGET)
.accept (Medi aType. APPLI CATI ON_XM.)) ;

runner . recei ve(buil der -> buil der. endpoint(serviceUri)
. message(new Htt pMessage(" <enpl oyees>" +
"<enpl oyee>" +
"<age>20</ age>" +
"<nanme>Penny</ name>" +

Citrus Framework (2.5.2) 213

Arquillian support

"<j obs>" +
"<j ob>wai tress</j ob>" +
"</jobs>" +
"</ enpl oyee>" +
"</ enpl oyees>")
.statusCode(HttpStatus. K));

Citrus Framework (2.5.2) 214

Chapter 27. Docker support

Citrus provides configuration components and test actions for interaction with a Docker deamon. The
Citrus docker client component will execute Docker commands for container management such as
start, stop, build, inspect and so on. The Docker client by default uses the Docker remote REST API.
As a user you can execute Docker commands as part of a Citrus test and validate possible command
results.

Note

The Docker test components in Citrus are kept in a separate Maven module. If not already
done so you have to include the module as Maven dependency to your project

<dependency>
<gr oupl d>com consol . ci trus</ gr oupl d>
<artifactld>citrus-docker</artifactld>
<ver si on>2. 5. 2</ ver si on>

</ dependency>

Citrus provides a "citrus-docker" configuration namespace and schema definition for
Docker related components and actions. Include this namespace into your Spring
configuration in order to use the Citrus Docker configuration elements. The namespace
URI and schema location are added to the Spring configuration XML file as follows.

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns: citrus-docker="http://wwv. citrusfranmework. org/ schena/ docker/config"
xsi : schemaLocat i on="
http://ww. springfranmework. or g/ schena/ beans
http://ww. springfranmework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusfranmework. or g/ schena/ docker/config
http://ww. citrusfranmework. or g/ schenma/ docker/ confi g/ ci trus-docker-config. xsd">

[-..]

</ beans>

After that you are able to use customized Citrus XML elements in order to define the
Spring beans.

27.1. Docker client

Citrus operates with the Docker remote REST API in order to interact with the Docker deamon. The
Docker client is defined as Spring bean component in the configuration as follows:

<citrus-docker:client id="dockerClient"/>

The Docker client component above is using all default configuration values. By default Citrus is
searching the system properties as well as environment variables for default Docker settings such as:

« DOCKER_HOST="tcp://localhost:2376"

» DOCKER_CERT_PATH="~/.docker/machine/machines/default"

Citrus Framework (2.5.2) 215

Docker support

* DOCKER_TLS_VERIFY="1"

*» DOCKER_MACHINE_NAME="default"

In case these settings are not settable in your environment you can also use explicit settings in the
Docker client component:

<ci trus-docker:client id="dockerdient"
url ="http://192. 168. 2. 100: 2376"
version="1. 20"
user nane="user"
password="s!cr!t"
emai | =" user @onsol . de"
server-address="https://index. docker.io/vl/"
cert-path="/path/to/sonme/cert/directory"
confi g-pat h="/pat h/to/ sone/ confi g/ di rectory"/>

Now Citrus is able to access the Docker remote API for executing commands such as start, stop,
build, inspect and so on.

27.2. Docker commands

We have several Citrus test actions each representing a Docker command. These actions can be
part of a test case where you can manage Docker containers inside the test. As a prerequisite we
have to enable the Docker specific test actions in our XML test as follows:

<beans xm ns="http://wwm. spri ngframework. or g/ schema/ beans”
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: docker="http://ww. citrusframework. org/ schema/ docker/test case"
xsi : schenmalLocati on="

http://ww. springfranework.
http://ww. springfranework.
http://ww. citrusfranework.
http://ww. citrusfranework.

[-..]

</ beans>

or g/ schema/ beans

or g/ schenma/ beans/ spri ng- beans. xsd

or g/ schena/ docker/t est case

or g/ schema/ docker/ t est case/ ci trus-docker -t est case. xsd" >

We added a special docker namespace with prefix docker: so now we can start to add Docker test

actions to the test case:

XML DSL

<t est case nane="Docker Command| T" >
<actions>

<docker : pi ng></ docker : pi ng>

<docker: ver si on>
<docker : expect >
<docker:resul t>
<! [CDATA[
{

"Version":"1.8.3",

"Api Version":"1.21",
"GtConmit":"@gnore@,
"GoVersion":"gol. 4. 2",

"OCs":"darw n",
"Arch":"amd64",
"Ker nel Ver si on"

}
11>
</ docker:resul t>
</ docker : expect >
</ docker: ver si on>
</ actions>

:"@gnore@

Citrus Framework (2.5.2)

216

Docker support

</testcase>

In this very simple example we first ping the Docker deamon to make sure we have connectivity up
and running. After that we get the Docker version information. The second action shows an important
concept when executing Docker commands in Citrus. As a tester we might be interested in validating
the command result. So wen can specify an optional docker:result which is usually in JSON data
format. As usual we can use test variables here and ignore some values explicitly such as the
GitCommit value.

Based on that we can execute several Docker commands in a test case:

XML DSL

<t est case name="Docker Command| T" >
<vari abl es>
<variabl e name="i nmagel d" val ue="busybox"></vari abl e>
<vari abl e name="cont ai ner Name" val ue="ci trus_box"></vari abl e>
</vari abl es>

<acti ons>
<docker: pul | i mage="${i magel d}"
tag="l atest"/>

<docker:create image="${i magel d}"
name="${ cont ai ner Nane}"
cmd="t op" >

<docker : expect >
<docker:result>
<! [CDATA][
{"Id":"@ariabl e(contai nerld) @, "Warni ngs": nul |}
11>
</ docker:resul t>
</ docker : expect >
</ docker: creat e>

<docker: start contai ner="${cont ai ner Nane}"/ >
</ actions>
</testcase>

In this example we pull a Docker image, build a new container out of this image and start the
container. As you can see each Docker command action offers attributes such as container, image or
tag. These are command settings that are available on the Docker command specification. Read
more about the Docker commands and the specific settings in official Docker API reference guide.

Citrus supports the following Docker commands with respective test actions:

docker:pull
 docker:build
» docker:create
» docker:start
« docker:stop
» docker:wait
« docker:ping

+ docker:version

Citrus Framework (2.5.2) 217

Docker support

» docker:inspect
¢ docker:remove

+ docker:info

Some of the Docker commands can be executed both on container and image targets such as
docker:inspect or docker:remove. The command action then offers both container and image
attributes so the user can choose the target of the command operation to be a container or an image.

Up to now we have only used the Citrus XML DSL. Of course all Docker commands are also
available in Java DSL as the next example shows.

Java DSL

@i trusTest
public void dockerTest() {
docker (). version()
. val i dat eCommandResul t (new CommandResul t Cal | back<Ver si on>() {
@verride
public void doWthCommandResul t (Version version, TestContext context) {
Assert. assert Equal s(version. get Api Version(), "1.20");
}

1)
docker (). pi ng();

docker ().start("ny_container");

The Java DSL Docker commands provide an optional CommandResultCallback that is called with the
unmarshalled command result object. In the example above the Version model object is passed as
argument to the callback. So the tester can access the command result and validate its properties.

By default Citrus tries to find a Docker client component within the Citrus Spring application context.
If not present Citrus will instantiate a default docker client with all default settings. You can also
explicitly set the docker client instance when using the Java DSL Docker command actions:

Java DSL

@\ut owi r ed
private DockerCient dockerdient;

@i t rusTest
public void dockerTest() {
docker (). client(dockerCient).version()
. val i dat eCommandResul t (new CommandResul t Cal | back<Ver si on>() {
@verride

public void dowthCommandResul t (Versi on version, TestContext context) {
Assert. assert Equal s(version. get Api Version(), "1.20");
}
1)
docker (). client(dockerdient).ping();

docker ().client(dockerCient).start("my_container");

Citrus Framework (2.5.2) 218

Chapter 28. SSH support

In the spirit of other Citrus mock services, there is support for simulating an external SSH server as
well as for connecting to SSH servers as a client during the test execution. Citrus translates SSH
requests and responses to simple XML documents for better validation with the common Citrus
mechanisms.

This means that the Citrus test case does not deal with pure SSH protocol commands. Instead of this
we use the powerful XML validation capabilities in Citrus when dealing with the simple XML
documents that represent the SSH request/response data.

Let us clarify this with a little example. Once the real SSH server daemon is fired up within Citrus we
accept a SSH EXEC request for instance. The request is translated into a XML message of the
following format:

<ssh-request xm ns="http://ww. citrusfranmework. org/schema/ ssh/ nessage" >
<command>cat - | sed -e 's/Hello/Hello SSH ' </conmand>
<stdi n>Hel | o Worl d</stdi n>

</ ssh-request >

This message can be validated with the usual Citrus mechanism in a receive test action. If you do not
know how to do this, please read one of the sections about XML message validation in this reference
guide first. Now after having received this request message the respective SSH response should be
provided as appropriate answer. This is done with a message sending action on a reply handler as it
is known from synchronous http message communication in Citrus for instance. The SSH XML
representation of a response message looks like this:

<ssh-response xm ns="http://ww. citrusframework. org/schema/ ssh/ mnessage" >
<stdout >Hel | o SSH Wor | d</ st dout >
<stderr></stderr>
<exi t>0</exit>

</ ssh-response>

Besides simulating a full featured SSH server, Citrus also provides SSH client functionality. This
client uses the same request message pattern, which is translated into a real SSH call to an SSH
server. The SSH response received is also translated into a XML message as shown above so we
can validate it with known validation mechanisms in Citrus.

Similar to the other Citrus modules (http, soap), a Citrus SSH server and client is configured in Citrus
Spring application context. There is a dedicated ssh namespace available for all ssh Citrus
components. The namespace declaration goes into the context top-level element as usual:

<beans

L1

xm ns: citrus-ssh="http://wwmv. citrusframework. org/schema/ ssh/ confi g"

[...]

xsi : schenalLocati on="
[-..]

http://ww. citrusfranework. or g/ schena/ ssh/ config
http://wwmv citrusframework. or g/ schema/ ssh/ confi g/ citrus-ssh-config. xsd
[...1 ">

[...]

</ beans>

Both, SSH server and client along with their configuration options are described in the following two
sections.

Citrus Framework (2.5.2) 219

SSH support

28.1. SSH Client

A Citrus SSH client is useful for testing against a real SSH server. So Citrus is able to invoke SSH
commands on the external server and validate the SSH response accordingly. The test case does
not deal with the pure SSH protocol within this communication. The Citrus SSH client component
expects a customized XML representation and automatically translates these request messages into
a real SSH call to a specific host. Once the synchronous SSH response was received the result gets
translated back to the XML response message representation. On this translated response we can
easily apply the validation steps by the usual Citrus means.

The SSH client components receive its configuration in the Spring application context as usual. We
can use the special SSH module namespace for easy configuration:

<citrus-ssh:client id="sshCient"
port="9072"
user ="rol and"
privat e- key- pat h="cl asspat h: conf consol / ci trus/ssh/test_user.priv"
strict-host - checki ng="f al se"
host ="1 ocal host"/ >

The SSH client receives several attributes, these are:

* id: Id identifying the bean and used as reference from with test descriptions. (e.g. id="sshClient")

* host: Host to connect to for sending an SSH Exec request. Default is 'localhost' (e.g.
host="localhost")

« port Port to use. Default is 2222 (e.g. port="9072")

 private-key-path: Path to a private key, which can be either a plain file path or an class resource if
prefixed with 'classpath’ (e.g. private-key-path="classpath:test_user.priv")

e private-key-password: Optional password for the private key (e.g. password="s!cr!t")
 user: User used for connecting to the SSH server (e.g. user="roland")

e password: Password used for password based authentication. Might be combined with
"private-key-path" in which case both authentication mechanism are tried (e.g. password="ps!st)

« strict-host-checking: Whether the host key should be verified by looking it up in a 'known_hosts'
file. Default is false (e.g. strict-host-checking="true")

« known-hosts-path: Path to a known hosts file. If prefixed with 'classpath:' this file is looked up as a
resource in the classpath (e.g. known-hosts-path="/etc/ssh/known_hosts")

» command-timeout: Timeout in milliseconds for how long to wait for the SSH command to complete.
Default is 5 minutes (e.g. command-timeout="300000")

» connection-timeout: Timeout in milliseconds for how long to for a connectiuon to connect. Default is
1 minute (e.g. connection-timeout="60000")

 actor: Actor used for switching groups of actions (e.g. actor="ssh-mock")

Once defines as client component in the Spring application context test cases can reference the
client in every send test action.

Citrus Framework (2.5.2) 220

SSH support

<send endpoi nt="sshd ient">
<nessage>
<payl oad>
<ssh-request xm ns="http://wwmv citrusframework. org/schema/ ssh/ nessage" >
<comrand>shut down</ conmand>
<st di n>i nput </ st di n>
</ ssh-request >
</ payl oad>
</ nessage>
</ send>

<recei ve endpoi nt="sshdient">
<nessage>
<payl oad>
<ssh-response xm ns="http://wwv. citrusfranmework. org/ schena/ ssh/ nessage" >
<stdout>Hel |l 0 Citrus</stdout>
<stderr/>
<exi t>0</exit>
</ ssh-response>
</ payl oad>
</ message>
</receive>

As you can see we use usual send and receive test actions. The XML SSH representation helps us
to specify the request and response data for validation. This way you can call SSH commands
against an external SSH server and validate the response data.

28.2. SSH Server

Now that we have used Citrus on the client side we can also use Citrus SSH server module in order
to provide a full stacked SSH server deamon. We can accept SSH client connections and provide
proper response messages as an answer.

Given the above SSH module namespace declaration, adding a new SSH server is quite simple:

<ci trus-ssh: server id="sshServer"
al | owed- key- pat h="cl asspat h: conf consol / ci trus/ssh/test_user_pub. pent
user ="rol and"
port="9072"
auto-start="true"
endpoi nt - adapt er =" sshEndpoi nt Adapter"/ >

endpoint-adapter is the handler which receives the SSH request as messages (in the request format
described above). Endpoint adapter implementations are fully described in Section 17.2, “HTTP
REST server” All adapters described there are supported in SSH server module, too.

The <citrus-ssh:server> supports the following attributes:

SSH Server Attributes:

* id: Name of the SSH server which identifies it unique within the Citrus Spring context (e.g.
id="sshServer")

* host-key-path: Path to PEM encoded key pair (public and private key) which is used as host key.
By default, a standard, pre-generate, fixed keypair is used. The path can be specified either as an
file path, or, if prefixed with classpath: is looked up from within the classpath. The path the is
relative from to the top-level package, so no leading slash should be used (e.g.
hist-key-path="/etc/citrus_ssh_server.pem)

 user: User which is allowed to connect (e.g. user="roland")

Citrus Framework (2.5.2) 221

SSH support

allowed-key-path: Path to a SSH public key stored in PEM format. These are the keys, which are
allowed to connect to the SSH server when publickey authentication is used. It seves the same
purpose as aut hori zed_keys for standard SSH installations. The path can be specified either as an
file path, or, if prefixed with classpath: is looked up from within the classpath. The path the is
relative from to the top-level package, so no leading slash should be used (e.g.
allowed-key-path="classpath:test_user_pub.pem)

password: Password which should be used when password authentication is used. Both publickey
authentication and password based authentication can be used together in which case both
methods are tried in turn (e.g. password="s!cr!t")

host: Host address (e.g. localhost)
port: Port on which to listen. The SSH server will bind on localhost to this port (e.g. port="9072")

auto-start: Whether to start this SSH server automatically. Default is true. If set to false, a test
action is responsible for starting/stopping the server (e.g. auto-start="true")

endpoint-adapter: Bean reference to a endpoint adapter which processes the incoming SSH
request. The message format for the request and response are described above (e.g.
endpoint-adapter="sshEndpointAdapter")

Once the SSH server component is added to the Spring application context with a proper endpoint
adapter like the MessageChannel forwarding adapter we can receive incoming requests in a test
case and provide a respone message for the client.

<recei ve endpoi nt ="sshServer">
<nessage>
<payl oad>
<ssh-request xm ns="http://wwm. citrusframework. org/schema/ssh/ nessage" >
<comrand>shut down</ command>
<st di n>i nput </ st di n>
</ ssh-request >
</ payl oad>
</ message>
</receive>

<send endpoi nt ="sshServer">
<nessage>
<payl oad>
<ssh-response xm ns="http://ww. citrusfranmework. org/ schena/ ssh/ nessage" >
<stdout>Hel l o Citrus</stdout>
<exi t>0</exit>
</ ssh-response>
</ payl oad>
</ message>
</ send>

Citrus Framework (2.5.2) 222

Chapter 29. RMI support

RMI stands for Remote Method Invocation and is a standard way of calling Java method interfaces
where caller and callee (client and server) are not located within the same JVM. So the object passed
to the method as argument as well as the method return value are transmitted over the wire.

As a client Citrus is able to connect to some RMI registry that exposes some remote interfaces. As a
server Citrus implements such a RMI registry and handles incoming method calls with providing the
respective return value.

Note

The RMI components in Citrus are kept in a separate Maven module. So you should
check that the module is available as Maven dependency in your project

<dependency>
<gr oupl d>com consol . ci trus</ groupl d>
<artifactld>citrus-rm </artifactld>
<versi on>2. 5. 2</ ver si on>

</ dependency>

As usual Citrus provides a customized rmi configuration schema that is used in Spring
configuration files. Simply include the citrus-rmi namespace in the configuration XML files
as follows.

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:citrus="http://ww.citrusframework. org/schema/ config"
xmns:citrus-rm ="http://ww.citrusframework. org/schenma/rni/config"
xsi : schemaLocat i on="
http://ww. springframework. or g/ schena/ beans
http://ww. springframewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusframework. org/ schema/ config
http://ww. citrusframework. org/ schena/ confi g/ citrus-config.xsd
http://ww. citrusframework. org/schenma/rm/config
http://ww. citrusframework. org/schena/rm/config/citrus-rm-config.xsd">

[...]

</ beans>

Now you are ready to use the customized Http configuration elements with the citrus-rmi
namespace prefix.

Read the next section in order to find out more about the RMI message support in Citrus.

29.1. RMI client

On the client side we want to call e remote interface. We need to specify the method to call as well as
all method arguments. The respective method return value is receivable within the test case for
validation. Citrus provides a client component for RMI that sends out service invocation calls.

<citrus-rm:client id="rm dientl"
host ="| ocal host"
port="1099"
bi ndi ng="newsServi ce"/ >

<citrus-rm:client id="rm dient2"
server-url ="rm:/ /| ocal host: 1099/ newsServi ce"/ >

Citrus Framework (2.5.2) 223

RMI support

The client component in the Spring application context receives host and port configuration of a valid
RMI service registry. Either by specifying a proper server url or by giving host, port and binding
properties. The service binding is the name of the service that we would like to address in the
registry. Now we are ready to use this client referenced by its id or name in a test case for a message
sending action.

XML DSL
<send endpoint="rm dient">
<nessage>
<payl oad>

<service-invocation xm ns="http://ww.citrusfranework. org/schema/rm /message" >
<r enot e>com consol . citrus. rm . renote. NewsServi ce</ renot e>
<met hod>get News</ met hod>
</ service-invocation>
</ payl oad>
</ nessage>
</ send>

Java DSL

@0 trusTest
public void rm dientTest() {
send(rm dient)
. message(Rm Message. i nvocat i on(NewsSer vi ce. cl ass, "getNews"));

We are using the usual Citrus send message action referencing the rmiClient as endpoint. The
message payload is a special Citrus message that defines the service invocation. We define the
remote interface as well as the method to call. Citrus RMI client component will be able to interpret
this message content and call the service method.

The method return value is receivable for validation using the very same client endpoint.

XML DSL

<receive endpoint="rm dient">
<nessage>
<payl oad>
<service-result xm ns="http://ww.citrusframework. org/schena/rmn /message">
<obj ect type="java.lang. String" value="This is news fromRM!"/>
</ service-resul t>
</ payl oad>
</ nessage>
</receive>

Java DSL

@0 trusTest
public void rm CientTest() {
receive(rm dient)
. message(Rm Message.result("This is news fromRM!"));

In the sample above we receive the service result and expect a java.lang.String object return value.
The return value content is also validated within the service result payload.

Of course we can also deal with method arguments.

XML DSL

<send endpoint="rm dient">

Citrus Framework (2.5.2) 224

RMI support

<nessage>
<payl oad>
<service-invocation xm ns="http://ww.citrusfranework. org/schema/rn /message" >
<renot e>com consol . ci trus. rm .renote. NewsServi ce</renot e>
<met hod>set News</ net hod>
<ar gs>
<arg value="This is breaking news!"/>
</ ar gs>
</ service-invocation>
</ payl oad>
</ nessage>
</ send>

@@ trusTest
public void rm ServerTest () {
send(rm dient)
. message(Rm Message. i nvocati on(NewsServi ce. cl ass, "setNews")
.argument ("This is breaking news!"))

This completes the basic remote service call. Citrus invokes the remote interface method and
validates the method return value. As a tester you might also face errors and exceptions when calling
the remote interface method. You can catch and assert these remote exceptions verifying your error
scenario.

XML DSL

<assert exception="java.rm .RenoteException">
<send endpoint="rm dient">
<nessage>
<payl oad>
<service-invocation xm ns="http://wmv. citrusframework. org/schema/rm/nmessage">
[...]
</ service-invocation>
</ payl oad>
</ nessage>
</ send>
<assert/>

We assert the Renot eExcept i on to be thrown while calling the remote service method. This is how you
can handle some sort of error situation while calling remote services. In the next section we will
handle RMI communication where Citrus provides the remote interfaces.

29.2. RMI server

On the server side Citrus needs to provide remote interfaces with methods callable for clients. This
means that Citrus needs to support all your remote interfaces with method arguments and return
values. The Citrus RMI server is able to bind your remote interfaces to a service registry. All incoming
RMI client method calls are automatically accepted and the method arguments are converted into a
Citrus XML service invocation representation. The RMI method call is then passed to the running test
for validation.

Let us have a look at the Citrus RMI server component and how you can add it to the Spring
application context.

<citrus-rm :server id="rm Server"
host ="1 ocal host"
port="1099"
interface="com consol.citrus.rm.renote. NewsService"
bi ndi ng="newSer vi ce"
create-regi stry="true"
auto-start="true"/>

Citrus Framework (2.5.2) 225

RMI support

The RMI server component uses properties such as host and port to define the service registry. By
default Citrus will connect to this service registry and bind its remote interfaces to it. With the attribute
create-registry Citrus can also create the registry for you.

You have to give Citrus the fully qualified remote interface name so Citrus can bind it to the service
registry and handle incoming method calls properly. In your test case you can then receive the
incoming method calls on the server in order to perform validation steps.

XML DSL

<recei ve endpoi nt="rm Server">
<nessage>
<payl oad>
<service-invocation xm ns="http://ww.citrusfranework. org/schema/rm /nmessage">
<renot e>com consol . citrus. rm .renote. NewsServi ce</ renot e>
<nmet hod>get News</ net hod>
</ service-invocation>
</ payl oad>
<header >
<el ement nane="citrus_rm _interface" val ue="com consol.citrus.rni.renote. NewsService"/>
<el ement nane="citrus_rm _method" val ue="get News"/ >
</ header >
</ nessage>
</receive>

Java DSL

@oi trusTest
public void rm ServerTest () {
recei ve(rm Server)
. message(Rm Message. i nvocat i on(NewsSer vi ce. cl ass, "getNews"));

As you can see Citrus converts the incoming service invocation to a special XML representation
which is passed as message payload to the test. As this is plain XML you can verify the RMI
message content as usual using Citrus variables, functions and validation matchers.

Since we have received the method call we need to provide some return value for the client. As usual
we can specify the method return value with some XML representation.

XML DSL
<send endpoi nt="rm Server">
<message>
<payl oad>

<service-result xm ns="http://ww.citrusfranmework. org/schema/rn/message">
<obj ect type="java.lang.String" value="This is news fromRM!"/>
</service-result>
</ payl oad>
</ nessage>
</ send>

Java DSL

@i trusTest
public void rm ServerTest () {
send(rm Server)
. message(Rm Message.result("This is news fromRM!"));

The service result is defined as object with a type and value. The Citrus RMI remote interface method
will return this value to the calling client. This would complete the successful remote service
invocation. At this point we also have to think of choosing to raise some remote exception as service

Citrus Framework (2.5.2) 226

RMI support

outcome.
XML DSL
<send endpoi nt="rm Server">
<nessage>
<payl oad>

<service-result xm ns="http://ww.citrusfranework. org/schena/rmn /message">
<excepti on>Sonet hi ng went wrong<exception/>
</ service-result>
</ payl oad>
</ message>
</ send>

Java DSL

@i t rusTest
public void rm ServerTest () {
send(rm Server)
. message(Rmi Message. excepti on(" Sormet hi ng went wrong"));

In the example above Citrus will not return some object as service result but raise a
java.rmi.RemoteException with respective error message as specified in the test case. The calling
client will receive the exception accordingly.

Citrus Framework (2.5.2) 227

Chapter 30. JMX support

JMX is a standard Java API for making beans accessible to others in terms of management and
remote configuration. JMX is the short term for Java Management Extensions and is often used in
JEE application servers to manage bean attributes and operations from outside (e.g. another JVM). A
managed bean server hosts multiple managed beans for JMX access. Remote connections to JMX
can be realized with RMI (Remote method invocation) capabilities.

Citrus is able to connect to JMX managed beans as client and server. As a client Citrus can invoke
managed bean operations and read write managed bean attributes. As a server Citrus is able to
expose managed beans as mbean server. Clients can access those Citrus managed beans and get
proper response objects as result. Doing so you can use the JVM platform managed bean server or
some RMI registry for providing remote access.

Note

The JMX components in Citrus are kept in a separate Maven module. So you should
check that the module is available as Maven dependency in your project

<dependency>
<gr oupl d>com consol . ci t rus</ groupl d>
<artifactld>citrus-jnx</artifactld>
<versi on>2. 5. 2</ ver si on>

</ dependency>

As usual Citrus provides a customized jmx configuration schema that is used in Spring
configuration files. Simply include the citrus-jmx namespace in the configuration XML files
as follows.

<beans xm ns="http://ww. springfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:citrus="http://ww.citrusfranework. org/schenma/ config"
xm ns:citrus-jmk="http://ww.citrusframework. org/schema/j nx/config"
xsi : schenaLocat i on="
http://ww. spri ngframewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusframework. org/ schenma/ config
http://ww. citrusframework. org/ schena/ confi g/ citrus-config.xsd
http://ww. citrusframework. org/ schema/j nx/ config
http://ww. citrusframework. org/ schema/j nx/ config/citrus-jnmx-config.xsd">

[..]

</ beans>

Now you are ready to use the customized Http configuration elements with the citrus-jmx
namespace prefix.

Next sections describe the IMX message support in Citrus in more detail.

30.1. JMX client

On the client side we want to call some managed bean by either accessing managed attributes with
read/write or by invoking a managed bean operation. For proper mbean server connectivity we
should specify a client component for IMX that sends out mbean invocation calls.

<citrus-jnmx:client id="jnmxdient"

Citrus Framework (2.5.2) 228

JMX support

server-url="platforn/>

The client component specifies the target managed bean server that we want to connect to. In this
example we are using the JVM platform mbean server. This means we are able to access all JVM
managed beans such as Memory, Threading and Logging. In addition to that we can access all
custom managed beans that were exposed to the platform mbean server.

In most cases you may want to access managed beans on a different JVM or application server. So
we need some remote connection to the foreign mbean server.

<citrus-jnx:client id="jmCient"
server-url="service:jmk:rm:///jndi/rm://|ocal host: 1099/ nxrm '
user name="user"
password="slcr!t"
aut o-reconnect ="true"
del ay- on-reconnect ="5000"/ >

In this example above we connect to a remote mbean server via RMI using the default RMI registry
localhost:1099 and the service hame jmxrmi. Citrus is able to handle different remote transport
protocols. Just define those in the server-url.

Now that we have setup the client component we can use it in a test case to access a managed
bean.

XML DSL

<send endpoi nt="jnmxC ient">
<nessage>
<payl oad>
<nmbean-invocati on xm ns="http://ww. citrusfranework. org/ schema/j nx/ message" >
<nmbean>j ava. | ang: t ype=Menor y</ nbean>
<attribute name="Verbose"/>
</ nbean-i nvocat i on>
</ payl oad>
</ message>
</ send>

Java DSL

@i trusTest
public void jmkCientTest() {
send(j nxClient)
. message(JnxMessage. i nvocation("java. |l ang: type=Menory")
.attribute("Verbose"));

As you can see we just used a normal send action referencing the jmx client component that we have
just added. The message payload is a XML representation of the managed bean access. This is a
special Citrus XML representation. Citrus will convert this XML payload to the actuel managed bean
access. In the example above we try to access a managed bean with object name
java.lang:type=Memory. The object name is defined in JMX specification and consists of a key
java.lang:type and a value Memory. So we identify the managed bean on the server by its type.

Now that we have access to the managed bean we can read its managed attributes such as
Verbose. This is a boolean type attribute so the mbean invocation result will be a respective Boolean
object. We can validate the managed bean attribute access in a receive action.

XML DSL

<recei ve endpoi nt="jnxdient">

Citrus Framework (2.5.2) 229

JMX support

<nessage>
<payl oad>
<nbean-result xm ns="http://ww.citrusfranmework. org/schenma/jnx/ mnessage" >
<obj ect type="java.l ang. Bool ean" val ue="fal se"/>
</ nbean-resul t>
</ payl oad>
</ nessage>
</receive>

Java DSL

@z trusTest
public void jmkCientTest() {
recei ve(j mxdient)
. message(JnxMessage. resul t (fal se));

In the sample above we receive the mbean result and expect a java.lang.Boolean object return value.
The return value content is also validated within the mbean result payload.

Some managed bean attributes might also be settable for us. So wen can define the attribute access
as write operation by specifying a value in the send action payload.

XML DSL

<send endpoi nt="jmd ient">
<nessage>
<payl oad>
<nmbean-invocati on xm ns="http://ww. citrusfranework. org/ schenma/j nx/ message" >
<nmbean>j ava. | ang: t ype=Menor y</ nbean>
<attribute name="Verbose" val ue="true" type="java. | ang. Bool ean"/>
</ nbean-i nvocat i on>
</ payl oad>
</ message>
</ send>

Java DSL

@i t rusTest
public void jmCientTest() {
send(j nxClient)
. message(JnxMessage. i nvocation("java. |l ang: t ype=Menory")
.attribute("Verbose", true));

Now we have write access to the managed attribute Verbose. We do specify the value and its type
java.lang.Boolean. This is how we can set attribute values on managed beans.

Last not least we are able to access managed bean operations.

XML DSL

<send endpoi nt="jnxd ient">
<nessage>
<payl oad>
<nbean-invocati on xm ns="http://ww. citrusfranmework. org/ schema/j nx/ message" >
<nbean>com consol . ci trus. j nx. nbean: t ype=Hel | oBean</ nbean>
<operation nane="sayHel | 0" >
>par anet er >
>param type="j ava.lang. String" value="Hello JMX!"/>
>/ par anet er >
>/ oper at i on>
</ mbean-i nvocati on>
</ payl oad>
</ nessage>
</ send>

Citrus Framework (2.5.2) 230

JMX support

Java DSL

@0 trusTest
public void jmkCientTest() {
send(j nxCient)
. message(JnxMessage. i nvocat i on("com consol . ci trus. j nx. nhean: t ype=Hel | oBean")
.operation("sayHello")
.paranmeter("Hello JMXI"));

In the example above we access a custom managed bean and invoke its operation sayHello. We are
also using operation parameters for the invocation. This should call the managed bean operation and
return its result if any as usual.

This completes the basic JMX managed bean access as client. Now we also want to discuss the
server side were Citrus is able to provide managed beans for others

30.2. JIMX server

The server side is always a little bit more tricky because we need to simulate custom managed bean
access as a server. First of all Citrus provides a server component that specifies the connection
properties for clients such as transport protocols, ports and mbean object names. Lets create a new
server that accepts incoming requests via RMI on a remote registry localhost:1099.

<citrus-jnx:server id="jmServer"
server-url="service:jnmk:rm:///jndi/rm://|ocal host: 1099/ nxrm "'
<ci trus-j nx: nheans>
<ci trus-jnx: nbean type="com consol.citrus.]jnx.nbean. Hel | oBean"/ >
<ci trus-jnx: nbean type="com consol.citrus.jnmx.nnbean. NewsBean" obj ect Domai n="com consol . citrus. news" objectNa
</ citrus-jnx: nheans>
</citrus-jnx:server>

As usual we define a server-url that controls the JMX connector access to the mbean server. In this
example above we open a JMX RMI connector for clients using the registry localhost:1099 and the
service name jmxrmi By default Citrus will not attempt to create this registry automatically so the
registry has to be present before the server start up. With the optional server property create-registry
set to true you can auto create the registry when the server starts up. These properties do only apply
when using a remote JMX connector server.

Besides using the whole server-url as property we can also construct the connection by host, port,
protocol and binding properties.

<citrus-jnx:server id="jmServer"
host ="1 ocal host"
port="1099"
protocol ="rm"
bi ndi ng="j nxrm '
<ci trus-j nx: nheans>
<citrus-j nx: mbean type="com consol . citrus.jnx.nbean. Hel | oBean"/ >
<citrus-j nmx: mbean type="com consol.citrus.jnx.mbean. NewsBean" obj ect Domai n="com consol . ci trus. news" object Na
</ ci trus-j nx: nheans>
</citrus-jnx:server>

On last thing to mention is that we could have also used platform as server-url in order to use the
JVM platform mbean server instead.

Now that we clarified the connectivity we need to talk about how to define the managed beans that
are available on our JIMX mbean server. This is done as nested mbean configuration elements. Here

Citrus Framework (2.5.2) 231

JMX support

the managed bean definitions describe the managed bean with its objectDomain, objectName,
operations and attributes. The most convenient way of defining such managed bean definitions is to
give a bean type which is the fully qualified class name of the managed bean. Citrus will use the
package name and class name for proper objectDomain and objectName construction.

Lets have a closer look at the irst mbean definition in the example above. So the first managed bean
is defined by its class name com.consol.citrus.jmx.mbean.HelloBean and therefore is accessible
using the objectName com.consol.citrus.jmx.mbean:type=HelloBean. In addition to that Citrus will
read the class information such as available methods, getters and setters for constructing a proper
MBeaninfo. In the second managed bean definition in our example we have used additional custom
objectbomain and objectName values. So the NewsBean will be accessible with
com.consol.citrus.news:name=News on the managed bean server.

This is how we can define the bindings of managed beans and what clients need to search for when
finding and accessing the managed beans on the server. When clients try to find the managed beans
they have to use proper objectNames accordingly. ObjectNames that are not defined on the server
will be rejected with managed bean not found error.

Right now we have to use the qualified class name of the managed bean in the definition. What
happens if we do not have access to that mbean class or if there is not managed bean interface
available at all? Citrus provides a generic managed bean that is able to handle any managed bean
interaction. The generic bean implementation needs to know the managed operations and attributes
though. So lets define a new generic managed bean on our server:

<citrus-jnx:server id="jmServer"
server-url ="service:jmx:rm:///jndi/rm://|ocal host: 1099/ nxrm "
<citrus-jnx: nbeans>
<ci trus-jnx: nhean nane="fooBean" obj ect Domai n="f 00. obj ect. domai n" obj ect Nane="t ype=FooBean" >
<citrus-jnx:operations>
<ci trus-j nx: operation nane="f ooQperation">
<ci trus-j nx: paranet er >
<citrus-jnx: paramtype="java.lang. String"/>
<citrus-jnx:paramtype="java. |l ang. | nteger"/>
</ citrus-jnx: paranet er >
</citrus-jnx: operation>
<ci trus-j nx: operati on nanme="bar Qperation"/>
</citrus-jnx:operations>
<citrus-jnx:attributes>
<citrus-jnx:attribute name="fooAttribute" type="java.lang.String"/>
<citrus-jnx:attribute name="barAttribute" type="java.l ang. Bool ean"/>
</citrus-jnx:attributes>
</ citrus-jnmx: mbean>
</ citrus-jnx: mheans>
</citrus-jnx:server>

The generic bean definition needs to define all operations and attributes that are available for access.
Up to now we are restricted to using Java base types when defining operation parameter and
attribute return types. There is actually no way to define more complex return types. Nevertheless
Citrus is now able to expose the managed bean for client access without having to know the actual
managed bean implementation.

Now we can use the server component in a test case to receive some incoming managed bean
access.

XML DSL

<recei ve endpoi nt ="j nxServer">
<nessage>
<payl oad>
<nbean-invocati on xm ns="http://ww. citrusfranmework. org/ schema/j nx/ mnessage" >
<mbean>com consol . ci trus. j nx. nbean: t ype=Hel | oBean</ nbean>
<operation name="sayHel | 0" >
>par anet er >

Citrus Framework (2.5.2) 232

JMX support

>param type="j ava.lang. String" value="Hello JMX!"/>
>/ par anet er >
</ operati on>
</ mbean-i nvocati on>
</ payl oad>
</ nessage>
</receive>

Java DSL

@z trusTest
public void jmkServerTest() {
recei ve(j mkServer)
. message(JnmxMessage. i nvocat i on("com consol . ci trus.j nx. nbean: t ype=Hel | oBean")
.operation("sayHello")
.paranmeter("Hello JMXI"));

In this very first example we expect a managed bean access to the bean
com.consol.citrus.jmx.mbean:type=HelloBean. We further expect the operation sayHello to be called
with respective parameter values. Now we have to define the operation result that will be returned to
the calling client as operation result.

XML DSL

<send endpoi nt ="j nxServer">
<nessage>
<payl oad>
<nbean-result xm ns="http://ww. citrusfranmework. org/ schena/jnx/ message" >
<obj ect type="java.lang. String" value="Hello fromJMX! "/>
</ mbean-resul t >
</ payl oad>
</ message>
</ send>

Java DSL

@i t rusTest
public void jmkServerTest () {
send(j nxServer)
.message(JnxMessage.result("Hello fromJMXI"));

The operation returns a String Hello from JMX!. This is how we can expect operation calls on
managed beans. Now we already have seen that managed beans also expose attributes. The next
example is handling incoming attribute read access.

XML DSL

<recei ve endpoi nt ="j nxServer" >
<nessage>
<payl oad>
<nmbean-invocati on xm ns="http://ww.citrusfranework. org/schema/j nmx/ message" >
<mbean>com consol . ci t rus. news: nane=News</ mhean>
>attri bute name="newsCount"/>
</ mbean-i nvocati on>
</ payl oad>
</ message>
</receive>

<send endpoi nt ="j nxServer">
<nessage>
<payl oad>
<nmbean-result xm ns="http://ww. citrusfranmework. org/ schena/jnx/ message" >
<obj ect type="java.lang.|nteger" val ue="100"/>
</ mbean-resul t >
</ payl oad>
</ message>

Citrus Framework (2.5.2) 233

JMX support

</ send>

Java DSL

@Ci trusTest
public void jmkServerTest () {
recei ve(j nxServer)
. nmessage(JnmxMessage. i nvocati on("com consol . ci trus. news: nane=News")
.attribute("newsCount");

send(j nxServer)
. message(JnmxMessage. resul t (100));

The receive action expects read access to the NewsBean attribute newsCount and returns a result
object of type java.lang.Integer. This way we can expect all attribute access to our managed beans.
Write operations will have a attribute value specified.

This completes the JMX server capabilities with managed bean access on operations and attributes.

Citrus Framework (2.5.2) 234

Chapter 31. Dynamic endpoint components

Endpoints represent the central components in Citrus to send or receive a message on some
destination. Usually endpoints get defined in the basic Citrus Spring application context configuration
as Spring bean components. In some cases this might be over engineering as the tester just wants to
send or receive a message. In particular this is done when doing sanity checks in server endpoints
while debugging a certain scenario.

With endpoint components you are able to create the Citrus endpoint for sending and receiving a
message at test runtime. There is no additional configuration or Spring bean component needed. You
just use the endpoint uri in a special naming convention and Citrus will create the endpoint for you.
Let us see a first example of this scenario:

<t est case name="Dynani cEndpoi nt Test ">
<actions>
<send endpoi nt ="j ms: Hel | 0. Queue?ti neout =10000" >
<nessage>
<payl oad>
[...]
</ payl oad>
</ message>
</ send>

<recei ve endpoi nt="j ms: Hel | 0. Response. Queue?ti meout =5000" >
<message>
<payl oad>

</ payl oad>
</ message>
</receive>
</ actions>
</testcase>

As you can see the endpoint uri just goes into the test case action in substitution to the usual
endpoint reference name. Instead of referencing a bean id that points to the previously configured
Citrus endpoint we use the endpoint uri directly. The endpoint uri should give all information to create
the endpoint at runtime. In the example above we use a keyword jms: which tells Citrus that we need
to create a JMS message endpoint. Secondly we give the JMS destination hame Hello.Queue which
is a mandatory part of the endpoint uri when using the JMS component. The optional timeout
parameter completed the uri. Citrus is able to create the JMS endpoint at runtime sending the
message to the defined destination via JMS.

Of course this mechanism is not limited to JMS endpoints. We can use all default Citrus message
transports in the endpoint uri. Just pick the right keyword that defines the message transport to use.
Here is a list of supported keywords:

« jms: Creates a JMS endpoint for sending and receiving message to a queue or topic

» channel: Creates a channel endpoint for sending and receiving messages using an in memory
Spring Integration message channel

» http: Creates a HTTP client for sending a request to some server URL synchronously waiting for
the response message

« ws: Creates a Web Socket client for sending messages to or receiving messages from a Web
Socket server

« soap: Creates a SOAP WebService client that send a proper SOAP message to the server URL

Citrus Framework (2.5.2) 235

Dynamic endpoint components

and waits for the synchronous response to arrive
» ssh: Creates a new ssh client for publishing a command to the server
* mail: or smtp: Creates a new mail client for sending a mail mime message to a SMTP server

« camel: Creates a new Apache Camel endpoint for sending and receiving Camel exchanges both to
and from Camel routes.

e vertx: or eventbus: Creates a new Vert.x instance sending and receiving messages with the
network event bus

* rmi: Creates a new RMI client instance sending and receiving messages for method invocation on
remote interfaces

* jmx: Creates a new JMX client instance sending and receiving messages to and from a managed
bean server.

Depending on the message transport we have to add mandatory parameters to the endpoint uri. In
the JMS example we had to specify the destination name. The mandatory parameters are always
part of the endpoint uri. Optional parameters can be added as key value pairs to the endpoint uri. The
available parameters depend on the endpoint keyword that you have chosen. See these example
endpoint uri expressions:

j ms: queuenane?connect i onFact or y=speci al Connect i onFact or y&t i neout =10000
j ms: t opi c: topi cname?connect i onFact or y=t opi cConnecti onFact ory
j ms: sync: queuenane?connect i onFact or y=speci al Connecti onFact or y&pol | i ngl nt er val =100&r epl yDest i nati on=nyRepl yDesti n

channel : channel Name
channel : sync: channel Nane
channel : channel Nanme?t i meout =10000&channel Resol ver =myChannel Resol ver

http: | ocal host: 8088/t est

http://I ocal host: 8088/t est

http: | ocal host: 8088?r equest Met hod=CGET&t i meout =10000&er r or Handl i ngSt r at egy=t hr owsExcept i on&r equest Fact or y=nmyReque
http://1 ocal host: 8088/t est ?r equest Met hod=DELETE&cust onPar anvf oo

websocket : | ocal host : 8088/ t est
websocket:/ /| ocal host: 8088/t est
ws: | ocal host : 8088/t est

ws:/ /1 ocal host: 8088/t est

soap: | ocal host : 8088/t est
soap: | ocal host : 8088?t i meout =10000&er r or Handl i ngSt r at egy=pr opagat eEr r or &essageFact or y=nyMessageFact ory

mai | : | ocal host: 25000
smt p:/ /1 ocal host: 25000
smt p:/ /1 ocal host ?ti neout =10000&user name=f oo&passwor d=1234&nai | MessageMapper =y Mapper

ssh: | ocal host: 2200
ssh:/ /1 ocal host: 22007t i meout =10000&st ri ct Host Checki ng=t r ue&user =f oo&passwor d=12345678

rm ://|ocal host: 1099/ soneServi ce
rm : | ocal host/soneServi ce&t i meout =10000

jmk:rm:///jndi/rm://|ocal host: 1099/ someServi ce
j mx: pl at f or m& i meout =10000

canel : direct:address

canel : seda: addr ess

canel : j ns: queue: soneQueue?connect i onFact or y=nyConnect i onFact ory

canel : acti veng: queue: someQueue?concur r ent Consuner s=5&dest i nati on. consuner . pref et chSi ze=50
canel : control bus: rout e?r out el d=nyRout e&act i on=st at us

vert x: addr essName
vertx: addr essNane?por t =10105&t i meout =10000&pubSubDonai n=t r ue
vert x: addr essNane?vert x| nst anceFact or y=vert xFact ory

Citrus Framework (2.5.2) 236

Dynamic endpoint components

The optional parameters get directly set as endpoint configuration. You can use primitive values as
well as Spring bean id references. Citrus will automatically detect the target parameter type and
resolve the value to a Spring bean in the application context if necessary. If you use some unknown
parameter Citrus will raise an exception at runtime as the endpoint could not be created properly.

In synchronous communication we have to reuse endpoint components in order to receive
synchronous messages on reply destinations. This is a problem when using dynamic endpoints as
the endpoints get created at runtime. Citrus uses a caching of endpoints that get created at runtime.
Following from that we have to use the exact same endpoint uri in your test case in order to get the
cached endpoint instance. With this little trick synchronous communication will work just as it is done
with static endpoint components. Have a look at this sample test:

<t est case nanme="Dynam cEndpoi nt Test ">
<acti ons>
<send endpoi nt ="j ms: sync: Hel | 0. Sync. Queue" >
<nessage>
<payl oad>

</ payl oad>
</ nessage>
</ send>

<recei ve endpoi nt="j ns: sync: Hel | 0. Sync. Queue" >
<nessage>
<payl oad>
[...]
</ payl oad>
</ message>
</receive>
</ actions>
</testcase>

As you can see we used the exact dynamic endpoint uri in both send and receive actions. Citrus is
then able to reuse the same dynamic endpoint and the synchronous reply will be received as
expected. However the reuse of exactly the same endpoint uri might get annoying as we also have to
copy endpoint uri parameters and so on.

<t est case name="Dynani cEndpoi nt Test ">
<actions>
<send endpoi nt="http://| ocal host: 8080/ Hel | oSer vi ce?user =1234567" >
<nessage>
<payl oad>
[...]
</ payl oad>
</ message>
</ send>

<recei ve endpoint="http://| ocal host: 8080/ Hel | oSer vi ce?user =1234567" >
<message>
<payl oad>

</ payl oad>
</ message>
</receive>
</ actions>
</testcase>

We have to use the exact same endpoint uri when receiving the synchronous service response. This
is not very straight forward. This is why Citrus also supports dynamic endpoint names. With a special
endpoint uri parameter called endpointName you can name the dynamic endpoint. In a
corresponding receive action you just use the endpoint name as reference which makes life more
easy:

<t est case name="Dynam cEndpoi nt Test ">

<acti ons>
<send endpoi nt="http://| ocal host: 8080/ Hel | oSer vi ce?endpoi nt Nane=nyHt t pCl i ent" >

Citrus Framework (2.5.2) 237

Dynamic endpoint components

<nessage>
<payl oad>
[...]

</ payl oad>
</ nessage>

</ send>

<recei ve endpoi nt="http://| ocal host ?endpoi nt Nane=nyHtt pll i ent ">
<nessage>
<payl oad>
[-..]
</ payl oad>
</ message>
</receive>
</ actions>
</testcase>

So we can reference the dynamic endpoint with the given name. The internal endpointName uri
parameter is automatically removed before sending out messages. Once again the dynamic endpoint
uri mechanism provides a fast way to write test cases in Citrus with less configuration. But you
should consider to use the static endpoint components defined in the basic Spring bean application
context for endpoints that are heavily reused in multiple test cases.

Citrus Framework (2.5.2) 238

Chapter 32. Endpoint adapter

Endpoint adapter help to customize the behavior of a Citrus server such as HTTP or SOAP web
servers. As the servers get started with the Citrus context they are ready to receive incoming client
requests. Now there are different ways to process these incoming requests and to provide a proper
response message. By default the server will forward the incoming request to a in memory message
channel where a test can receive the message and provide a synchronous response. This message
channel handling is done automatically behind the scenes so the tester does not care about these
things. The tester just uses the server directly as endpoint reference in the test case. This is the
default behaviour. In addition to that you can define custom endpoint adapters on the Citrus server in
order to change this default behavior.

You set the custom endpoint adapter directly on the server configuration as follows:

<citrus-http:server id="helloHttpServer"
port ="8080"
auto-start="true"
endpoi nt - adapt er =" enpt yResponseEndpoi nt Adapt er "
resour ce- base="src/it/resources"/>

<ci trus:enpty-response-adapter id="enptyResponseEndpoi nt Adapter"/>

Now let us have a closer look at the provided endpoint adapter implementations.

32.1. Empty response endpoint adapter

This is the simplest endpoint adapter you can think of. It simply provides an empty success response
using the HTTP response code 200. The adapter does not need any configurations or properties as it
simply responds with an empty HTTP response.

<citrus:enpty-response-adapter id="enptyResponseEndpoi nt Adapter"/>

32.2. Static response endpoint adapter

The next more complex endpoint adapter will always return a static response message.

<citrus:static-response-adapter id="endpointAdapter">
<ci trus: payl oad>
<! [CDATA[
<Hel | oResponse
xm ns="http://ww. consol . de/ schemas/ sanpl es/ sayHel | 0. xsd" >
<Messagel d>123456789</ Messagel d>
<Correl ationl d>Cx1x123456789</ Correl ati onl d>
<Text>Hel | o User </ Text >
</ Hel | oResponse>
11>
</ ci trus: payl oad>
<ci trus: header >
<citrus:elenent name="{http://ww. consol . de/schenas/sanpl es}hl: Operati on"
val ue="sayHel | 0"/ >
<citrus:elenent name="{http://ww. consol . de/ schenas/sanpl es}hl: Messagel d"
val ue="123456789"/ >
</citrus: header>
</citrus:static-response-adapter>

The endpoint adapter is configured with a static message payload and static response header
values. The response to the client is therefore always the same.

Citrus Framework (2.5.2) 239

Endpoint adapter

32.3. Request dispatching endpoint adapter

The idea behind the request dispatching endpoint adapter is that the incoming requests are
dispatched to several other endpoint adapters. The decision which endpoint adapter should handle
the actual request is done depending on some adapter mapping. The mapping is done based on the
payload or header data of the incoming request. A mapping strategy evaluates a mapping key using
the incoming request. You can think of an XPath expression that evaluates to the mapping key for
instance. The endpoint adapter that maps to the mapping key is then called to handle the request.

So the request dispatching endpoint adapter is able to dynamically call several other endpoint
adapters based on the incoming request message at runtime. This is very powerful. The next
example uses the request dispatching endpoint adapter with a XPath mapping key extractor.

<ci trus: di spat chi ng- endpoi nt - adapt er i d="di spat chi ngEndpoi nt Adapt er"
mappi ng- key- ext ract or =" mappi ngKeyExt r act or "
mappi ng- st rat egy="mappi ngStr at egy"/ >

<bean i d="mappi ngStrat egy"
cl ass="com consol . ci trus. endpoi nt . adapt er. mappi ng. Si npl eMappi ngSt r at egy" >
<property nanme="adapt er Mappi ngs" >
<nap>
<entry key="sayHel | 0" ref="hell oEndpoi nt Adapter"/>
</ map>
</ property>
</ bean>

<bean i d="mappi ngKeyExt ract or"
cl ass="com consol . ci trus. endpoi nt . adapt er. mappi ng. XPat hPayl oadMappi ngKeyExt r act or ">
<property nanme="xpat hExpression" val ue="//Test Message/ Operation/*"/>
</ bean>

<citrus:static-response-adapter id="hell oEndpoi nt Adapter">
<ci trus: payl oad>
<! [CDATA[

<Hel | oResponse
xm ns="http://ww. consol . de/ schemas/ sanpl es/ sayHel | 0. xsd" >
<Messagel d>123456789</ Messagel d>
<Text >Hel | o User </ Text >

</ Hel | oResponse>

11>
</citrus: payl oad>
</citrus:static-response-adapter>

The XPath mapping key extractor expression decides for each request which mapping key to use in
order to find a proper endpoint adapter through the mapping strategy. The endpoint adapters
available in the application context are mapped via their bean id. For instance an incoming request
with a matching element // Test Message/ Qper ati on/ sayHel | o would be handled by the endpoint
adapter bean that is registered in the mapping strategy as "sayHello" key. The available endpoint
adapters are configured in the same Spring application context.

Citrus provides several default mapping key extractor implementations.

» HeaderMappingKeyExtractor: Reads a special header entry and uses its value as mapping key
» SoapActionMappingKeyExtractor: Uses the soap action header entry as mapping key

» XPathPayloadMappingKeyExtractor: Evaluates a XPath expression on the request payload and
uses the result as mapping key

In addition to that we need a mapping strategy. Citrus provides following default implementations.

Citrus Framework (2.5.2) 240

Endpoint adapter

« SimpleMappingStrategy: Simple key value map with endpoint adapter references

* BeanNameMappingStrategy: Loads the endpoint adapter Spring bean with the given id matching
the mapping key

« ContextLoadingMappingStrategy: Same as BeanNameMappingStrategy but loads a separate
application context defined by external file resource

32.4. Channel endpoint adapter

The channel connecting endpoint adapter is the default adapter used in all Citrus server components.
Indeed this adapter also provides the most flexibility. This adapter forwards incoming requests to a
channel destination. The adapter is waiting for a proper response on a reply destination
synchronously. With the channel endpoint components you can read the requests on the channel
and provide a proper response on the reply destination.

<ci trus: channel - endpoi nt - adapt er i d="channel Endpoi nt Adapt er"
channel - name="i nbound. channel "
ti meout ="2500"/ >

32.5. JMS endpoint adapter

Another powerful endpoint adapter is the JMS connecting adapter implementation. This adapter
forwards incoming requests to a JMS destination and waits for a proper response on a reply
destination. A JMS endpoint can access the requests internally and provide a proper response on the
reply destination. So this adapter is very flexible to provide proper response messages.

This special adapter comes with the citrus-jms module. So you have to add the module and the
special XML namespace for this module to your configuration files. The Maven module for citrus-jms
goes to the Maven POM file as normal project dependency. The citrus-jms namespace goes to the
Spring bean XML configuration file as follows:

Note

Citrus provides a "citrus-jms" configuration namespace and schema definition for JMS
related components and features. Include this namespace into your Spring configuration
in order to use the Citrus JMS configuration elements. The namespace URI and schema
location are added to the Spring configuration XML file as follows.

<beans xm ns="http://ww. springfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns:citrus-jms="http://wwmv citrusframework. org/schema/jns/config"
xsi : schenmaLocati on="
http://ww. springfranework. or g/ schena/ beans
http://ww. springfranework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusfranework. org/ schena/jnms/config
http://wwmv citrusframework. org/ schema/j ns/ config/citrus-jms-config.xsd">

[...]

</ beans>

After that you are able to use the adapter implementation in the Spring bean configuration.

Citrus Framework (2.5.2) 241

Endpoint adapter

<ci trus-j ns: endpoi nt - adapt er i d="j nsEndpoi nt Adapter"
desti nati on- nanme="JMs. Queue. Requests. | n"
reply-destination-name="JM5. Queue. Response. Qut "
connection-factory="j nsConnecti onFact ory"
ti meout =" 2500"/ >

<bean id="j msConnectionFactory" class="org.apache. activenyg. Acti veMXonnecti onFact ory">
<property name="broker URL" val ue="tcp://| ocal host: 61616" />
</ bean>

Citrus Framework (2.5.2) 242

Chapter 33. Functions

The test framework will offer several functions that are useful throughout the test execution. The
functions will always return a string value that is ready for use as variable value or directly inside a
text message.

A set of functions is usually combined to a function library. The library has a prefix that will identify
the functions inside the test case. The default test framework function library uses a default prefix
(citrus). You can write your own function library using your own prefix in order to extend the test
framework functionality whenever you want.

The library is built in the Spring configuration and contains a set of functions that are of public use.

<citrus:function-library id="testLibrary" prefix="foo:">
<citrus: function nanme="randomNunber"> cl ass="com consol . citrus. functions. RandomN\unber Functi on"/>
<citrus:function name="randonBtring"> class="com consol .citrus.functions. RandonstringFunction"/>
<citrus: function name="custonfunction"> ref="custonfFuncti onBean"/>

</citrus:function-Ilibrary>

As you can see the library defines one to many functions either referenced as normal Spring bean or
by its implementing Java class name. Citrus constructs the library and you are able to use the
functions in your test case with the leading library prefix just like this:

f oo: randomNunber ()
f oo: randonstri ng()
f 0o: cust onfuncti on()

Tip
You can add custom function implementations and custom function libraries. Just use a
custom prefix for your library. The default Citrus function library uses the citrus: prefix.

In the next chapters the default functions offered by the framework will be described in detail.

33.1. citrus:concat()

The function will combine several string tokens to a single string value. This means that you can
combine a static text value with a variable value for instance. A first example should clarify the usage:

<t est case nanme="concat FunctionTest">
<vari abl es>
<vari abl e nanme="date" val ue="citrus:currentDate(yyyy-Mtdd)" />
<variabl e name="text" value="Hello Test Franmework!" />
</vari abl es>
<acti ons>
<echo>
<nessage>
citrus: concat (' Today
</ nessage>
</ echo>
<echo>
<nessage>
citrus:concat (' Text is: ', ${text})
</ message>
</ echo>
</ actions>
</testcase>

s: ', ${date}, ' right!?")

Citrus Framework (2.5.2) 243

Functions

Please do not forget to mark static text with single quote signs. There is no limitation for string tokens
to be combined.

citrus:concat (' Textl', 'Text2', 'Text3', ${text}, 'Textb5 , .., '"TextN)

The function can be used wherever variables can be used. For instance when validating XML
elements in the receive action.

<nessage>
<val idate path="//el ement/el enent" val ue="citrus: concat (' Cx1x', ${generatedld})"/>
</ nessage>

33.2. citrus:substring()

The function will have three parameters.
1. String to work on

2. Starting index

3. End index (optional)

Let us have a look at a simple example for this function:

<echo>
<nessage>
citrus:substring('Hello Test Framework', 6)
</ nessage>
</ echo>
<echo>
<nessage>
citrus:substring('Hello Test Framework', 0, 5)
</ nessage>
</ echo>

Function output:
Test Framework

Hello

33.3. citrus:stringLength()

The function will calculate the number of characters in a string representation and return the number.

<echo>
<nmessage>citrus:stringLength(' Hell o Test Franmework')</nmessage>
</ echo>

Function output:

20

33.4. citrus:translate()

Citrus Framework (2.5.2) 244

Functions

This function will replace regular expression matching values inside a string representation with a
specified replacement string.

<echo>
<nessage>
citrus:translate('H Ilo Test Fr.mework', "\.', '"a')
</ message>
</ echo>

Note that the second parameter will be a regular expression. The third parameter will be a simple
replacement string value.

Function output:

Hello Test Framework

33.5. citrus:substringBefore()
The function will search for the first occurrence of a specified string and will return the substring
before that occurrence. Let us have a closer look in a simple example:

<echo>
<nessage>
citrus:substringBefore(' Test/Framework', '/")
</ nessage>
</ echo>

In the specific example the function will search for the /' character and return the string before that
index.
Function output:

Test

33.6. citrus:substringAfter()

The function will search for the first occurrence of a specified string and will return the substring after
that occurrence. Let us clarify this with a simple example:

<echo>
<message>
citrus:substringAfter (' Test/Framework', '/")
</ message>
</ echo>

Similar to the substringBefore function the ‘/' character is found in the string. But now the remaining
string is returned by the function meaning the substring after this character index.

Function output:

Framework

33.7. citrus:round()

Citrus Framework (2.5.2) 245

Functions

This is a simple mathematic function that will round decimal numbers representations to their nearest
non decimal number.

<echo>
<nmessage>ci trus: round(' 3. 14") </ nessage>
</ echo>

Function output:

3

33.8. citrus:floor()

This function will round down decimal number values.

<echo>
<nmessage>citrus: floor('3.14") </ nessage>
</ echo>

Function output:

3.0

33.9. citrus:ceiling()

Similar to floor function, but now the function will round up the decimal number values.

<echo>
<nessage>ci trus:ceiling('3.14"')</ nmessage>
</ echo>

Function output:

4.0

33.10. citrus:randomNumber()

The random number function will provide you the opportunity to generate random number strings
containing positive number letters. There is a singular Boolean parameter for that function describing
whether the generated number should have exactly the amount of digits. Default value for this
padding flag will be true.

Next example will show the function usage:

<vari abl es>
<vari abl e name="rndNunber 1" val ue="ci trus: randonNunber (10)"/>
<vari abl e name="rndNunber 2" val ue="ci trus: randonNunber (10, true)"/>
<vari abl e name="rndNunber 2" val ue="ci trus: randonNunber (10, false)"/>
<vari abl e name="rndNunber 3" val ue="ci trus: randonNunber (3, false)"/>
</vari abl es>

Function output:

Citrus Framework (2.5.2) 246

Functions

8954638765
5003485980
6387650

65

33.11. citrus:randomString()

This function will generate a random string representation with a defined length. A second parameter
for this function will define the case of the generated letters (UPPERCASE, LOWERCASE, MIXED).
The last parameter allows also digit characters in the generated string. By default digit charaters are
not allowed.

<vari abl es>
<variabl e name="rndString0" val ue="${citrus:randonstring(10)}"/>
<variabl e name="rndStringl" val ue="citrus:randonftring(10)"/>
<variabl e name="rndString2" val ue="citrus:randonftring(10, UPPERCASE)"/>
<variabl e name="rndString3" val ue="citrus:randonftring(10, LOAERCASE)"/>
<variabl e name="rndString4" val ue="citrus:randonftring(10, M XED)"/>
<variabl e name="rndString4" val ue="citrus:randonftring(10, M XED, true)"/>
</vari abl es>

Function output:
HrGHOdfAer
AgSSwedetG
JSDFUTTRKU
dtkhirtsuz

Vt567JKA32

33.12. citrus:randomEnumValue()

This function returns one of its supplied arguments. Furthermore you can specify a custom function
with a configured list of values (the enumeration). The function will randomly return an entry when
called without arguments. This promotes code reuse and facilitates refactoring.

In the next sample the function is used to set a httpStatusCode variable to one of the given HTTP
status codes (200, 401, 500)

<variabl e name="htt pStat usCode" val ue="ci trus:randonEnunval ue(' 200", '401', '500')" />

As mentioned before you can define a custom function for your very specific needs in order to easily
manage a list of predefined values like this:

<citrus:function-library id="myCustonfFunctionLibrary" prefix="custom">
<citrus-function nanme="randonttt pSt at usCode" ref="randonttt pSt at usCodeFuncti on"/>
</citrus:function-library>

<bean id="randontt t pSt at usCodeFuncti on" cl ass="com consol .citrus.functions. core. RandonEnunVal ueFuncti on">
<property nane="val ues">

Citrus Framework (2.5.2) 247

Functions

<list>
<val ue>200</ val ue>
<val ue>500</ val ue>
<val ue>401</ val ue>
</list>
</ property>
</ bean>

We have added a custom function library with a custom function definition. The custom function
"randomHttpStatusCode" randomly chooses an HTTP status code each time it is called. Inside the
test you can use the function like this:

<vari abl e name="htt pSt at usCode" val ue="cust om randontHtt pSt at usCode()" />

33.13. citrus:currentDate()

This function will definitely help you when accessing the current date. Some examples will show the
usage in detail:

<echo><nmessage>ci trus: current Dat e() </ nressage></ echo>

<echo><nmessage>ci trus: current Date(' yyyy- Mt dd') </ nessage></ echo>
<echo><nessage>ci trus: current Date(' yyyy- MM dd HH: mm ss') </ nessage></ echo>
<echo><nmessage>ci trus: current Date(' yyyy- Mt dd' T' hh: nm ss') </ nessage></ echo>

<echo><nmessage>ci trus: current Date(' yyyy- Mt dd HH mm ss', ' +1y') </ nessage></echo>
<echo><nessage>ci trus: current Date(' yyyy-Mtdd HH mm ss', ' +1M)</ nessage></echo>
<echo><nessage>ci trus: current Date(' yyyy- Mt dd HH mm ss', ' +1d')</nessage></echo>
<echo><nessage>ci trus: current Date(' yyyy-M#dd HH mm ss', ' +1h')</nessage></echo>

<echo><nessage>ci trus:currentDate('yyyy-M#tdd HH: mm ss', '+1s')</nessage></echo>

<echo><nessage>ci trus: currentDate('yyyy-M#tdd HH: mm ss', '+1nl)</ nessage></echo>
<echo><nessage>ci trus:currentDate('yyyy-M#tdd HH mm ss', '-1y')</nessage></echo>

Note that the currentDate function provides two parameters. First parameter describes the date
format string. The second will define a date offset string containing year, month, days, hours, minutes
or seconds that will be added or subtracted to or from the actual date value.

Function output:
01.09.2009
2009-09-01
2009-09-01 12:00:00

2009-09-01T12:00:00

33.14. citrus:upperCase()

This function converts any string to upper case letters.

<echo>
<nmessage>ci trus: upper Case(' Hel | o Test Franmework') </ nessage>
</ echo>

Function output:

HELLO TEST FRAMEWORK

Citrus Framework (2.5.2) 248

Functions

33.15. citrus:lowerCase()

This function converts any string to lower case letters.

<echo>
<nessage>ci trus: | owerCase(' Hel | 0o Test Franmework')</nessage>
</ echo>

Function output:

hello test framework

33.16. citrus:average()

The function will sum up all specified number values and divide the result through the number of
values.

<variabl e nanme="avg" val ue="citrus:average('3', '4', '5)"/>

avg =4.0

33.17. citrus:minimum()

This function returns the minimum value in a set of number values.

<variabl e name="mi n" value="citrus:mninun('3, "4, '5)"/>

min = 3.0

33.18. citrus:maximumy()

This function returns the maximum value in a set of number values.

<variabl e nanme="nmax" val ue="citrus: maxi nun('3', '4', '5)"/>

max = 5.0

33.19. citrus:sum()

The function will sum up all number values. The number values can also be negative.

<variabl e name="sunt val ue="citrus:sun('3", '4', '5)"/>

sum =12.0

33.20. citrus:absolute()

Citrus Framework (2.5.2) 249

Functions

The function will return the absolute number value.

<vari abl e nanme="abs" val ue="citrus:absolute('-3")"/>

abs = 3.0

33.21. citrus:mapValue()

This function implementation maps string keys to string values. This is very helpful when the used
key is randomly chosen at runtime and the corresponding value is not defined during the design time.

The following function library defines a custom function for mapping HTTP status codes to the
corresponding messages:

<citrus:function-library id="nyCustonfFunctionLibrary" prefix="custom ">
<ci trus-function nane="get H t pSt at usMessage" ref="get Ht t pSt at usMessageFuncti on"/>
</citrus:function-Ilibrary>
<bean id="get H t pSt at usMessageFuncti on" cl ass="com consol . citrus.functions.core. MapVal ueFuncti on">
<property nanme="val ues">
<map>
<entry key="200" val ue="OK" />
<entry key="401" val ue="Unaut hori zed" />
<entry key="500" val ue="Internal Server Error" />
</ map>
</ property>
</ bean>

In this example the function sets the variable httpStatusMessage to the 'Internal Server Error' string
dynamically at runtime. The test only knows the HTTP status code and does not care about spelling
and message locales.

<variabl e name="htt pSt at usCodeMessage" val ue="custom get Ht t pSt at usMessage(' 500')" />

33.22. citrus:randomUUID()

The function will generate a random Java UUID.

<variabl e name="uui d" val ue="citrus: randonul D()"/>

uuid = 98fbd7b0-832e-4b85-b9d2-e0113ee88356

33.23. citrus:encodeBase64()

The function will encode a string to binary data using base64 hexadecimal encoding.

<vari abl e name="encoded" val ue="citrus: encodeBase64(' Hall o Testframework')"/>

encoded = VGVzdCBGcmFtZXdvems=

33.24. citrus:decodeBase64()

Citrus Framework (2.5.2) 250

Functions

The function will decode binary data to a character sequence using base64 hexadecimal decoding.

<vari abl e nanme="decoded" val ue="citrus: decodeBase64(' VGVzdCBGcnFt ZXdvcns=")"/>

decoded = Hallo Testframework

33.25. citrus:escapeXmil()

If you want to deal with escaped XML in your test case you may want to use this function. It
automatically escapes all XML special characters.

<echo>
<nessage>
<! [CDATA]
citrus: escapeXm (' <Message>Hal | o Test Franmewor k</ Message>')

11>
</ message>
</ echo>

<Messageé>Hallo Test Framework</Messageé>

33.26. citrus:cdataSection()

Usually we use CDATA sections to define message payload data inside a testcase. We might run
into problems when the payload itself contains CDATA sections as nested CDATA sections are
prohibited by XML nature. In this case the next function ships very usefull.

<vari abl e name="cdata" val ue="citrus: cdataSection(' payl oad')"/>

cdata = <!|[CDATA[payload]]>

33.27. citrus:digestAuthHeader()

Digest authentication is a commonly used security algorithm, especially in Http communication and
SOAP WebServices. Citrus offers a function to generate a digest authentication principle used in the
Http header section of a message.

<vari abl e name="di gest"
val ue="ci trus: di gest Aut hHeader (' usernane', 'password', 'authRealm , 'acegi'’
"POST', 'http://127.0.0.1:8080', 'citrus', 'nd5)"/>

A possible digest authentication header value looks like this:

<Di gest user nane=f 0o, r eal mrar eal m nonce=MIrMzNT
uri=http://127.0.0.1: 8080, r esponse=51f 98¢, opaque=b29a30, al gori t hm=nd5>

You can use these digest headers in messages sent by Citrus like this:

<header >
<el enent nanme="citrus_http_Authorization"
val ue="vfli g: di gest Aut hHeader (' ${ usernane}',"' ${password}', "' ${aut hReal n}'
"${nonceKey}',' POST',"' ${uri}"', ' ${opaque}', ' ${algorithn}')"/>
</ header >

Citrus Framework (2.5.2) 251

Functions

This will set a Http Authorization header with the respective digest in the request message. So your
test is ready for client digest authentication.

33.28. citrus:localHostAddress()

Test cases may use the local host address for some reason (e.g. used as authentication principle).
As the tests may run on different machines at the same time we can not use static host addresses.
The provided function localHostAddress() reads the local host name dynamically at runtime.

<vari abl e name="address" val ue="citrus:|ocal Host Address()"/>

A possible value is either the host name as used in DNS entry or an IP address value:

address = <192.168.2.100>

33.29. citrus:changeDate()

This function works with date values and manipulates those at runtime by adding or removing a date
value offset. You can manipulate several date fields such as: year, month, day, hour, minute or
second.

Let us clarify this with a simple example for this function:

<echo>

<nmessage>ci trus: changeDat e(' 01. 01. 2000', ' +1y+1Mtld') </ nessage>
</ echo>
<echo>

<nmessage>ci trus: changeDate(citrus:currentDate(), '-1M)</nessage>
</ echo>

Function output:
02.02.2001
13.04.2013

As you can see the change date function works on static date values or dynamic variable values or
functions like citrus:currentDate(). By default the change date function requires a date format such as
the current date function ('dd.MM.yyyy"). You can also define a custom date format:

<echo>
<nessage>ci t rus: changebDat e(' 2000- 01-10', '-1M1d', 'yyyy- MM dd')</nessage>
</ echo>

Function output:
1999-12-09

With this you are able to manipulate all date values of static or dynamic nature at test runtime.

33.30. citrus:readFile()

Citrus Framework (2.5.2) 252

Functions

The readFile function reads a file resource from given file path and loads the complete file content as
function result. The file path can be a system file path as well as a classpath file resource. The file
path can have test variables as part of the path or file name. In addition to that the file content can
also have test variable values and other functions.

Let's see this function in action:

<echo>
<nmessage>citrus:readFil e(' cl asspat h: some/ path/to/file.txt')</nessage>
</ echo>
<echo>
<nessage>ci trus:readFi |l e(${fil ePat h}) </ nessage>
</ echo>

The function reads the file content and places the content at the position where the function has been
called. This means that you can also use this function as part of Strings and message payloads for
instance. This is a very powerful way to extract large message parts to separate file resources. Just
add the readFile function somewhere to the message content and Citrus will load the extra file
content and place it right into the message payload for you.

Citrus Framework (2.5.2) 253

Chapter 34. Validation matcher

Message validation in Citrus is essential. The framework offers several validation mechanisms for
different message types and formats. With test variables we are able to check for simple value
equality. We ensure that message entries are equal to predefined expected values. Validation
matcher add powerful assertion functionality on top of that. You just can use the predefined validation
matcher functionalities in order to perform more complex assertions like contains or isNumber in your
validation statements.

The following sections describe the Citrus default validation matcher implementations that are ready
for usage. The matcher implementations should cover the basic assertions on character sequences
and numbers. Of course you can add custom validation matcher implementations in order to meet
your very specific validation assertions, too.

First of all let us have a look at a validation matcher statement in action so we understand how to use
them in a test case.

<nessage>
<payl oad>
<Request Message>
<MessageBody>
<Cust oner >
<| d>@r eat er Than(0) @/ | d>
<Nane>@qual sl gnor eCase("' f 00") @/ Nane>
</ Cust omer >
</ MessageBody>
</ Request Message>
</ payl oad>
</ message>

The listing above describes a normal message validation block inside a receive test action. We use
some inline message payload template as CDATA. As you know Citrus will compare the actual
message payload to this expected template in DOM tree comparison. In addition to that you can
simply include validation matcher statements. The message element Id is automatically validated to
be a number greater than zero and the Name character sequence is supposed to match 'foo' ignoring
case spelling considerations.

Please note the special validation matcher syntax. The statements are surrounded with '@"' markers
and are identified by some unique name. The optional parameters passed to the matcher
implementation state the expected values to match.

Tip

You can use validation matcher with all validation mechanisms - not only with XML
validation. Plaintext, JSON, SQL result set validation are also supported.

A set of validation matcher implementations is usually combined to a validation matcher library. The
library has a prefix that will identify the validation matcher inside the test case. The default test
framework validation matcher library uses a default prefix (citrus). You can write your own validation
matcher library using your own prefix in order to extend the test framework functionality whenever
you want.

The library is built in the Spring configuration and contains a set of validation matcher that are of
public use.

<citrus:validation nmatcher-library id="testMtcherlLibrary" prefix="foo:">

Citrus Framework (2.5.2) 254

Validation matcher

<ci trus: mat cher nanme="i sNunber"> cl ass="com consol . citrus. val i dati on. mat cher. core.|sNunberVal i dati onMat cher"/>
<ci trus: nmat cher nane="contai ns"> cl ass="com consol . citrus. val i dati on. mat cher. core. Cont ai nsVal i dati onMat cher"/>
<ci trus: mat cher nane="cust oniat cher"> ref ="cust onivat cher Bean"/ >

</citrus:validation matcher-I|ibrary>

As you can see the library defines one to many validation matcher members either referenced as
normal Spring bean or by its implementing Java class name. Citrus constructs the library and you are
able to use the validation matcher in your test case with the leading library prefix just like this:

@ oo: i sNunber () @
@ oo: contains() @
@ oo: cust onmvat cher () @

Tip
You can add custom validation matcher implementations and custom validation matcher

libraries. Just use a custom prefix for your library. The default Citrus validation matcher
library uses no prefix.

See now the following sections describing the default validation validation matcher in Citrus.

34.1. matchesXml()

The XML validation matcher implementation is the possibly most exciting one, as we can validate
nested XML with full validation power (e.g. ignoring elements, variable support). The matcher checks
a nested XML fragment to compare against expected XML. For instance we receive following XML
message payload for validation:

<Cet Cust onmer Message>
<Cust oner Det ai | s>
<l d>5</ 1 d>
<Nane>Chri st oph</ Nane>
<Conf i gur ati on><! [CDATA[
<confi g>
<prem un®true</ prem unp
<l ast - | ogi n>2012- 02- 24T23: 34: 23</ | ast -1 ogi n>
<link>http://wwm.citrusframework. org/custoner/5</1ink>
</ confi g>
]]></ Confi guration>
</ Cust oner Det ai | s>
</ Get Cust oner Message>

As you can see the message payload contains some configuration as nested XML data in a CDATA
section. We could validate this CDATA section as static character sequence comparison, true. But
the <last-login> timestamp changes its value continuously. This breaks the static validation for
CDATA elements in XML. Fortunately the new XML validation matcher provides a solution for us:

<nessage>
<payl oad>
<Cet Cust onmer Message>
<Cust oner Det ai | s>
<l d>5</ 1 d>
<Nanme>Chri st oph</ Nane>
<Confi guration>citrus: cdataSecti on(' @muat chesXn (' <confi g>
<prem un>${i sPrem un} </ prem unm>
<l ast - | ogi n>@ gnore@/ | ast -1 ogi n>
<link>http://wm. citrusframework. org/ custoner/5</|ink>
</config>)@)</Configuration>
</ Cust oner Det ai | s>
</ Get Cust oner Message>
</ payl oad>
</ nessage>

Citrus Framework (2.5.2) 255

Validation matcher

With the validation matcher you are able to validate the nested XML with full validation power.
Ignoring elements is possible and we can also use variables in our control XML.

Note

Nested CDATA elements within other CDATA sections are not allowed by XML standard.
This is why we create the nested CDATA section on the fly with the function
cdataSection().

34.2. equalsignoreCase()

This matcher implementation checks for equality without any case spelling considerations. The
matcher expects a single parameter as the expected character sequence to check for.

<val ue>@qual sl gnor eCase(' foo') @/ val ue>

34.3. contains|()

This matcher searches for a character sequence inside the actual value. If the character sequence is
not found somewhere the matcher starts complaining.

<val ue>@ont ai ns(' foo') @/ val ue>

The validation matcher also exist in a case insensitive variant.

<val ue>@ont ai nsl gnor eCase("' foo') @/ val ue>

34.4. startsWith()

The matcher implementation asserts that the given value starts with a character sequence otherwise
the matcher will arise some error.

<val ue>@tartsWth('foo') @/ val ue>

34.5. endsWith()

Ends with matcher validates a value to end with a given character sequence.

<val ue>@ndsWth('foo') @/ val ue>

34.6. matches()

You can check a value to meet a regular expression with this validation matcher. This is for instance
very useful for email address validation.

<val ue>@mat ches('[a-z0-9]"') @/ val ue>

Citrus Framework (2.5.2) 256

Validation matcher

34.7. matchesDatePattern()

Date values are always difficult to check for equality. Especially when you have millisecond
timestamps to deal with. Therefore the date pattern validation matcher should have some
improvement for you. You simply validate the date format pattern instead of checking for total
equality.

<val ue>@rat chesDat ePattern(' yyyy- Mt dd') @&/ val ue>
The example listing uses a date format pattern that is expected. The actual date value is parsed

according to this pattern and may cause errors in case the value is no valid date matching the
desired format.

34.8. isNumber()

Checking on values to be of numeric nature is essential. The actual value must be a numeric number
otherwise the matcher raises errors. The matcher implementation does not evaluate any parameters.

<val ue>@ sNunber () @/ val ue>

34.9. lowerThan()

This matcher checks a number to be lower than a given threshold value.

<val ue>@ ower Than(5) @/ val ue>

34.10. greaterThan()

The matcher implementation will check on numeric values to be greater than a minimum value.

<val ue>@r eat er Than(5) @/ val ue>

34.11. isWeekday()

The matcher works on date values and checks that a given date evaluates to the expected day of the
week. The user defines the expected day by its name in uppercase characters. The matcher fails in
case the given date is another week day than expected.

<soneDat e>@ sWeekday (' MONDAY') @/ soneDat e>

Possible values for the expected day of the week are: MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY or SUNDAY.

The field value has to be a date value otherwise the matcher will fail to parse the date. The matcher
requires a date format which is dd.MM.yyyy by default. You can change this date format as follows:

Citrus Framework (2.5.2) 257

Validation matcher

<soneDat e>@ sWeekday (' MONDAY(' yyyy- M dd')) @/ soneDat e>

Now the matcher uses the custom date format in order to parse the date value for evaluation. The
validation matcher also works with date time values. In this case you have to give a valid date time
format respectively (e.g. FRIDAY ('yyyy-MM-dd'T'hh:mm:ss')).

34.12. variable()

This is a very special validation matcher. Instead of performing a validation logic you can save the
actual value passed to the validation matcher as new test variable. This comes very handy as you
can use the matcher wherever you want: JSON message payloads, XML message payloads,
headers and so on.

<val ue>@ari abl e(' foo') @&/ val ue>

The validation matcher creates a new variable foo with the actual element value as variable value.
When leaving out the control value the field name itself is used as variable name.

<dat e>@ari abl e() @/ dat e>

This creates a new variable date with the actual element value as variable value.

34.13. dateRange()

The matcher works on date values and checks that a given date is within the expected date range.
The user defines the expected date range by specifying a from-date, a to-date and optionally a date
format. The matcher fails when the given date lies outside the expected date range.

<soneDat e>@lat eRange(' 01- 12- 2015', ' 31-12-2015', 'dd- Mtyyyy') @/ soneDat e>

Possible valid values would be 'some date' >='01-12-2015' and 'some date' <='31-12-2015'

The date-format is optional and when omitted it is assumed that all dates match the default date
format yyyy-MM-dd. When specifying a custom date format use java's date format as a reference for
valid date formats. Only dates were used in the example above but we could just as easily used date
and time as shown in the example below

<soneDat e>@at eRange(' 2015. 12. 01 07:00: 00', ' 2015.12.01 19: 00: 00', 'yyyy. MM dd HH mm ss') @/ soneDat e>

34.14. assertThat()

Hamcrest is a very powerful matcher library with extraordinary matcher implementations. You can
use Hamcrest matchers also as Citrus validation matcher.

<soneVal ue>@ssert That (equal To(f 00)) @/ soneVal ue>

In the listing above we are using the equalTo() matcher. All Hamcrest matchers are surrounded by a

Citrus Framework (2.5.2) 258

Validation matcher

assertThat expression. You are able to combine several Hamcrest matchers then in order to
construct very powerful validation logic. See the following examples on what is possible then:

<soneVal ue>@ssert That (equal To(val ue)) @/ soneVal ue>

<soneVal ue>@ssert That (not (equal To(ot her)) @/ sonmeVal ue>

<soneVal ue>@ssert That (i s(not (ot her)) @/ soneVal ue>

<soneVal ue>@ssert That (not (i s(ot her)) @/ soneVal ue>

<soneVal ue>@ssert That (equal Tol gnori ngCase(VALUE) @/ soneVal ue>

<soneVal ue>@ssert That (cont ai nsStri ng(l ue) @/ soneVal ue>

<soneVal ue>@ssert That (not (cont ai nsStri ng(ot her)) @/ soneVal ue>

<soneVal ue>@ssert That (start sWth(val) @/ soneVal ue>

<soneVal ue>@ssert That (endsW t h(| ue) @/ soneVal ue>

<soneVal ue>@ssert That (anyOf (startsWth(val), endsWth(lue)) @/ soneVal ue>
<soneVal ue>@ssert That (al | Of (startsWth(val), endsWth(lue)) @/ soneVal ue>
<soneVal ue>@ssert That (i SEnptyStri ng() @/ soneVal ue>

<soneVal ue>@ssert That (not (i sEnpt yStri ng()) @/ soneVal ue>

<soneVal ue>@ssert That (i SEmptyOrNul | Stri ng() @/ soneVal ue>

<soneVal ue>@ssert That (nul | Val ue() @/ soneVal ue>

<soneVal ue>@ssert That (not Nul | Val ue() @/ soneVal ue>

<soneVal ue>@ssert That (enpt y() @/ soneVal ue>

<soneVal ue>@ssert That (not (enpt y()) @/ soneVal ue>

<soneVal ue>@ssert That (gr eat er Than(4) @/ soneVal ue>

<soneVal ue>@ssert That (al | Of (great er Than(4), |essThan(6), not(lessThan(5))) @/ soneVal ue>
<soneVal ue>@ssert That (i s(not (great er Than(5))) @/ soneVal ue>

<soneVal ue>@ssert That (gr eat er ThanOr Equal To(5) @/ soneVal ue>

<soneVal ue>@ssert That (| essThan(5) @/ soneVal ue>

<soneVal ue>@ssert That (not (1 essThan(1)) @/ soneVal ue>

<soneVal ue>@ssert That (| essThanOr Equal To(4) @/ soneVal ue>

<soneVal ue>@ssert That (hasSi ze(5)) @/ soneVal ue>

Citrus will automatically perform validation matchers on the element value. Only if all matchers are
satisfied the validation will pass.

Citrus Framework (2.5.2) 259

Chapter 35. Data dictionaries

Data dictionaries in Citrus provide a new way to manipulate message payload data before a
message is sent or received. The dictionary defines a set of keys and respective values. Just like
every other dictionary it is used to translate things. In our case we translate message data elements.

You can translate common message elements that are used widely throughout your domain model.
As Citrus deals with different types of message data (e.g. XML, JSON) we have different dictionary
implementations that are described in the next sections.

35.1. XML data dictionaries

XML data dictionaries do apply to XML message format payloads, of course. In general we add a
dictionary to the basic Citrus Spring application context in order to make the dictionary visible to all
test cases:

<citrus:xm -data-dictionary id="nodeMappi ngDat aDi cti onary">
<ci trus: mappi ngs>
<citrus: mappi ng pat h="Test Message. Messagel d" val ue="${nessagel d}"/>
<citrus: mappi ng pat h="Test Message. Correl ati onld" val ue="${correl ationld}"/>
<ci trus: mappi ng pat h="Test Message. User" val ue="Chri stoph"/>
<ci trus: mappi ng pat h="Test Message. Ti neSt anp" val ue="citrus:currentDate()"/>
</ ci trus: mappi ngs>
</citrus: xn - dat a-di cti onary>

As you can see the dictionary is nothing but a normal Spring bean definition. The
NodeMappingDataDictionary implementation receives a map of key value pairs where the key is a
message element path expression. For XML payloads the message element tree is traversed so the
path expression is built for an exact message element inside the payload. If matched the respective
value is set accordingly through the dictionary.

Besides defining the dictionary key value mappings as property map inside the bean definition we
can extract the mapping data to an external file.
<citrus:xn -data-dictionary id="nodeMappi ngDat aDi cti onary">

<ci trus: mappi ng-file path="cl asspat h: com consol /ci trus/sanpl e. di ctionary"/>
</citrus: xnl - dat a-di cti onary>

The mapping file content just looks like a normal property file in Java:

Test Message. Messagel d=${ messagel d}

Test Message. Correl ati onl d=${correl ati onl d}
Test Message. User =Chri st oph

Test Message. Ti meSt anp=ci trus: current Dat e()

You can set any message element value inside the XML message payload. The path expression also
supports XML attributes. Just use the attribute name as last part of the path expression. Let us have
a closer look at a sample XML message payload with attributes:

<Test Message>
<User nane="Chri st oph" age="18"/>
</ Test Message>

With this sample XML payload given we can access the attributes in the data dictionary as follows:

<ci trus: mappi ng pat h="Test Message. User. nane" val ue="${user Nanme}"/>

Citrus Framework (2.5.2) 260

Data dictionaries

<citrus: mappi ng pat h="Test Message. User. age" val ue="${user Age}"/>

The NodeMappingDataDictionary implementation is easy to use and fits the basic needs for XML
data dictionaries. The message element path expressions are very simple and do fit basic needs.
However when more complex XML payloads apply for translation we might reach the boundaries
here.

For more complex XML message payloads XPath data dictionaries are very effective:

<ci trus: xpat h-dat a-di ctionary i d="xpat hMappi ngDat abi cti onary">
<ci trus: mappi ngs>
<citrus: mappi ng pat h="//Test Message/ Messagel d" val ue="${nessagel d}"/>
<ci trus: mappi ng pat h="//Test Message/ Correl ati onl d* val ue="${correl ationld}"/>
<citrus: mappi ng pat h="//Test Message/ User" val ue="Chri st oph"/>
<citrus: mappi ng path="//Test Message/ User/ @d" val ue="123"/>
<citrus: mappi ng pat h="//Test Message/ Ti meSt anp” val ue="citrus:currentDate()"/>
</ citrus: mappi ngs>
</ citrus: xpat h-dat a- di cti onary>

As expected XPath mapping expressions are way more powerful and can also handle very complex
scenarios with XML namespaces, attributes and node lists. Just like the node mapping dictionary the
XPath mapping dictionary does also support variables, functions and an external mapping file.

XPath works fine with namespaces. In general it is good practice to define a hamespace context
where you map namespace URI values with prefix values. So your XPath expression is always exact
and evaluation is strict. In Citrus the NamespaceContextBuilder which is also added as normal
Spring bean to the application context manages namespaces used in your XPath expressions. See
our XML and XPAth chapters in this documentation for detailed description how to accomplish fail
safe XPath expressions with namespaces.

This completes the XML data dictionary usage in Citrus. Later on we will see some more advanced
data dictionary scenarios where we will discuss the usage of dictionary scopes and mapping
strategies. But before that let us have a look at other message formats like JSON messages.

35.2. JSON data dictionaries

JSON data dictionaries complement with XML data dictionaries. As usual we have to add the JSON
data dictionary to the basic Spring application context first. Once this is done the data dictionary
automatically applies for all JSON message payloads in Citrus. This means that all JSON messages
sent and received get translated with the JSON data dictionary implementation.

Citrus uses message types in order to evaluate which data dictionary may fit to the message that is
currently processed. As usual you can define the message type directly in your test case as attribute
inside the sending and receiving message action.

Let us see a simple dictionary for JSON data:

<citrus:json-data-dictionary id="jsonMappi ngDataDi cti onary">
<ci trus: mappi ngs>
<citrus: mappi ng pat h="Test Message. Messagel d" val ue="${nessagel d}"/>
<ci trus: mappi ng pat h="Test Message. Correl ati onld" val ue="${correl ationld}"/>
<ci trus: mappi ng pat h="Test Message. User" val ue="Chri stoph"/>
<citrus: mappi ng pat h="Test Message. Ti meSt anp" val ue="citrus:currentDate()"/>
</ci trus: mappi ngs>
</citrus:json-data-dictionary>

The message path expressions do look very similar to those used in XML data dictionaries. Here the

Citrus Framework (2.5.2) 261

Data dictionaries

path expression keys do apply to the JSON object graph. See the following sample JSON data which
perfectly applies to the dictionary expressions above.

{" Test Message": {
"Messagel d": "1122334455",
"Correlationld": "100000001"
"User": "Christoph",
"Ti meStanp": 1234567890 }

The path expressions will match a very specific message element inside the JSON object graph. The
dictionary will automatically set the message element values then. The path expressions are easy to
use as you can traverse the JSON object graph very easy.

Of course the data dictionary does also support test variables, functions. Also very interesting is the
usage of JSON arrays. A JSON array element is referenced in a data dictionary like this:

<ci trus: mappi ng pat h="Test Message. Users[0]" val ue="Chri st oph"/>
<ci trus: mappi ng pat h="Test Message. Users[1]" val ue="Julia"/>

The Users element is a JSON array, so we can access the elements with index. Nesting JSON
objects and arrays is also supported so you can also handle more complex JSON data.

35.3. Dictionary scopes

Now that we have learned how to add data dictionaries to Citrus we need to discuss some advanced
topics. Data dictionary scopes do define the boundaries where the dictionary may apply. By default
data dictionaries are global scope dictionaries. This means that the data dictionary applies to all
messages sent and received with Citrus. Of course message types are considered so XML data
dictionaries do only apply to XML message types. However global scope dictionaries will be activated
throughout all test cases and actions.

You can overwrite the dictionary scope. For instance in order to use an explicit scope. When this is
done the dictionary wil not apply automatically but the user has to explicitly set the data dictionary in
sending or receiving test action. This way you can activate the dictionary to a very special set of test
actions.

<citrus:xm -data-dictionary id="special Dat aDi ctionary" gl obal -scope="fal se">
<ci trus: mappi ng-file path="cl asspat h: com consol /ci trus/sanpl e. di ctionary"/>
</citrus: xnl - dat a-di cti onary>

We set the global scope property to false so the dictionary is handled in explicit scope. This means
that you have to set the data dictionary explicitly in your test actions:

XML DSL

<send endpoi nt =" myEndpoi nt ">
<nessage data-di ctionary="speci al DataDi cti onary">
<payl oad>
<Test Message>Hel | o Gitrus"/ Test Message>
</ payl oad>
</ nessage>
</ send>

Java DSL designer and runner

Citrus Framework (2.5.2) 262

Data dictionaries

@i trusTest
public void dictionaryTest() {
send(nyEndpoi nt)
. payl oad(" <Test Message>Hel | o Citrus"/ Test Message>")
.dictionary("special Databi ctionary");

The sample above is a sending test action with an explicit data dictionary reference set. Before
sending the message the dictionary is asked for translation. So all matching message element values
will be set by the dictionary accordingly. Other global data dictionaries do also apply for this message
but the explicit dictionary will always overwrite the message element values.

35.4. Path mapping strategies

Another advanced topic about data dictionaries is the path mapping strategy. When using simple
path expressions the default strategy is always EXACT_MATCH. This means that the path
expression has to evaluate exactly to a message element within the payload data. And only this
exact message element is translated.

You can set your own path mapping strategy in order to change this behavior. For instance another
mapping strategy would be STARS_ WITH. All elements are translated that start with a certain path
expression. Let us clarify this with an example:

<citrus: xm -data-dictionary id="nodeMappi ngDat abDi cti onary" mappi ng-strategy="STARTS_W TH'>
<ci trus: mappi ngs>
<ci trus: mappi ng pat h="Test Message. Property" val ue="citrus:randonString()"/>
</ citrus: mappi ngs>
</citrus: xm - dat a-di cti onary>

Now with the path mapping strategy set to STARS_WITH all message element path expressions
starting with TestMessage.Property will find translation in this dictionary. Following sample message
payload would be translated accordingly:

<Test Message>
<Pr oper t y>XXX</ Pr operty>
<Pr oper t yName>XXX</ Pr oper t yNane>
<Pr opert yVal ue>XXX</ Pr opert yVal ue>
</ Test Message>

All child elements of TestMessage starting with Property will be translated with this data dictionary. In
the resulting message payload Citrus will use a random string as value for these elements as we
used the citrus:randomsString() function in the dictionary mapping.

The next mapping strategy would be ENDS_WITH. No surprises here - this mapping strategy looks
for message elements that end with a certain path expression. Again a simple example will clarify this
for you.

<citrus:xm -data-dictionary id="nodeMappi ngDat aDi cti onary" nmappi ng-strategy="ENDS W TH'>
<ci trus: mappi ngs>
<ci trus: mappi ng path="1d" val ue="citrus: randomNunber()"/>
</ci trus: mappi ngs>
</citrus: xnl - dat a-di cti onary>

Again let us see some sample message payload for this dictionary usage:

<Test Message>
<Request | d>XXX</ Request | d>
<Properties>

Citrus Framework (2.5.2) 263

Data dictionaries

<Property>
<Propertyl d>XXX</ Propertyl d>
<PropertyVal ue>XXX</ Pr oper t yVal ue>
</ Property>
<Pr operty>
<Propertyl d>XXX</ Propertyl d>
<PropertyVal ue>XXX</ Pr opert yVal ue>
</ Property>
</ Properties>
</ Test Message>

In this sample all message elements ending with Id would be translated with a random number. No
matter where in the message tree the elements are located. This is quite useful but also very
powerful. So be careful to use this strategy in global data dictionaries as it may translate message
elements that you would not expect in the first place.

Citrus Framework (2.5.2) 264

Chapter 36. Test actors

The concept of test actors came to our mind when reusing Citrus test cases in end-to-end test
scenarios. Usually Citrus simulates all interface partners within a test case which is great for
continuous integration testing. In end-to-end integration test scenarios some of our interface partners
may be real and alive. Some other interface partners still require Citrus simulation logic.

It would be great if we could reuse the Citrus integration tests in this test setup as we have the
complete test flow of messages available in the Citrus tests. We only have to remove the simulated
send/receive actions for those real interface partner applications which are available in our
end-to-end test setup.

With test actors we have the opportunity to link test actions, in particular send/receive message
actions, to a test actor. The test actor can be disabled in configuration very easy and following from
that all linked send/receive actions are disabled, too. One Citrus test case is runnable with different
test setup scenarios where different partner applications on the one hand are available as real life
applications and on the other hand my require simulation.

36.1. Define test actors

First thing to do is to define one or more test actors in Citrus configuration. A test actor represents a
participating party (e.g. interface partner, backend application). We write the test actors into the
central Spring application context. We can use a special Citrus Spring XML schema so definitions are
quite easy:

<citrus:actor id="travel agency" name="TRAVEL_AGENCY"/>

<citrus:actor id="royalairline" name="ROYAL_AlI RLI NE"/>
<citrus:actor id="smartariline" name="SMART_AlI RLI NE"/>

The listing above defines three test actors participating in our test scenario. A travel agency
application which is simulated by Citrus as a calling client, the smart airline application and a royal
airline application. Now we have the test actors defined we can link those to message
sender/receiver instances and/or test actions within our test case.

36.2. Link test actors

We need to link the test actors to message send and receive actions in our test cases. We can do
this in two different ways. First we can set a test actor reference on a message sender and message
receiver.

<citrus-jns:sync-endpoint id="royal AirlineBooki ngEndpoi nt"
destinati on-nane="${royal . ai rline.request. queue}"
actor="royal airline"/>

Now all test actions that are using these message receiver and message sender instances are linked
to the test actor. In addition to that you can also explicitly link test actions to test actors in a test.

<recei ve endpoi nt="royal Ai rlineBooki ngEndpoi nt" actor="royalairline">
<message>
[...]
</ message>
</receive>

Citrus Framework (2.5.2) 265

Test actors

<send endpoi nt ="royal Ai rl i neBooki ngEndpoi nt" actor="royal airline">
<nmessage>

[ooo]
</ nessage>
</ send>

This explicitly links test actors to test actions so you can decide which link should be set without
having to rely on the message receiver and sender configuration.

36.3. Disable test actors

Usually both airline applications are simulated in our integration tests. But this time we want to
change this by introducing a royal airline application which is online as a real application instance. So
we need to skip all simulated message interactions for the royal airline application in our Citrus tests.
This is easy as we have linked all send/receive actions to one of our test actors. So wen can disable
the royal airline test actor in our configuration:

<citrus:actor id="royalairline" name="ROYAL_AI RLI NE" di sabl ed="true"/>

Any test action linked to this test actor is now skipped. As we introduced a real royal airline
application in our test scenario the requests get answered and the test should be successful within
this end-to-end test scenario. The travel agency and the smart airline still get simulated by Citrus.
This is a perfect way of reusing integration tests in different test scenarios where you enable and
disable simulated participating parties in Citrus.

Important

Server ports may be of special interest when dealing with different test scenarios. You
may have to also disable a Citrus embedded Jetty server instance in order to avoid port
binding conflicts and you may have to wire endpoint URIs accordingly before executing a
test. The real life application may not use the same port and ip as the Citrus embedded
servers for simulation.

Citrus Framework (2.5.2) 266

Chapter 37. Test suite actions

A test framework should also provide the functionality to do some work before and after the test run.
You could think of preparing/deleting the data in a database or starting/stopping a server in this
section before/after a test run. These tasks fit best into the initialization and cleanup phases of Citrus.
All you have to do is add some Spring bean definitions to the Citrus application context.

Note

It is important to notice that the Citrus configuration components that we are going to use
in the next section belong to a separate XML namespace citrus-test. We have to add the
namespace declaration to the XML root element of our XML configuration file accordingly.

<spring: beans xm ns="http://ww. citrusframework. org/schema/testcase"
xm ns: spring="http://ww.springfranework. org/schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:citrus-test="http://ww. citrusframework. org/schena/testcase"
xsi : schenmalLocati on="
http://ww. springfranewor k. or g/ schena/ beans
http://ww. springfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. citrusfranework. org/ schena/test case
http://ww. ci trusfranework. org/ schena/testcase/citrus-testcase. xsd">

[-..]

</ beans>

37.1. Before suite

You can influence the behavior of a test run in the initialization phase actually before the tests are
executed. See the next code example to find out how it works with actions that take place before the
first test is executed:

<citrus:before-suite id="actionsBeforeSuite">
<citrus:actions>
<l-- list of actions before suite -->
</citrus:actions>
</citrus: before-suite>

The Citrus configuration component holds a list of Citrus test actions that get executed before the test
suite run. You can add all Citrus test actions here as you would do in a hormal test case definition.

<citrus: before-suite id="acti onsBeforeSuite">
<citrus:actions>
<citrus-test:sqgl dataSource="testDataSource"/>
<citrus-test:statenent">CREATE TABLE PERSON (I D integer, NAME char(250))</citrus-test:statenment>
</citrus-test:sql>
</citrus:actions>
</citrus: before-suite>

Note that we must use the Citrus test case namespace for the nested test action definitions. We
access the database and create a table PERSON which is obviously needed in our test cases. You
can think of several actions here to prepare the database for instance.

Tip

Citrus offers special startup and shutdown actions that may start and stop server

Citrus Framework (2.5.2) 267

Test suite actions

implementations automatically. This might be helpful when dealing with Http servers or
WebService containers like Jetty. You can also think of starting/stopping a JMS broker
before a test run.

You can have many after-suite configuration components with different ids in a Citrus project. By
default the containers are always executed. But you can restrict the after suite action container
execution by defining a suite name or test group hames that should match accordingly:

<citrus:before-suite id="acti onsBeforeSuite" suites="databaseSuite" groups="e2e">
<citrus:actions>
<citrus-test:sqgl dataSource="testDataSource"/>
<citrus-test:statenent">CREATE TABLE PERSON (I D integer, NAME char(250))</citrus-test:statenment>
</citrus-test:sql>
</citrus:actions>
</citrus: before-suite>

The above after suite container is only executed with the test suite called databaseSuite or when the
test group e2e is defined. Test groups and suite names are only supported when using the TestNG
unit test framework. Unfortunately JUnit does not allow to hook into suite execution as easily as
TestNG does. This is why after suite action containers are not restricted in execution when using
Citrus with the JUnit test framework.

You can define multiple suite names and test groups with comma delimited strings as attribute
values.

37.2. After suite

A test run may require the test environment to be clean. Therefore it is a good idea to purge all IMS
destinations or clean up the database after the test run in order to avoid errors in follow-up test runs.
Just like we prepared some data in actions before suite we can clean up the test run in actions after
the tests are finished. The Spring bean syntax here is not significantly different to those in before
suite section:

<citrus:after-suite id="actionsAfterSuite">
<citrus:actions>

<I-- list of actions after suite -->
</citrus:actions>
</citrus:after-suite>

Again we give the after suite configuration component a unique id within the configuration and put
one to many test actions as nested configuration elements to the list of actions executed after the test
suite run.

<citrus:after-suite id="actionsAfterSuite">
<citrus:actions>
<citrus-test:sql dataSource="testDataSource"/>
<citrus-test:statenent">DELETE FROM TABLE PERSON</ ci trus-test: st at ement >
</citrus-test:sql >
</citrus:actions>
</citrus:after-suite>

We have to use the Citrus test case XML namespace when defining nested test actions in after suite
list. We just remove all data from the database so we do not influence follow-up tests. Quite simple
isn't it!?

Citrus Framework (2.5.2) 268

Test suite actions

You can have many after-suite configuration components with different ids in a Citrus project. By
default the containers are always executed. But you can restrict the after suite action container
execution by defining a suite name or test group hames that should match accordingly:

<citrus:after-suite id="actionsAfterSuite" suites="databaseSuite" groups="e2e">
<citrus:actions>
<citrus-test:sql dataSource="testDataSource"/>
<citrus-test:statenent">DELETE FROM TABLE PERSON</ci trus-test: statenment >
</citrus-test:sql >
</citrus:actions>
</citrus:after-suite>

The above after suite container is only executed with the test suite called databaseSuite or when the
test group e2e is defined. Test groups and suite names are only supported when using the TestNG
unit test framework. Unfortunately JUnit does not allow to hook into suite execution as easily as
TestNG does. This is why after suite action containers are not restricted in execution when using
Citrus with the JUnit test framework.

You can define multiple suite hames and test groups with comma delimited strings as attribute
values.

37.3. Before test

Before each test is executed it also might sound reasonable to purge all IMS queues for instance. In
case a previous test fails some messages might be left in the JMS queues. Also the database might
be in dirty state. The follow-up test then will be confronted with these invalid messages and data.
Purging all IMS destinations before a test is therefore a good idea. Just like we prepared some data
in actions before suite we can clean up the data before a test starts to execute.

<citrus: before-test id="defaultBeforeTest">
<citrus:actions>

<l-- list of actions before test -->
</citrus:actions>
</citrus: before-test>

The before test configuration component receives a unique id and a list of test actions that get
executed before a test case is started. The component receives usual test action definitions just like
you would write them in a normal test case definition. See the example below how to add test
actions.

<citrus: before-test id="defaultBeforeTest">
<citrus:actions>
<citrus-test:echo>
<citrus-test: message>This is executed before each test!</citrus-test:nessage>
</citrus-test:echo>
</citrus:actions>
</citrus: before-test>

Note that we must use the Citrus test case XML namespace for the nested test action definitions.
You have to declare the XML namespaces accordingly in your configuration root element. The echo
test action is now executed before each test in our test suite run. Also notice that we can restrict the
before test container execution. We can restrict execution based on the test name, package and test
groups. See following example how this works:

<citrus: before-test id="defaultBeforeTest" test="*_Ck_Test" package="com consol.citrus.|ongrunning.*">
<citrus:actions>
<citrus-test:echo>
<citrus-test:nessage>This is executed before each test!</citrus-test:nessage>

Citrus Framework (2.5.2) 269

Test suite actions

</citrus-test:echo>
</citrus:actions>
</citrus: before-test>

The above before test component is only executed for test cases that match the name pattern
* Ok_Test and that match the package com.consol.citrus.longrunning.*. Also we could just use the
test name pattern or the package name pattern exclusively. And the execution can be restricted
based on the included test groups in our test suite run. This enables us to specify before test actions
in various ways. Of course you can have multiple before test configuration components at the same
time. Citrus will pick the right containers and put it to execution when necessary.

37.4. After test

The same logic that applies to the before-test configuration component can be done after each test.
The after-test configuration component defines test actions executed after each test. Just like we
prepared some data in actions before a test we can clean up the data after a test has finished
execution.

<citrus:after-test id="defaultAfterTest">
<citrus:actions>
<l-- list of actions after test -->
</citrus:actions>
</citrus:after-test>

The after test configuration component receives a unique id and a list of test actions that get
executed after a test case is finished. Notice that the after test actions are executed no matter what
result success or failure the previous test case came up to. The component receives usual test action
definitions just like you would write them in a normal test case definition. See the example below how
to add test actions.

<citrus:after-test id="defaultAfterTest">
<citrus:actions>
<citrus-test:echo>
<citrus-test: message>This is executed after each test!</citrus-test:nessage>
</citrus-test:echo>
</citrus:actions>
</citrus:after-test>

Please be aware of the fact that we must use the Citrus test case XML namespace for the nested
test action definitions. You have to declare the XML namespaces accordingly in your configuration
root element. The echo test action is now executed after each test in our test suite run. Of course we
can restrict the after test container execution. Supported restrictions are based on the test name,
package and test groups. See following example how this works:

<citrus:after-test id="defaul tAfterTest" test="*_Error_Test" package="com consol.citrus.error.*">
<citrus:actions>
<citrus-test:echo>
<citrus-test: nessage>This is executed after each test!</citrus-test:nessage>
</citrus-test:echo>
</citrus:actions>
</citrus:after-test>

The above after test component is obviously only executed for test cases that match the name
pattern *_Error_Test and that match the package com.consol.citrus.error.*. Also we could just use
the test name pattern or the package name pattern exclusively. And the execution can be restricted
based on the included test groups in our test suite run. This enables us to specify after test actions in
various ways. Of course you can have multiple after test configuration components at the same time.

Citrus Framework (2.5.2) 270

Test suite actions

Citrus will pick the right containers and put it to execution when necessary.

Citrus Framework (2.5.2) 271

Chapter 38. Customize meta information

Test cases in Citrus are usually provided with some meta information like the author’'s name or the
date of creation. In Citrus you are able to extend this test case meta information with your own very
specific criteria.

By default a test case comes shipped with meta information that looks like this:

<t est case name="PwdChange_OK 1_Test">
<net a- i nf 0>
<aut hor >Chri st oph</ aut hor >
<creat i ondat e>2010- 01- 18</ cr eat i ondat e>
<st at us>FI NAL</ st at us>
<| ast - updat ed- by>Chri st oph</ | ast - updat ed- by>
<| ast - updat ed- on>2010- 01- 18T15: 00: 00</ | ast - updat ed- on>
</ net a-i nf o>

(-]

</testcase>

You can quite easily add data to this section in order to meet your individual testing strategy. Let us
have a simple example to show how it is done.

First of all we define a custom XSD schema describing the new elements:

<?xm version="1.0" encodi ng="UTF-8"?>

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns:tns="http://ww.citrusfranework. or g/ sanpl es/ ny-t est case-i nf o"
target Nanespace="http://wwmn. ci t rusframewor k. or g/ sanpl es/ ny-t est case-i nf o"
el enent For nDef aul t =" qual i fi ed">

<el ement nanme="requirenent" type="string"/>

<el ement nanme="pre-condition" type="string"/>

<el ement nanme="result" type="string"/>

<el ement nanme="cl assification" type="string"/>
</ schema>

We have four simple elements (requirement, pre-condition, result and classification) all typed as
string. These new elements later go into the test case meta information section.

After we added the new XML schema file to the classpath of our project we need to announce the
schema to Spring. As you might know already a Citrus test case is nothing else but a simple Spring
configuration file with customized XML schema support. If we add new elements to a test case
Spring needs to know the XML schema for parsing the test case configuration file. See the
spring.schemas file usually placed in the META-INF/spring.schemas in your project.

The file content for our example will look like follows:

http://ww. citrusfranmework. or g/ sanpl es/ ny-t est case-i nf o/ ny-t est case-i nfo. xsd=conf consol / ci trus/ schenas/ ny-t est case-i

So now we are finally ready to use the new meta-info elements inside the test case:

<?xm version="1.0" encodi ng="UTF-8"?>
<spring: beans xm ns="http://ww. citrusfranmework. org/schema/testcase"
xm ns: spring="http://ww.springfranmework. org/ schema/ beans"
xm ns: cust omE" htt p: // www. ci t rusfranewor k. or g/ sanpl es/ ny-t est case-i nf 0"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://wwm. spri ngframework. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://wwmv citrusframework. org/ schema/t est case
http://wwmv citrusframework. org/ schema/testcase/ citrus-testcase. xsd
http://ww. citrusframework. org/ sanpl es/ ny-t estcase-info
http://ww. citrusfranmework. org/ sanpl es/ ny-t est case-i nfo/ nmy-testcase-info.xsd">

Citrus Framework (2.5.2) 272

Customize meta information

<t est case nanme="PwdChange OK 1 Test">
<met a- i nf 0>
<aut hor >Chri st oph</ aut hor >
<creat i ondat e>2010- 01- 18</ cr eat i ondat e>
<st at us>FI NAL</ st at us>
<| ast - updat ed- by>Chri st oph</ | ast - updat ed- by>
<| ast - updat ed- on>2010- 01- 18T15: 00: 00</ | ast - updat ed- on>
<cust om r equi r enent >REQLO001</ cust om r equi r enent >
<cust om pre-condi ti on>Exi sting user, sufficient rights</custom pre-condition>
<customresul t >Password reset in database</customresult>
<cust om cl assi fi cati on>Passwor dChange</ cust om cl assi fi cati on>
</ met a-i nf 0>

[...]
</testcase>
</ spring: beans>

Note

We use a separate namespace declaration with a custom namespace prefix “custom” in
order to declare the new XML schema to our test case. Of course you can pick a
namespace url and prefix that fits best for your project.

As you see it is quite easy to add custom meta information to your Citrus test case. The customized
elements may be precious for automatic reporting. XSL transformations for instance are able to read
those meta information elements in order to generate automatic test reports and documentation.

You can also declare our new XML schema in the Eclipse preferences section as user specific XML
catalog entry. Then even the schema code completion in your Eclipse XML editor will be available for
our customized meta-info elements.

Citrus Framework (2.5.2) 273

Chapter 39. Tracing incoming/outgoing messages

As we deal with message based interfaces Citrus will send and receive a lot of messages during a
test run. Now we may want to see these messages in chronological order as they were processed by
Citrus. We can enable message tracing in Citrus in order to save messages to the file system for
further investigations.

Citrus offers an easy way to debug all received messages to the file system. You need to enable
some specific loggers and interceptors in the Spring application context.

<bean cl ass="com consol .citrus.report.MssageTraci ngTest Li stener"/>

Just add this bean to the Spring configuration and Citrus will listen for sent and received messages
for saving those to the file system. You will find files like these in the default test-output folder after
the test run:

For example:

| ogs/tracel/ messages/ MyTest. nsgs

| ogs/trace/ messages/ FooTest . nsgs

| ogs/tracel/ messages/ SoneTest . nsgs

Each Citrus test writes a .msgs file containing all messages that went over the wire during the test.
By default the debug directory is set to |1 ogs/trace/ messages/ relative to the project test output
directory. But you can set your own output directory in the configuration

<bean cl ass="com consol .citrus.report.MssageTraci ngTest Li stener">
<property name="outputDirectory" value="file:/path/to/folder"/>
</ bean>

Note

As the file names do not change with each test run message tracing files may be
overwritten. So you eventually need to save the generated message debug files before
running another group of test cases.

Lets see some sample output for a test case with message communication over SOAP Hittp:

Sendi ng SOAP request:
<?xm version="1.0" encodi ng="UTF- 8" ?><SOAP- ENV: Envel ope xml ns: SOAP- ENV="ht t p: // schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Header >
<Operation xm ns="http://citrusfranework. org/test">sayHel | o</ Operati on>
</ SOAP- ENV: Header >
<SOAP- ENV: Body>
<ns0: Hel | oRequest xnl ns: nsO="http://ww. consol . de/ schenmas/ sanpl es/ sayHel | 0. xsd" >
<ns0: Messagel d>0857041782</ ns0: Messagel d>
<nsO0: Correl ati onl d>6915071793</ ns0O: Correl ati onl d>
<ns0: User >Chri st oph</ ns0: User >
<ns0: Text >Hel | o WebSer ver </ ns0: Text >
</ ns0: Hel | oRequest >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Recei ved SOAP response:
<?xm version="1.0" encodi ng="UTF- 8" ?><SOAP- ENV: Envel ope xml ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Header / >

Citrus Framework (2.5.2) 274

Tracing incoming/outgoing messages

<SOAP- ENV: Body>
<ns0: Hel | oResponse xm ns: nsO="http://ww. consol . de/ schemas/ sanpl es/ sayHel | 0. xsd" >
<ns0: Messagel d>0857041782</ ns0: Messagel d>
<ns0: Correl ati onl d>6915071793</ nsO: Correl ati onl d>
<ns0: User >WebSer ver </ ns0: User >
<ns0: Text >Hel | o Chri st oph</ ns0: Text >
</ ns0: Hel | oResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

For this message tracing to work we need to add logging listeners to our sender and receiver
components accordingly.

<citrus-ws:client id="webServicedient"
request-url="http://Iocal host: 8071"
message- f act or y="nessageFact or y"
interceptors="clientlnterceptors"/>

<util:list id="clientlnterceptors">
<bean cl ass="com consol .citrus.ws.interceptor.Loggi ngClientlnterceptor"/>
<futil:list>
Important

Be aware of adding the Spring util XML namespace to the application context when using
the util:list construct.

Citrus Framework (2.5.2) 275

Chapter 40. Reporting and test results

The framework generates different reports and results after a test run for you. These report and result
pages will help you to get an overview of the test cases that were executed and which one were
failing.

40.1. Console logging

During the test run the framework will provide a huge amount of information that is printed out to the
console. This includes current test progress, validation results and error information. This enables the
user to quickly supervise the test run progress. Failures in tests will be printed to the console just the
time the error occurred. The detailed stack trace information and the detailed error messages are
helpful to get the idea what went wrong.

As the console output might be limited to a defined buffer limit, the user may not be able to follow the
output to the very beginning of the test run. Therefore the framework additionally prints all information
to a log file according to the logging configuration.

The logging mechanism uses the SLF4J logging framework. SLF4J is independent of logging
framework implementations on the market. So in case you use Log4J logging framework the
specified log file path as well as logging levels can be freely configured in the respective log4j.xml file
in your project. At the end of a test run the combined test results get printed to both console and log
file. The overall test results look like following example:

Cl TRUS TEST RESULTS

[...]

Hel | oService_Ck_1 . SUCCESS
Hel | oService_Ck_2 . SUCCESS
EchoService_Ck_1 . SUCCESS
EchoService_Ck_2 . SUCCESS
EchoServi ce_TenmpError_1 : SUCCESS

EchoSer vi ce:Aut omacticRetry_1 : SUCCESS
[...]

Found 175 test cases to execute
Ski pped 0 test cases (0.0%
Executed 175 test cases

Tests failed: 0 (0.0%
Tests successfully: 175 (100.0%

Failed tests will be marked as failed in the result list. The framework will give a short description of
the error cause while the detailed stack trace information can be found in the log messages that were
made during the test run.

Hel | oService_Ok_3 : failed - Exception is Action tined out

40.2. JUnit reports

As tests are executed as TestNG test cases, the framework will also generate JUnit compliant XML
and HTML reports. JUnit test reports are very popular and find support in many build management
and development tools. In general the Citrus test reports give you an overall picture of all tests and
tell you which of them were failing.

Citrus Framework (2.5.2) 276

Reporting and test results

Build management tools like Jenkins can easily import and display the generated JUnit XML results.
Please have a look at the TestNG and JUnit documentation for more information about this topic as
well as the build management tools (e.g. Jenkins) to find out how to integrate the tests results.

40.3. HTML reports

Citrus creates HTML reports after each test run. The report provides detailed information on the test
run with a summary of all test results. You can find the report after a test run in the
target/test-output/citrus-reports directory.

The report consists of two parts. The test summary on top shows the total number executed tests.
The main part lists all test cases with detailed information. With this report you immediately identify all
tests that were failing. Each test case is marked in color according to its result outcome.

The failed tests give detailed error information with error messages and Java StackTrace information.
In addition to that the report tries to find the test action inside the XML test part that failed in
execution. With the failing code snippet you can see where the test stopped.

Note

JavaScript should be active in your web browser. This is to enable the detailed information
which comes to you in form of tooltips like test author or description. If you want to access
the tooltips JavaScript should be enabled in your browser.

Citrus Framework (2.5.2) 277

Appendix A. Citrus Samples

This part will show you some sample applications that are tested using Citrus integration tests. See
below a list of all samples.

» Section A.1, “The FlightBooking sample”

A.l. The FlightBooking sample

A simple project example should give you the idea how Citrus works. The system under test is a flight
booking service that handles travel requests from a travel agency. A travel request consists of a
complete travel route including several flights. The FlightBookingService application will split the
complete travel booking into separate flight bookings that are sent to the respective airlines in
charge. The booking and customer data is persisted in a database.

The airlines will confirm or deny the flight bookings. The FlightBookingService application
consolidates all incoming flight confirmations and combines them to a complete travel confirmation or
denial that is sent back to the travel agency. Next picture tries to put the architecture into graphics:

In our example two different airlines are connected to the FlightBookingService application: the
SmartAriline over JMS and the RoyalAirline over Http.

A.1.1. The use case

The use case that we would like to test is quite simple. The test should handle a simple travel
booking and expect a positive processing to the end. The test case neither simulates business errors
nor technical problems. Next picture shows the use case as a sequence diagram.

The travel agency puts a travel booking request towards the system. The travel booking contains two
separate flights. The flight requests are published to the airlines (SmartAirline and RoyalAirline). Both
airlines confirm the flight bookings with a positive answer. The consolidated travel booking response
is then sent back to the travel agency.

A.1.2. Configure the simulated systems

Citrus simulates all surrounding applications in their behavior during the test. The simulated
applications are: TravelAgency, SmartAirline and RoyalAirline. The simulated systems have to be
configured in the Citrus configuration first. The configuration is done in Spring XML configuration
files, as Citrus uses Spring to glue all its services together.

First of all we have a look at the TravelAgency configuration. The TravelAgency is using JMS to
connect to our tested system, so we need to configure this IMS connection in Citrus.

<bean nanme="connecti onFactory"
cl ass="org. apache. acti veng. Acti veMQConnect i onFact ory" >
<property nanme="broker URL" val ue="tcp://Iocal host:61616" />
</ bean>

<citrus-jns:endpoint id="travel AgencyBooki ngRequest Endpoi nt "
destination-nane="${travel . agency. request. queue}"/>

Citrus Framework (2.5.2) 278

Citrus Samples

<citrus-jns: endpoi nt id="travel AgencyBooki ngResponseEndpoi nt"
desti nati on-nane="${travel . agency. response. queue}"/ >

This is all Citrus needs to send and receive messages over JMS in order to simulate the
TravelAgency. By default all JIMS message senders and receivers need a connection factory.
Therefore Citrus is searching for a bean named "connectionFactory". In the example we connect to a
ActiveMQ message broker. A connection to other JMS brokers like TIBCO EMS or Apache ActiveMQ
is possible too by simply changing the connection factory implementation.

The identifiers of the message senders and receivers are very important. We should think of suitable
ids that give the reader a first hint what the sender/receiver is used for. As we want to simulate the
TravelAgency in combination with sending booking requests our id is
"travelAgencyBookingRequestEndpoint" for example.

The sender and receivers do also need a JMS destination. Here the destination names are provided
by property expressions. The Spring IoC container resolves the properties for us. All we need to do is
publish the property file to the Spring container like this.

<bean nane="propertylLoader"
cl ass="org. spri ngfranmewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="|ocations">

<list>
<val ue>ci trus. properties</val ue>
</list>

</ property>
<property name="ignoreUnresol vabl ePl acehol ders" val ue="true"/>
</ bean>

The citrus.properties file is located in our project's resources folder and defines the actual queue
names besides other properties of course:

#JMS queues

travel . agency. request. queue=Tr avel . Agency. Request . Queue
travel . agency. response. queue=Tr avel . Agency. Response. Queue
smart. airline.request.queue=Snart. Airline. Request. Queue
smart. airline.response. queue=Snart. Airline. Response. Queue
royal . airline.request.queue=Royal . Ai rline. Request. Queue

What else do we need in our Spring configuration? There are some basic beans that are commonly
defined in a Citrus application but | do not want to bore you with these details. So if you want to have
a look at the Spring application context file in the resources folder and see how things are defined
there.

We continue with the first airline to be configured the SmartAirline. The SmartAirline is also using
JMS to communicate with the FlightBookingService. So there is nothing new for us, we simply define
additional JIMS message senders and receivers.

<citrus-jns:endpoint id="smartAirlineBooki ngRequest Endpoi nt"
desti nati on-nanme="${smart.airline.request.queue}"/>

<citrus-jns:endpoint id="smartAirlineBooki ngResponseEndpoi nt"
desti nation-nane="${smart.airline.response. queue}"/>

We do not define a new JMS connection factory because TravelAgency and SmartAirline are using
the same message broker instance. In case you need to handle multiple connection factories simply
define the connection factory with the attribute "connection-factory".

<citrus-jns:endpoint id="smartAirlineBooki ngRequest Endpoi nt"
destinati on-nane="${smart. airline.request.queue}"

Citrus Framework (2.5.2) 279

Citrus Samples

connection-factory="smartAirlineConnecti onFactory"/>

<citrus-jns:endpoint id="smartAirlineBooki ngResponseEndpoi nt"
desti nati on-nane="${smart.airline.response. queue}"
connection-factory="smartAirlineConnecti onFactory"/>

A.1.3. Configure the Http adapter

The RoyalAirline is connected to our system using Http request/response communication. This
means we have to simulate a Http server in the test that accepts client requests and provides proper
responses. Citrus offers a Http server implementation that will listen on a port for client requests. The
adapter forwards incoming request to the test engine over JMS and receives a proper response that
is forwarded as a Http response to the client. The next picture shows this mechanism in detail.

The RoyalAirline adapter receives client requests over Http and sends them over JMS to a message
receiver as we already know it. The test engine validates the received request and provides a proper
response back to the adapter. The adapter will transform the response to Http again and publishes it
to the calling client. Citrus offers these kind of adapters for Http and SOAP communication. By writing
your own adapters like this you will be able to extend Citrus so it works with protocols that are not
supported yet.

Let us define the Http adapter in the Spring configuration:

<citrus-http:server id="royal AirlineHttpServer"
port="8091"
uri="/flightbooking"
endpoi nt - adapt er ="j nsEndpoi nt Adapter"/ >

<ci trus-j ns: endpoi nt - adapt er i d="j nsEndpoi nt Adapt er
destinati on-nane="${royal . airline.request. queue}"/>
connection-factory="connecti onFactory" />
ti meout ="2000"/ >

<ci trus-jns:sync-endpoi nt id="royal AirlineBooki ngEndpoi nt"
destinati on-nane="${royal . airline.request.queue}"/>

We need to configure a Http server instance with a port, a request URI and the endpoint adapter. We
define the JMS endpoint adapter to handle request as described. In Addition to the endpoint adapter
we also need synchronous JMS message sender and receiver instances. That's it! We are able to
receive Http request in order to simulate the RoyalAirline application. What is missing nhow? The test
case definition itself.

A.1.4. The test case

The test case definition is also a Spring configuration file. Citrus offers a customized XML syntax to
define a test case. This XML test defining language is supposed to be easy to understand and more
specific to the domain we are dealing with. Next listing shows the whole test case definition. Keep in
mind that a test case defines every step in the use case. So we define sending and receiving actions
of the use case as described in the sequence diagram we saw earlier.

<?xm version="1.0" encodi ng="UTF-8"?>

<spring: beans xm ns="http://ww. citrusframework. org/schema/testcase"
xm ns: spring="http://ww.springfranmework. org/schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. citrusfranework. org/ schena/t est case
http://ww. citrusframework. org/ schema/t estcase/citrus-testcase. xsd">

<t est case name="Fl i ght Booki ngTest ">

Citrus Framework (2.5.2) 280

Citrus Samples

<net a- i nf 0>
<aut hor >Chri st oph Deppi sch</ aut hor >
<cr eat i ondat e>2009- 04- 15</ cr eat i ondat e>
<stat us>FI NAL</ st at us>
<l ast - updat ed- by>Chri st oph Deppi sch</| ast - updat ed- by>
<l ast - updat ed- on>2009- 04- 15T00: 00: 00</ | ast - updat ed- on>
</ net a-i nf o>
<descri ption>
Test flight booking service.
</ descri pti on>
<vari abl es>
<vari abl e name="correl ati onl d"
val ue="citrus: concat (' Lx1x', 'citrus:randomNunber(10)')"/>
<vari abl e name="cust oner|d"
val ue="citrus: concat (' Mk1x', citrus:random\unber (10))"/>
</vari abl es>
<actions>
<send endpoi nt ="t ravel AgencyBooki ngRequest Endpoi nt ">
<message>
<dat a>
<! [CDATA[
<Tr avel Booki ngRequest Message
xm ns="http://ww. consol . coml schemas/ Tr avel Agency" >
<correl ationl d>${correl ati onld}</correl ati onl d>
<cust oner >
<i d>${ cust orer | d} </ i d>
<firstnane>John</firstnanme>
<l ast nane>Doe</ | ast nane>
</ cust oner >
<flights>
<flight>
<flight!ld>SM 1269</flightld>
<airline>SmartAirline</airline>
<fromAi r por t >MJC</ f r omAi r port >
<t 0Ai r port >FRA</t oAi r port >
<dat e>2009- 04- 15</ dat e>
<schedul edDepart ure>11: 55: 00</ schedul edDepart ur e>
<schedul edArri val >13: 00: 00</ schedul edArri val >
</flight>
<flight>
<flightld>RA 1780</fli ghtld>
<airline>Royal Airline</airline>
<fromAi r port >FRA</ f r omAi r port >
<t 0Ai r por t >HAMK/ t OAi r port >
<dat e>2009- 04- 15</ dat e>
<schedul edDepart ur e>16: 00: 00</ schedul edDepart ur e>
<schedul edArrival >17: 10: 00</ schedul edArri val >

</flight>
</flights>
</ Tr avel Booki ngRequest Message>
11>

</ dat a>
</ nessage>
<header >

<el enent nanme="correl ationld" value="${correl ationld}"/>
</ header >

</ send>

<recei ve endpoi nt="smartAi rl| i neBooki ngRequest Endpoi nt ">
<nmessage>
<dat a>
<! [CDATA[
<Fl i ght Booki ngRequest Message

xm ns="http://ww. consol . com schemas/ Ai rl i neSchema" >

<correl ationld>${correl ati onld}</correl ati onl d>

<booki ngl d>???</ booki ngl d>

<cust oner >
<i d>${custonerld}</id>
<firstname>John</firstname>
<| ast nane>Doe</ | ast nane>

</ cust oner >

<flight>
<flightld>SM 1269</fli ght!|d>
<airline>SmartAirline</airline>
<fromAi r port >MJC</ f r omAi r port >
<t 0Ai r por t >FRA</ t OAi r port >
<dat e>2009- 04- 15</ dat e>
<schedul edDepart ure>11: 55: 00</ schedul edDepart ur e>
<schedul edArrival >13: 00: 00</ schedul edArri val >

</flight>

</ Fl i ght Booki ngRequest Message>
11>

Citrus Framework (2.5.2)

281

Citrus Samples

</ dat a>
<i gnore path="//:Flight Booki ngRequest Message/ : booki ngl d"/ >
</ message>
<header >
<el ement nanme="correl ationld" val ue="${correl ationld}"/>
</ header >
<extract>
<nmessage path="//:Fl i ght Booki ngRequest Message/ : booki ngl d"
vari abl e="${smart Ai rl i neBooki ngl d} "/ >
</ extract >
</receive>

<send endpoi nt ="snart Ai r| i neBooki ngResponseEndpoi nt " >
<nessage>
<dat a>
<! [CDATA[
<Fl i ght Booki ngConf i r mati onMessage
xm ns="http://ww. consol . coml schemas/ Ai rl i neSchema" >
<correl ationl d>${correl ati onld}</correl ati onl d>
<booki ngl d>${smart Ai r| i neBooki ngl d} </ booki ngl d>
<success>true</ success>
<flight>
<flightld>SM 1269</fli ght|d>
<airline>SmartAirline</airline>
<fromAi r port >MJC</ fr omAi r port >
<t 0Ai r por t >FRA</ t 0Ai r por t >
<dat e>2009- 04- 15</ dat e>
<schedul edDepart ure>11: 55: 00</ schedul edDepart ur e>
<schedul edArri val >13: 00: 00</ schedul edArri val >
</flight>
</ Fl i ght Booki ngConf i r mat i onMessage>
11>
</ dat a>
</ message>
<header >
<el ement name="correl ationld" val ue="${correlationld}"/>
</ header >
</ send>

<recei ve endpoi nt="royal A rl i neBooki ngEndpoi nt">
<nmessage>
<dat a>
<! [CDATA[
<Fl i ght Booki ngRequest Message
xm ns="http://ww. consol . com schemas/ Fl i ght Booki ng/ Ai rl i neSchema" >
<correl ationl d>${correl ati onld}</correl ati onl d>
<booki ngl d>???</ booki ngl d>
<cust oner >
<i d>${custoner|d}</id>
<firstname>John</firstname>
<l ast name>Doe</ | ast name>
</ cust oner >
<flight>
<flightld>RA 1780</flightld>
<airline>Royal Airline</airline>
<fromAi r port >FRA</ f r omAi r port >
<t 0Ai r por t >HAMK/ t OAi r port >
<dat e>2009- 04- 15</ dat e>
<schedul edDepart ur e>16: 00: 00</ schedul edDepart ur e>
<schedul edArrival >17: 10: 00</ schedul edArri val >

</flight>
</ Fl i ght Booki ngRequest Message>
11>
</ dat a>

<i gnore path="//:Flight Booki ngRequest Message/ : booki ngl d"/ >
</ message>
<header >
<el ement name="correl ationl d" val ue="${correlationld}"/>
</ header >
<extract>
<message path="//:Fl i ght Booki ngRequest Message/ : booki ngl d"
vari abl e="${royal Ai rli neBookingld}"/>
</ extract>
</receive>

<send endpoi nt ="royal Ai rl i neBooki ngEndpoi nt ">
<nmessage>
<dat a>
<! [CDATA[
<Fl i ght Booki ngConf i r mati onMessage
xm ns="http://ww. consol . com schemas/ Ai rl i neSchema" >
<correl ationl d>${correl ati onld}</correl ati onl d>

Citrus Framework (2.5.2) 282

Citrus Samples

<booki ngl d>${royal Ai rl i neBooki ngl d} </ booki ngl d>
<success>true</ success>
<flight>
<flightl d>RA 1780</flightld>
<airline>Royal Airline</airline>
<fromAi r port >FRA</ f r omAi r port >
<t oAl r por t >HAMK/ t OAi r port >
<dat e>2009- 04- 15</ dat e>
<schedul edDepart ur e>16: 00: 00</ schedul edDepart ur e>
<schedul edArrival >17: 10: 00</ schedul edArri val >
</flight>
</ Fl i ght Booki ngConf i r mat i onMessage>
11>
</ dat a>
</ nessage>
<header >
<el enent nanme="correl ationi d' val ue="${correl ationld}"/>
</ header >
</ send>

<recei ve endpoi nt="travel AgencyBooki ngResponseEndpoi nt ">
<message>
<dat a>
<! [CDATA[
<Tr avel Booki ngResponseMessage
xm ns="http://ww. consol . coml schenas/ Tr avel Agency" >
<correlationld>${correl ationld}</correl ati onl d>
<success>true</ success>
<flights>
<flight>
<flightld>SM 1269</fli ghtld>
<airline>SmartAirline</airline>
<f romAi r por t >MJC</ f r omAi r port >
<t 0Ai r port >FRA</t 0Ai r port >
<dat e>2009- 04- 15</ dat e>
<schedul edDepart ure>11: 55: 00</ schedul edDepart ur e>
<schedul edArri val >13: 00: 00</ schedul edArri val >
</flight>
<flight>
<flightld>RA 1780</flightld>
<airline>Royal Airline</airline>
<fr omAi r por t >FRA</ f r omAi r port >
<t 0Ai r por t >HAMK/ t OAi r port >
<dat e>2009- 04- 15</ dat e>
<schedul edDepart ur e>16: 00: 00</ schedul edDepart ur e>
<schedul edArrival >17: 10: 00</ schedul edArri val >
</flight>
</flights>
</ Tr avel Booki ngResponseMessage>
11>
</ dat a>
</ nessage>
<header >
<el enent nanme="correl ati onl d" value="${correl ationld}"/>
</ header >
</receive>

</ actions>
</testcase>
</ spring: beans>

Similar to a sequence diagram the test case describes every step of the use case. At the very
beginning the test case gets hame and its meta information. Following with the variable values that
are used all over the test. Here it is the correlationld and the customerld that are used as test
variables. Inside message templates header values the variables are referenced several times in the
test

<correl ationld>${correl ationld}</correl ationld>
<i d>${custonerld}</id>

The sending/receiving actions use a previously defined message sender/receiver. This is the link
between test case and basic Spring configuration we have done before.

Citrus Framework (2.5.2) 283

Citrus Samples

<send endpoi nt ="t ravel AgencyBooki hgRequest Endpoi nt" >

The sending action chooses a message sender to actually send the message using a message
transport (JMS, Http, SOAP, etc.). After sending this first "TravelBookingRequestMessage" request
the test case expects the first "FlightBookingRequestMessage" message on the SmartAirline JMS
destination. In case this message is not arriving in time the test will fail with errors. In positive case
our FlightBookingService works well and the message arrives in time. The received message is
validated against a defined expected message template. Only in case all content validation steps are
successful the test continues with the action chain. And so the test case proceeds and works through
the use case until every message is sent respectively received and validated. The use case is done
automatically without human interaction. Citrus simulates all surrounding applications and provides
detailed validation possibilities of messages.

Citrus Framework (2.5.2) 284

Appendix B. Change History

In the following sections we you will find out what has happened in the past Citrus releases.

B.1. Changes in Citrus 2.4?!

Citrus 2.4 comes with a set of new features especially regarding Apache Camel and Docker
integrations. Bugfixes of course are also part of the package. See the following overview on what has
changed.

B.1.1. Docker support

Docker and Microservices are frequent topics in software development recently. We have added
interaction with Docker in Citrus so the user can manage Docker containers within a test case. Citrus
now provides special Docker test actions for building, starting, stopping and inspecting Docker
images and containers in a test. See Chapter 27, Docker support for details.

B.1.2. Hitp REST actions

We have significantly improved the Http REST support in Citrus. The focus is on simplifying the Http
REST usage in Citrus test cases. With new Http specific test actions on client and server we can
send and receive Http REST messages very easy. See Chapter 17, HTTP REST support for details.

B.1.3. Wait test action

With the new wait test action we can explicitly wait for some remote condition to become true inside
of a test case. The conditions supported at the moment are Http url requests and file based
conditions. A user can invoke a Http server url and wait for it to return a success Http 200 OK
response. This is an awesome feature when waiting for a server to start up before the test continues.
We can also think of waiting for a Docker container to start up before continuing. Or you can wait until
a file is present on the local file system. See Section 12.16, “Wait” for details.

B.1.4. Camel actions

Citrus has already had support for Apache Camel routes and Camel context loading. Now with 2.4
version we have added some special Apache Camel test actions for interacting with a Camel context
and its routes. This enables the tester to create and use a new Camel route on the fly inside a test
case. Also Citrus is now able to interact with the Camel control bus accessing route statistics and
status information. Also possible are start, stop, suspend, resume operations on a Camel route. See
Section 23.6, “Camel route actions” and Section 23.7, “Camel controlbus actions” for details.

B.1.5. Purge endpoints action

Purging JMS queues and in memory channels at test runtime has become a widely used feature
especially when aiming to make tests more stable in terms of independent tests. We have added a
purge endpoint test action that works on any consumer endpoint. So you do not need to separate

Citrus Framework (2.5.2) 285

Change History

between endpoint implementations anymore and more important you can purge server in memory
channel components very easy. See Section 12.19, “Purging endpoints” for details.

B.1.6. Release to Maven Central

This is not a new feature but also worth to tell here as it is a significant improvement on the whole
framework project. We can now release the Citrus artifacts to Maven central repository. So you do
not need the additional labs.consol.de repository in your Maven POM anymore. The labs.consol.de
repository will continue to exist though as we will release SNAPSHOT versions of Citrus here in
future.

B.2. Changes in Citrus 2.3?!

We want to give you a short overview of what has changed in Citrus 2.3. The release adds some new
features and improvements to the box. Bugfixes of course are also part of the package. See the
following overview on what has changed.

B.2.1. Test runner and test designer

One of the biggest issues with the Citrus Java DSL is the fact that the Citrus Java DSL methods first
build the whole test case together before the actual execution takes place. So calling a Java DSL
method send for instance just prepares the sending test action. The actual sending of the message
takes place to a later time when all test actions are setup and the test case is ready to run. This
separation of design time and runtime of a test case leads to misunderstandings as a Java developer
is used to work with statements and method calls that perform immediately. Based on that the
mixture of Citrus Java DSL method calls and normal Java code logic in your test may have lead to
unexpected behavior. Following from that we decided to refactor the Java DSL method execution.
The result is a new TestRunner concept that executes all Java DSL method calls immediately. The
old way of building the whole test case before execution is represented with TestDesigner concept.
So both worlds are now available to you. See Chapter 4, Test cases for details.

B.2.2. WebSocket support

The WebSocket message protocol builds on top of Http standard and brings bidirectional
communication to the Http client-server world. With this release Citrus users are able to send and
receive messages with WebSocket connections. The Http server implementation is now able to
define multiple WebSocket endpoints. The new Citrus WebSocket client is able to publish messages
to the server via bidirectional WebSocket protocol. See Chapter 18, WebSocket support for details.

B.2.3. JSONPath support

Citrus is able to work with Xpath expressions in several fields within the testing domain (overwrite
elements, ignore elements, extract values from payloads). Now this support of manipulating message
payloads via expressions is extended with JSONPath. Similar to Xpath the JSONPath expression
statements enable you to find elements and values within a message payload. Not very surprising
the JSONPath expressions work with Json message payloads. With the new release you can
overwrite, ignore and manipulate Json elements using JSONPath expressions. See Chapter 11,
Using JSONPath for details.

Citrus Framework (2.5.2) 286

Change History

B.2.4. Customize message validators

The framework offers several message validator implementations for different message formats like
XML, JSON, plaintext and so on. In addition to that Citrus has a set of Groovy script message
validators. All these validator implementations are active by default so you are able to validate
incoming messages accordingly in Citrus. Now with this release we added a more comfortable way of
changing the framework validation functionality, particular when adding new customized message
validator implementations. See Chapter 9, Message validation for details.

B.2.5. Library upgrades

We have upgraded the versions of the major dependency libraries of Citrus. This includes TestNG,
JUnit, Spring Framework, Spring WS, Spring Integration, Apache Camel, Arquillian, Jetty and more.
So Citrus is now working with up-to-date versions of the whole messaging and middleware
integration gang.

B.2.6. Upgrade from Citrus 2.2

Along with new features and improvements we refactored and changed some parts of Citrus so you
might have to set things straight when upgrading to 2.3. See the following list of things that might be
brought up to you:

» @CitrusTest annotation: We have moved the @CitrusTest annotation to a more common package.
The old package was com.consol.citrus.dsl.annotations.CitrusTest. The new package is
com.consol.citrus.annotations.CitrusTest. So you have to change the Java import statements in
your Test classes when upgrading.

e TestResult: We changed the TestResult instantiation when generating the test reports. The
TestResult class now works with static instantiation methods for success, skipped and failed tests.
This only affects your code when you have created custom test reporters.

« CitrusTestBuilder deprecation: A major refactoring was done in the TestBuilder Java DSL code.
com.consol.citrus.dsl.TestBuilder and all its subclasses were marked as deprecated and will
disappear in next versions. So instead we now support com.consol.citrus.dsl.design.TestDesigner
which basically offers the same functionality as former TestBuilder. In addition that refactoring
brought a new way of executing the Java DSL test cases. Instead of building the whole test case
before execution is done as a whole you can now use the com.consol.citrus.dsl.runner.TestRunner
implementation in order to execute each test action in the Java DSL immediately. This is a more
Java like way of writing Citrus test cases as you can mix Citrus test action execution with normal
Java statements as usual. Read more about the new approach in Chapter 4, Test cases

B.2.7. Bugfixes

Bugs are part of our software developers world and fixing them is part of your daily business, too.
Finding and solving issues makes Citrus better every day. For a detailed listing of all bugfixes please
refer to the complete changes log of each release in JIRA
(http://www.citrusframework.org/changes-report.html).

Citrus Framework (2.5.2) 287

http://www.citrusframework.org/changes-report.html

Change History

B.3. Changes in Citrus 2.27?!

Citrus 2.2 is a release mostly adding new features as well as improvements to given Citrus features.
Bugfixes of course are also part of the package. See the following overview on what has changed.

B.3.1. Arquillian support

Arquillian is a well known integration test framework that comes with a great feature set when it
comes to Java EE testing inside of a full qualified application server. With Arquiliian you can deploy
your Java EE services in a real application server of your choice and execute the tests inside the
application server boundaries. This makes it very easy to test your Java EE services in scope with
proper JNDI resource allocation and other resources provided by the application server. Citrus is able
to connect with the Arquillian test case. Speaking in more detail your Arquillian test is able to use a
Citrus extension in order to use the Citrus feature set inside the Arquillian boundaries. See
Chapter 26, Arquillian support for details.

B.3.2. JUnit support

Citrus supports both major players in unit testing TestNG and JUnit. Unfortunately we did not offer
the same feature support for JUnit as it was done for TestNG. Now with Citrus 2.2 we improved the
JUnit support in Citrus so you are able to use all features with both frameworks. This is especially
related to using the @CitrusTest and @CitrusXmITest method annotations in test classes. See
Section 6.2, “Run with JUnit” how it works.

B.3.3. Start/Stop server action

Citrus was missing a dedicated test action to start and stop Citrus server components at tet runtime.
With the newly added test actions you are able to start and stop server components as you like within
your test case. See Section 12.23, “Start/Stop server instances” with a detailed description.

B.3.4. Citrus Ant tasks

We discontinue to support the Citrus Ant tasks. The Ant tasks were not very stable an lacked full
feature support when executing test cases with JUnit in Apache Ant. Instead we added a brief
description on how to execute Citrus tests with the well documented and stable default JUnit and
TestNG ant tasks. See Section 3.2, “Using Ant” how it works.

B.3.5. Bugfixes

Bugs are part of our software developers world and fixing them is part of your daily business, too.
Finding and solving issues makes Citrus better every day. For a detailed listing of all bugfixes please
refer to the complete changes log of each release in JIRA
(http://www.citrusframework.org/changes-report.html).

B.4. Changes in Citrus 2.1

Citrus 2.1 adds some enhancements to the Citrus feature set as well as bugfixes and improvements.

Citrus Framework (2.5.2) 288

http://www.citrusframework.org/changes-report.html

Change History

See the following overview on what has changed.

B.4.1. SOAP MTOM support

SOAP MTOM stands for Message Transmission Optimization Mechanism which allows you to send
and receive large SOAP attachment contents streamed with optimized resource allocation on server
and client. Many thanks to community contributions (github/stonator) that made this happen with
Citrus SOAP client and server. As a user you can shoose to send and receive SOAP attachments
with MTOM optimization. See Section 19.9.3, “SOAP MTOM support” for details.

B.4.2. SOAP envelope handling

In its default behavior Citrus will remove the SOAP envelope for incoming SOAP requests just
providing the SOAP body as message payload. This is more straight forward in a test case to
perform further validation steps. However it might be mandatory to see the whole SOAP envelope
inside the test case for special validation. As a user you can now choose how to handle incoming
SOAP envelope by definig the keep-soap-envelope setting on the Citrus SOAP server components.
See Section 19.5, “SOAP Envelope handling” for details.

B.4.3. SOAP 1.2 message factory

The Citrus SOAP server component was missing a setting for the SOAP message factory to use. The
SOAP message factory implementation decides which SOAP version to use 1.1 or 1.2. Now you can
set the message factory on the server component and define the SOAP version to use. See
Section 19.6, “SOAP 1.2 for details.

B.4.4. TestNG data provider handling

We improved the TestNG data provider handling in Citrus. Now you can use the usual TestNG data
provider annotations in your test methods. TestNG will call the Citrus test case several times with
respective parameters provided as test variables. This replaces the old citrusDataProvider
mechanism that tried to make things working in a kind of workaround. The new provider handling
also supports multiple data providers in a test class. Section 6.1.1, “Using TestNG DataProviders”
describes how this is working for you.

B.4.5. Mail message namespace

The Citrus mail components enable message exchange as mail client and server. For validation
purpose the components offer a XML mail message representation. We have added a target
namespace xmins="http://www.citrusframework.org/schema/mail/message" and a XSD schema for
this XML mail message representation. From now on you have to use the namespace accordingly in
your mail message payloads when sending and receiving mail messages in Citrus. See Chapter 25,
Mail support how to use the new XML mail message namespace.

B.4.6. Ssh message namespace

When sending and receiving messages via ssh Citrus provides a XML representation for request and
response data. These ssh messages follow a new target namespace

Citrus Framework (2.5.2) 289

Change History

xmins="http://www.citrusframework.org/schema/ssh/message" and a XSD schema. This means you
have to use the namespace accordingly in your ssh message payloads when sending and receiving
ssh messages in Citrus. See Chapter 28, SSH support for further details.

B.5. Changes in Citrus 2.0

Citrus 2.0 is a major version upgrade and therefore big things should be happening. In the following
sections we shortly describe the Citrus evolution. We want you to get a quick overview of what has
happened and all the new things in Citrus. So hopefully you can spot your favorite new feature.

B.5.1. Refactoring

In Citrus 1.4 we began to refactor the configuration components in Citrus. This refactoring was
finalized in Citrus 2.0 which means that all deprecated classes and api are no longer supported. The
classes were removed so you get compilation errors when using those old stuff. If you still use the old
configuration see this migration-sheet in order to learn how to upgrade to the new configuration. It is
worth to do so! In addition to that we did refactoring in following fields:

* Reply message correlation In synchronous communication scenarios Citrus optionally correlated
messages across send and receive test actions. In default setting the message correlation was
disabled. With 2.0 release we changed this behavior to the opposite. Now message correlation is
done by default with a default correlation algorithm. So in case you used the
DefaultReplyMessageCorrelator in Citrus before you will not have to do so in future as this is done
by default. The message correlation gives us more robust tests especially when executing tests in
parallel. In the test case you do not have to do anything for proper message correlation.

« Citrus message API We have refactored the Citrus message API to use custom message objects
in endpoints, consumers and producers. This has no affect on your tests or configuration unless
you have written endpoint extensions or custom endpoints on your own. You might have to refector
your code accordingly. Have a look at the Citrus endpoint implementations in order to see how the
new message API works for you.

» Sleep time in milliseconds This is something that we definitely carry around since the beginning of
Citrus. The time values in sleep test action were done in seconds, which is inconvenient when
using time periods below one second or non natural numbers. Now you can choose to use
milliseconds which is more likely how you should configure time periods anyway. See Section 12.4,
“Sleep” for details

* Auto sleep time in milliseconds We used seconds when using auto sleep in repeat on error
container. This led to the fact that we were not able to sleep time periods below one second. Also it
was not possible to specify non natural numbers such as 1.5 seconds auto sleep time. We
changed to milliseconds which is more likely how you are used to configure time periods anyway.
See Section 14.6, “Repeat on error until true” for details

» Message handler vs. endpoint adapter In previous releases prior to 1.4 we had message handlers
on server side that were able to forward in coming requests to message channels or jms
destinations. The old message handler implementations were removed in 2.0. Instead you should
use the endpoint-adapter implementations. See Chapter 32, Endpoint adapter how that works.

« XML endpoint reference attribute In a XML test case you reference the message endpoint in the
send and receive actions with a special attribute called with. This attribute is no longer supported

Citrus Framework (2.5.2) 290

http://citrusframework.org/migration-sheet.html

Change History

and was removed. Instead you should use the endpoint attribute which was introduced in Citrus
1.4 and has the exact same functionality.

* Removed citrus-adapter module The Maven module citrus-adapter was removed. Classes and API
moved to citrus-core module. For endpoint adapters do use the new configuration components that
were introduced in Citrus 1.4. See Chapter 32, Endpoint adapter for details.

* WebServiceEndpoint class renamed In terms of package refactoring the
com.consol.citrus.ws.WebServiceEndpoint was renamed to
com.consol.citrus.ws.server.WebServiceEndpoint

B.5.2. Spring framework 4.x

In terms of upgrading the Citrus API dependencies we introduced Spring 4.x versions. This includes
the core Spring framework libraries as well as the Spring Integration and Spring WebService project
artifacts. So with the major version upgrade lots of APl changes were also done in Citrus code in
order to meet the new Spring 4.x APIl. So we recommend for you to also use Spring 4.x version in
your Citrus projects.

B.5.3. FTP support

New member of the Citrus family deals with FTP connectivity. The new citrus-ftp module provides a
neat ftp server and client implementation so you can send and receive messages vie FTP message
transport. Chapter 20, FTP support describes the new functionality in detail.

B.5.4. Functions with test context access

Functions are now able to access the test context. This enables you to access all test variables and
other central test related components in a function implementation. Therefore the function Java
interface has now an additional test context parameter. Refactor your custom written functions
accordingly to meet the new interface rules. See how to write custom functions for details.

B.5.5. Validation matcher with test context access

Just like functions now validation matchers are able to access the test context. This enables you to
access all test variables and other central test related components in a validation matcher
implementation. The validation matcher Java interface has changed accordingly with an additional
test context parameter. Refactor your custom written matcher implementation accordingly to meet the
new interface rules.

B.5.6. Message listener with test context access

Message listeners do now also have access to the test context. This is more powerful as you can
access test variables and other central components within the test context.

B.5.7. SOAP over JMS

SOAP over JMS was supported in Citrus from the very beginning. Unfortunately you had to always
specify the whole SOAP envelope in your test case. SOAP envelope handling is now done

Citrus Framework (2.5.2) 291

http://www.citrusframework.org/tutorials-functions.html

Change History

automatically by Citrus when using the new SoapJmsMessageConverter. The converter takes care
on constructing a proper SOAP envelope message. See Section 16.5, “SOAP over JMS” for details.

B.5.8. Multiple SOAP attachments

When sending and receiving SOAP messages with Citrus as client or server you can add one to
many attachments to the message. Before it was only possible to have one single attachment in a
message. Now you have no limits in defining SOAP attachments. See Chapter 19, SOAP
WebServices for details.

B.5.9. Multiple SOAP XML header fragments

The SOAP header can hold multiple XML header fragments with different namespaces and content.
With Citrus 2.0 you are able to construct such a SOAP message with multiple header contents. See
Chapter 19, SOAP WebServices for details.

B.5.10. Create variable validation matcher

A new validation matcher implementation is able to create a new variable on the fly. The actual field
name is used as variable name and the element value as variable value. The variable name can slo
be customized with optional validation matcher parameter. This is a great alternative to the XPath
expression evaluating variable extraction. Also very handsome to use this validation matcher in Json
message payloads. See Section 34.12, “variable()” for details.

B.5.11. New configuration components

A major part of the Citrus configuration is done in a Spring bean application context. Central Citrus
components and features are added as Spring beans to the application context. Now with Citrus 2.0
we have added special configuration components for almost all features. This means that you can
easily add configuration using the new XML schema components. See which components are
available:

< Function library Custom function libraries with custom function implementations are now configured
with the function-library XML schema components in the Spring application context configuration.
See Chapter 33, Functions for detalils.

« Validation matcher library Custom validation matcher implementations are now configured with the
validation-matcher-library XML schema components in the Spring application context configuration.
See Chapter 34, Validation matcher for details.

< Data dictionary Data dictionaries apply to all messages send and received in test cases. You can
define multiple dictionaries using the data-dictionary XML schema components in the Spring
application context configuration. See Chapter 35, Data dictionaries for details.

« Namespace context Configuration of a global nhamespace context is necessary for XML message
payloads and XPath expressions used in the test cases. The namespace-context XML schema
component is used in the Spring application context configuration and simplifies the configuration.
See Chapter 10, Using XPath for details.

Citrus Framework (2.5.2) 292

Change History

B.5.12. Before/after suite components

When executing test actions before the actual test run you can use the sequence before suite
components. We have improved these components to use a special XML schema. This enables easy
configuration of both before and after suite actions. In addition to that you can bind the suite actions
to special packages, test names or suite names. So you can now have more than one sequence
before suite at the same time. According to the environment settings the before suite actions are
executed or left out. Last not least we have done the same improvement to the before test actions
and we have introduced a after test sequence component for execution after each test. See how this
is done in Chapter 37, Test suite actions.

B.5.13. Citrus JMS module

JMS support has been a major part of Citrus from the very beginning. Up to now the JMS features
were located in citrus-core Maven module. With Citrus 2.0 we introduced a separate citrus-jms
Maven module. This means that you might have to add proper Maven dependency of this new
module in your existing project when using JMS. See how this is done in Chapter 16, JMS support.

B.6. Changes in Citrus 1.4.x

B.6.1. Refactoring

It was time for us to do some code refactoring in Citrus. Many users struggled with the configuration
of the Citrus components and project setup was too verbose in some areas. This is why we tried to
improve things with working over the basic concepts and components in Citrus.

The outcome is a new Citrus 1.4 which has new configuration components for sending and receiving
messages. Also the client and server components for HTTP and SOAP have changed in terms of
simplification. Unfortunately refactoring comes along with code deprecation. This is why you have to
also change your project code and configuration in the future. This is especially when you have made
code adjustments and extensions to the Citrus API.

The good news now is that with Citrus 1.4 both old and new configuration works fine, so you do not
have to change your existing project configuration when coming from Citrus 1.3.x and earlier
versions. But there is a lot of code marked as deprecated in Citrus 1.4. Have a look at what has been
marked as deprecated and update your code to use the new API.

We have set up a migration sheet for users coming from Citrus 1.3.x and earlier versions in order to
find a quick overview of what has changed and how to use the new configuration components: Citrus
1.4 migration-sheet

B.6.2. Data dictionaries

Data dictionaries define dynamic placeholders for message payload element values in general
manner. In terms of setting the same message element across all test cases and all test actions the
dictionary provides an easy key-value approach.

When dealing with any kind of message payload Citrus will ask the data dictionary for possible
translation of the message elements contained. The dictionary keys do match to a specific message

Citrus Framework (2.5.2) 293

http://citrusframework.org/migration-sheet.html
http://citrusframework.org/migration-sheet.html

Change History

element defined by XPath expression or document path expression for instance. The respective
value is then set on all messages in Citrus (inbound and outbound).

Dictionaries do apply to XML or JSON message data and can be defined in global or specific scope.
Find out more detailed information about this topic in Chapter 35, Data dictionaries

B.6.3. Mail adapter

With the new mail adapter you are able to both send and receive mail messages within a test case.
The new Citrus mail client produces a mail mime part message with usual mail headers and a text
body part. Optional attachment parts are supported, too.

On the server side Citrus provides a SMTP server to accept client mail messages. The incoming mail
messages can have multiple text parts and attachment parts. As usual you can validate the incoming
mail messages regarding headers and payload with the well known validation capabilities in Citrus.

Read more about the new mail module in Chapter 25, Mail support

B.6.4. Endpoint adapter

Endpoint adapters help to customize the behavior of a Citrus server such as HTTP or SOAP web
servers. The endpoint adapter is responsible of creating an endpoint that responds to inbound
requests. You can customize the behavior so the Citrus server handles incoming requests as you
like.

By default the Citrus server uses a channel endpoint adapter so incoming messages get forwarded to
an in memory message channel. There are several other implementations available as endpoint
adapter. Read more about that in Chapter 32, Endpoint adapter

B.6.5. Global variables component

We added a global variables XML configuration component for more comfortable usage in basic
Spring application context configuration. The component is able to create new global variables that
are valid across all Citrus test cases. This can also be done by loading a property file from an
external file resource. Find out how to us it in ???

B.6.6. Json text validator mode

The Json text validator is now able to operate in two different modes. The strict mode is the default
mode and validation includes also a strict check on all sub-objects and JSON array elements. So if
there is an object missing the validation will fail immediately. Sometimes it may be accurate to only
validate a subset of all JSON objects in the data structure. Therefore the non-strict mode does not
check on object attribute counts. See more description in Section 9.3, “JSON message validation”

B.6.7. HTTP REST specific Java DSL options

When sending and receiving HTTP messages on REST APIs you can now use interface specific
options in the Java DSL. This refers to request uri, context path, query parameters and HTTP status
codes for instance. With this enhancement you are now more comfortable in handling REST API
calls in Citrus. Find out how to us it in Chapter 17, HTTP REST support

Citrus Framework (2.5.2) 294

Change History

B.6.8. SOAP HTTP validation

While receiving SOAP messages over HTTP we are now able to also verify the used HTTP uri,
context-path and query parameters. You can expect clients to use those values in your receive action
as you would do in normal HTTP communication within Citrus. This completes the HTTP server
validation when using SOAP over HTTP. Read more about it in Chapter 19, SOAP WebServices

B.6.9. Apache Camel integration

Apache Camel is a great enterprise integration platform that implements the enterprise integration
patterns for building powerful mediation and routing rules for message based integration applications.
With the new support for camel endpoints in Citrus you can interact with Apache Camel components
for sending and receiving messages. Apache Camel offers a fine support for different message
transports that now can be used in Citrus also. In addition to that you can put your Camel application
to the test with loading of the Apache Camel context with all your route definitions. Citrus is able to
interact with these routes in asynchronous and synchronous communication scenarios. Read about it
in Chapter 23, Apache Camel support.

B.6.10. Vert.x integration

Vert.x is a very powerful application platform that provides scalable messaging for several message
transports such as HTTP, WebSockets, TCP and more. Vert.x also has a distributed event bus that
connects multiple Vert.x instances across the network. With Citrus 1.4 the Vert.x platform is
integrated with Citrus event bus endpoints. So you can participate in communicating to the Vert.x
event bus from Citrus test case. This enables you to add automated integration tests to the Vert.x
platform. Read about that in Chapter 24, Vert.x event bus support.

B.6.11. Dynamic endpoint components

Endpoints represent the base component in Citrus for sending and receiving messages. The
endpoint usually is defined inside the Citrus Spring application context as Spring bean component.
Now it is also possible to create dynamic endpoint definitions at test runtime. This comes in very
handy when you just want to send or receive a message with Citrus as is. You do not need to add the
complete endpoint configuration but only use a special endpoint uri pattern. Citrus will create the
endpoint at runtime automatically. Learn how to use the dynamic endpoint pattern in Chapter 31,
Dynamic endpoint components.

B.7. Changes in Citrus 1.3.x

B.7.1. @CitrusTest and @CitrusXmlITest annotations

With the new Java DSL capabilities Citrus created new ways of executing test cases within a TestNG
or JUnit test class. Now we even improved the usage here with two new annotations @CitrusTest
and CitrusXmlTest. The integration into the unit test class has never been easier for you.

The new Citrus annotations go directly to your unit test methods. With this enhancement you can
have multiple Citrus test cases in one single Java class and the Citrus tests now are able to coexist
with other unit test methods. You can even mix Java DSL and XML Citrus test cases in a single Java

Citrus Framework (2.5.2) 295

Change History

class.

The XML Citrus tests can be grouped to a single Java class with multiple XML files loaded during
execution. There is even a package scan for all Citrus XML files within a directory structure so you do
not have to create a Java class for each test case anymore.

We have changed the documentation in this guide so you can see how to use the new annotations.
For detailed overview see ???. Also see our Citrus blog where we continuously describe the many
possibilities that you have with the new annotations.

B.7.2. @CitrusParameters annotation

Citrus is able to use the fabulous TestNG data provider capabilities in order to execute a test case
several times with different data provided form external resources. The new @CitrusParameters
annotation helps to set parameter names which are used as test variable names in the test case.

B.7.3. Schema repository configuration components

Defining schema repositories and schemas (xsd, wsdl) is common use in Citrus. We have added
XML bean definition parsers so defining those components is less verbose. You can use the Citrus
citrus:schema-repository and citrus:schema components in your Spring application context
configuration. The components do receive several attributes for further configuration. XSD, WSDL
and schema collections are supported here.

Checkout ??? for examples how to use the new configuration components.

B.7.4. Change date function

We have added a new Citrus function citrus:changeDate() that is available for you by default. The
function changes a given date value adding or removing a datetime offset (e.g. year, month, day,
hour, minute, second). So you can manipulate each date value also those of dynamic nature coming
with some message.

See Section 33.29, “citrus:changeDate()” for examples and detailed syntax usage of this function.

B.7.5. Weekday validation matcher

The new weekday validation matcher also works on date values. The matcher checks that a given
date value evaluates to a expected day of the week. So the user can check that a date field is always
a saturday for instance. This is very helpful when checking that a given date value is not a working
day for example.

See Section 34.11, “isWeekday()” for some more detailed description of the matcher's capabilities.

B.7.6. Java DSL

Citrus users, in particular those with development experience, do often tell me about the nasty XML
code they have to deal with for writing Citrus test definitions. Developers want to write Java code
rather than XML. Although | personally do like the Citrus XML test syntax we have introduced a Java
DSL language for writing Citrus tests with Java only.

Citrus Framework (2.5.2) 296

Change History

We have introduced the Java DSL to all major test action features in Citrus so you can switch without
having to worry about loosing functionality. Details can be seen in the test action section where we
added Java DSL examples almost everywhere (Chapter 12, Test actions). The basic Java DSL setup
is described in Chapter 4, Test cases.

B.7.7. XHTML message validation

Message validation for Html code was not really comfortable as Html does not confirm to be
wellformed and valid XML syntax. XHTML tries to close this gap by automatically resolving all Html
specific XML syntax rule violations. With Citrus 1.3 we introduced a XHTML message validator which
does the magic for converting Html code to proper wellformed and valid XML. In a test case you can
then use the full XML validation power in Citrus in order to validate incoming Html messages. Section
Section 9.4, “XHTML message validation” deals with the new validation capabilities for Html.

B.7.8. Multiple SOAP fault detail support

SOAP fault messages can hold many SOAP fault detail elements. Citrus was able to handle a single
SOAP fault detail on sending and receiving test actions from the very beginning but multiple SOAP
fault detail elements were not supported. Fortunately things are getting better and you can send and
receive as many fault detail elements as you like in Citrus 1.3. For each SOAP fault detail you can
specify individual validation rules and expectations. See Section 19.7, “SOAP faults” for detailed
description.

B.7.9. Jetty server security handler

With our Jetty server component you can set up Http mock servers very easy. The server is
automatically configured to accept Http client connections and to load a Spring application context on
startup. Now you can also set some more details on this automatic server configuration (e.g. server
context path, servlet names or servlet mappings). In addition to that you can access the security
context of the web container. This enables you to set up security constraints such as basic
authentication on server resources. Clients are then forced to authenticate properly when accessing
the server. Unauthorized users will get 401 access denied errors immediately. See Section 17.7,
“HTTP server basic authentication” for details. Of course this also applies to our SOAP WebService
Jetty server components (Section 19.11, “SOAP server basic authentication”).

B.7.10. Test actors

We introduced a new concept of test actors for sending and receiving test actions. This enables you
to link a test actor (e.g. interface partner application, backend application) to a test action in your test.
Following from that you can enable/disable test actors and all linked test actions very easy. This
enables us to reuse Citrus test cases in end-to-end test scenarios where not all interface partners get
simulated by Citrus. If you like to read more about this concept follow the detailed instruction in
Chapter 36, Test actors.

B.7.11. Simulate Http error codes with SOAP

Citrus provides SOAP WebServices server simulation with clients connecting to the server sending
SOAP requests. As a server Citrus is now able to simulate Http error codes like 404 Not found and
500 Internal server error. Before that the Citrus SOAP server had to always respond with a proper

Citrus Framework (2.5.2) 297

Change History

SOAP response or SOAP fault. See Section 19.8, “Send HTTP error codes with SOAP” for details.

B.7.12. SSH server and client

The Citrus family has raised a new member in adding SSH connectivity. With the new SSH module
you are able to provide a full stack SSH server. The SSH server accepts client connections and you
as a tester can simulate any SSH server functionality with proper validation as it is known to Citrus
SOAP and HTTP modules. In addition to that you can also use the Citrus SSH client in order to
connect to an external SSH server. You can execute SSH commands on the SSH server and
validate the respective response data. The full description is provided in Chapter 28, SSH support.

B.7.13. ANT run test action

With this new test action you can call ANT builds from your test case. The action executes one or
more ANT build targets on a build.xml file. You can specify build properties that get passed to the
ANT build and you can add a custom build listener. In case the ANT build run fails the test fails
accordingly with the build exception. See Section 12.22, “Running Apache Ant build targets” for
details.

B.7.14. Polling interval for reply handlers

With synchronous communication in Citrus we always have a combination of a synchronous
message sender and a reply handler component. These two perform a handshake when passing
synchronous reply messages to the test for further processing such as message validation. While the
sender is waiting for the synchronous response to arrive the reply handler polls for the reply
message. This polling for reply messages was done in a static way which often led to time delays
according to long polling intervals. Now with Citrus 1.3 you can set the polling-interval for the reply
handler as you like. This setting is valid for all reply handler components in Citrus (citrus-jms,
citrus-http, citrus-ws, citrus-channel, citrus-shh, and so on).

B.7.15. Upgrading from version 1.2

If you are coming from Citrus 1.2 you may have to look at the following points in order to have a
smooth upgrade to the new release version.

» Jetty version upgrade We are using Jetty a lot for starting Http server mocks within Citrus. In order
to stay up to date we upgraded to Jetty 8.1.7 version with this Citrus release. This implies that
package names did change for Jetty API. In general there is no conflict for you as a Citrus user,
but you may want to adjust your logging configuration according to new Jetty packages. Jetty
package names did change from ord.mortbay to org.eclipse.jetty.

e Spring version upgrade Staying up to date with the versions of 3rd library dependencies is quite
important for us. So we upgrade our dependencies to newer versions with each release. As we did
only upgrade minor versions there is no significant change or problems to be expected. However
you may take care on versions and release changes in the Spring world for details and migration.

e TIBCO module We decided to put the TIBCO module separately as it is a very special connectivity
adapter for TIBCO software only. So you will not find the TIBCO module within the Citrus
distribution anymore. We will maintain a TIBCO connectivity adapter separately in the future.

Citrus Framework (2.5.2) 298

Change History

B.8. Changes in Citrus 1.2

B.8.1. Spring version update

We have some major version upgrades in our Spring dependencies. We are now using Spring 3.1.1,
Spring Integration 2.1.2 and SpringWS 2.1.0. This upgrade was overdue for some time and is
definitely worth it. With these upgrades we had to apply some changes in our API, too. This is
because we are using the Spring classes a lot in our code. See the upgrade guide in this chapter for
all significant changes that might affect your project.

B.8.2. New groovy features

Citrus extended the possibilities to work with script languages like Groovy. You can use Groovy's
MarkupBuilder to create XML message payloads. Your Groovy code goes right into the test case or
comes from external file. With MarkupBuilder you do not need to care about XML message syntax
and overhead. Just focus on the pure message content. You can read the details in Section 12.2.4,
“Groovy MarkupBuilder”.

Further Groovy feature goes to the validation capabilities. Instead of working with XML DOM tree
comparison and XPath expression validation you can use Groovy XMLSlurper. This is very useful for
those of you who need to do complex message validation and do not like the XML/XPath syntax at
all. With XMLSlurper you can access the XML DOM tree via named closure operations which feels
great. This especially comes in handy for complex generic XML structures as you can search for
elements, sort element list and use the powerful contains operation. This is all described in
Section 9.1.4, “Groovy XML validation”.

Some other Groovy support extension comes in SQL result set validation (Section 12.3.3, “Groovy
SQL result set validation”). When reading data from the database someone is able to validation the
resulting data row set with Groovy script. The script code easily accesses the rows and columns with
Groovy's out-of-the-box list and map handling. This adds very powerful validation to multi-row data
sets from the database.

B.8.3. SQL multi-line result set validation

In this new Citrus version the tester can validate SQL Query results that have multiple rows. In the
past Citrus could only handle a single row in the result set. Now this new release brings light into the
dark. See also the new Groovy SQL result set validation which fits brilliant for complex multi-row SQL
result set validation. The details can be found in Section 12.3.2, “SQL query”

B.8.4. Extended message format support

In previous versions Citrus was primary designed to handle XML message payloads. With this new
release Citrus is also able to work with other message formats such as JSON, CSV, PLAINTEXT.
This applies to sending messages as well as receiving and particularly validating message payloads.
The tester can specify several message validators in Citrus for different message formats. According
to the expected message format the proper validator is chosen to perform the message validation.

We have implemented a JSON message validator capable of ignoring specific JSON entries and
handling JSONArrays. We also provide a plain text message validator which is very basic to be

Citrus Framework (2.5.2) 299

Change History

honest. The framework is ready to receive new validator implementations so you can add custom
validators for your specific needs.

B.8.5. New XML features

XML namespace handling is tedious expecially if you have to deal with a lot of XPath expressions in
your tests. Before you had need to specify a namespace context for the XPath expression every time
you use them in your test - now you can have a central nhamespace context which declares
namespaces you use in your project. These namespaces identified by some prefix are available
throughout the test project which is much more maintainable and easy to use. See how it works in
Section 10.4, “XML namespaces in XPath”.

B.8.6. SOAP support improvements

WsAddressing standard is now supported in Citrus (Section 19.12, “WS-Addressing support”). This
means you can declare the specific WsAddressing message headers on message sender level in
order to send messages with WsAddressing feature. The header is constructed automatically for all
SOAP messages that are sent over the message sender.

Dynamic SOAP endpoint uri resolver enables you to dynamically address SOAP endpoints during a
test. Sometimes a message sender may dynamically have to change the SOAP url for each call (e.g.
address different request uri parts). With a endpoint uri resolver set on the message sender you can
handle this requirement very easy. The tip for dynamic endpoint resolving was added to ???

We also simplified the synchronous SOAP HTTP communication within test cases. In previous
versions you had to build complex parallel and sequential container constructs in order to continue
with test execution while the SOAP message sender is waiting for the synchronous response to
arrive. Now you can simply fork the message sending action and continue with further test actions
while synchronous SOAP communication takes place. See the Section 19.13, “SOAP client fork
mode” for details

Some really small change introduced with this release is the fact that Citrus now logs SOAP
messages in their pure nature. This means that you can see the complete SOAP envelope of
messages in the Citrus log files. This is more than helpful when searching for errors inside your test
case.

B.8.7. Http and RESTful WebServices

We have changed Http communication components for full support of RESTful WebServices on client
and server side. The Http client now uses Spring's REST support for Http requests (GET, PUT,
DELETE, POST, etc.). The server side has changed, too. The Http server now provides RESTful
WebServices and is compliant to the existing SOAP Jetty server implementation in Citrus. If you want
to upgrade existing projects to this version you may have to adjust the Spring application context
configuration to some extent.

For details have a look at the upgrade guide (??7?) in this chapter or find detailed explanations to the
new Http components in Chapter 17, HTTP REST support.

B.8.8. HTML reporting

Citrus Framework (2.5.2) 300

Change History

Citrus provides HTML reports after each test run with detailed information on the failed tests. You can
immediately see which tests failed in execution and where the test stopped. Section 40.3, “HTML
reports” provides details on this new feature.

B.8.9. Validation matchers

The new validation matchers will put the message validation mechanisms to a new level. With
validation matchers you are able to execute powerful assertions on each message content element.
For instance you can use the isNumber validation matcher for checking that a message value is of
numeric nature. We added several matcher implementations that are ready for usage in your test but
you can also write your custom validation matchers. Have a look at Chapter 34, Validation matcher
for details.

B.8.10. Conditional container

The new conditional test action container enables you to execute test actions only in case a boolean
expression evaluates to true. So the nested test actions inside the container may be not executed at
all in case a condition is not met. See Section 14.2, “Conditional” for details.

B.8.11. Support for message selectors on message channels

Spring Integration message channels do not support message selectors like JMS queues do for
example. With Citrus 1.2 we implemented a solution for this issue with a special message channel
implementation. So you can use the message selector feature also when using message channels.
Go to Section 21.3, “Message selectors on channels” for details.

B.8.12. New test actions

We introduced some completely new test actions in this release for you. The new actions are listed
below:

» Purge message channel action (Section 12.18, “Purging message channels”)

See Chapter 12, Test actions for detailed instructions how to use the new actions.

B.8.13. New functions

We introduced some new default Citrus functions that will ease the testers life. This includes
commonly used functions like encoding/decoding base64 bindary data, escaping XML and
generating random Java UUID values. These are the new functions in this release:

 citrus:randomUUID()
« citrus:cdataSection()
¢ citrus:encodeBase64()

« citrus:decodeBase64()

Citrus Framework (2.5.2) 301

Change History

« citrus:digestAuthHeader()
« citrus:localHostAddress()

See Chapter 33, Functions for detail descriptions of each function.

B.8.14. Upgrading from version 1.1

If you are coming from Citrus 1.1 final you may have to look at the following points.

e Spring version update We did some major version upgrades on our Spring dependencies. We are
now using Spring 3.1.1, Spring Integration 2.1.2 and SpringWs 2.1.0. These new major releases
bring some code changes in our Citrus APl which might affect your code and configuration, too. So
please update your configuration, it is definitely worth it!

e Spring Integration headers: With 2.0.x version Spring Integration has removed the internal header
prefix ("springintegration_"). So in some cases you might use those internal header names in your
test cases in order to synchronize synchronous communication with internal message ids. Your
test case will fail as long as you use the old Spring internal header prefix in the test. Simply remove
the header prefix wherever used and your test is up and running again.

* Message validator: You need to specify at least one message validator in the Spring application
context. Before this was internally a static XML message validator, but now we offer different
validators for several message formats like XML and JSON. Please see the Java API doc on
MessageValidator interface for available implementations. If you just like to keep it as it was before
add this bean to the Spring application context:

<bean id="xm MessageVal i dator" class="com consol.citrus.validation.xnl.DonXnl MessageVal i dator"/>

« Test suite: We have eliminated/changed the Citrus test suite logic because it duplicates those test
suites defined in TestNG or JUnit. In older versions the tester had to define a Citrus test suite in
Spring application context in order to execute test actions before/after the test run. Now these
tasks before and after the test run are decoupled from a test suite. You define test suites
exclusively in TestNG or JUnit. The test actions before/after the test run are separately defined in
Spring application context so you have to change this configuration in your Citrus project.

See Chapter 37, Test suite actions for details on this configuration changes.

e JUnit vs. TestNG: We support both famous unit testing frameworks JUnit and TestNG. With this
release you are free to choose your prefered one. In this manner you need to add either a JUnit
dependency or a TestNG dependency to your project on your own. We do not have static
dependencies in our Maven POM to neither of those two. On our side these dependencies are
declared optional so you feel free to add the one you like best to your Maven POM. Just add a
JUnit or TestNG dependency to your Maven project or add the respective jar file to your project if
you use ANT instead.

Citrus Framework (2.5.2) 302

	Citrus Framework - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. What's new in Citrus 2.5?!
	1.1. Hamcrest matcher support
	1.2. Binary base64 message validator
	1.3. RMI support
	1.4. JMX support
	1.5. Resource injection
	1.6. Http x-www-form-urlencoded message validator
	1.7. Date range validation matcher
	1.8. Read file resource function
	1.9. Timer container
	1.10. Upgrade to Vert.x 3.2.0
	1.11. Bugfixes

	Chapter 2. Introduction
	2.1. Overview
	2.2. Usage scenarios

	Chapter 3. Setup
	3.1. Using Maven
	3.1.1. Use Citrus Maven archetype
	3.1.2. Add Citrus to existing Maven project

	3.2. Using Ant
	3.2.1. Preconditions
	3.2.2. Download
	3.2.3. Installation

	Chapter 4. Test cases
	4.1. Writing test cases in XML
	4.2. Writing test cases in Java
	4.2.1. Java DSL test designer
	4.2.2. Java DSL test runner
	4.2.3. Designer/Runner injection
	4.2.4. Test context injection
	4.2.5. Java DSL test behaviors

	4.3. Description
	4.4. Test Actions
	4.5. Finally test section
	4.6. Test meta information

	Chapter 5. Test variables
	5.1. Global variables
	5.2. Create variables with CDATA
	5.3. Create variables with Groovy

	Chapter 6. Running tests
	6.1. Run with TestNG
	6.1.1. Using TestNG DataProviders

	6.2. Run with JUnit
	6.3. Running XML tests

	Chapter 7. Configuration
	7.1. Citrus Spring XML application context
	7.2. Citrus Spring Java config
	7.3. Citrus application properties

	Chapter 8. Endpoints
	8.1. Send messages with endpoints
	8.2. Receive messages with endpoints

	Chapter 9. Message validation
	9.1. Xml message validation
	9.1.1. XML payload validation
	9.1.2. XML header validation
	9.1.3. Ignore XML elements
	9.1.4. Groovy XML validation

	9.2. XML schema validation
	9.2.1. XSD schema repositories
	9.2.2. WSDL schemas
	9.2.3. Schema location patterns
	9.2.4. Schema collections
	9.2.5. Schema mapping strategy
	9.2.5.1. Target Namespace Mapping Strategy
	9.2.5.2. Root QName Mapping Strategy
	9.2.5.3. Schema mapping strategy chain

	9.2.6. Schema definition overruling
	9.2.7. DTD validation

	9.3. JSON message validation
	9.4. XHTML message validation
	9.5. Plain text message validation
	9.6. Binary message validation
	9.7. Java DSL validation callbacks
	9.8. Customize message validators

	Chapter 10. Using XPath
	10.1. Manipulate with XPath
	10.2. Validate with XPath
	10.3. Extract variables with XPath
	10.4. XML namespaces in XPath
	10.5. Default namespaces in XPath

	Chapter 11. Using JSONPath
	11.1. Manipulate with JSONPath
	11.2. Validate with JSONPath
	11.3. Extract variables with JSONPath
	11.4. Ignore with JSONPath

	Chapter 12. Test actions
	12.1. Sending messages
	12.2. Receiving messages
	12.2.1. Validate message payloads
	12.2.2. Validate message headers
	12.2.3. Message selectors
	12.2.4. Groovy MarkupBuilder

	12.3. Database actions
	12.3.1. SQL update, insert, delete
	12.3.2. SQL query
	12.3.3. Groovy SQL result set validation
	12.3.4. Save result set values

	12.4. Sleep
	12.5. Java
	12.6. Receive timeout
	12.7. Echo
	12.8. Stop time
	12.9. Create variables
	12.10. Trace variables
	12.11. Transform
	12.12. Groovy script execution
	12.13. Failing the test
	12.14. Input
	12.15. Load
	12.16. Wait
	12.17. Purging JMS destinations
	12.18. Purging message channels
	12.19. Purging endpoints
	12.20. Assert failure
	12.21. Catch exceptions
	12.22. Running Apache Ant build targets
	12.23. Start/Stop server instances
	12.24. Including custom test actions
	12.25. Stop Timer

	Chapter 13. Templates
	Chapter 14. Containers
	14.1. Sequential
	14.2. Conditional
	14.3. Parallel
	14.4. Iterate
	14.5. Repeat until true
	14.6. Repeat on error until true
	14.7. Timer

	Chapter 15. Finally section
	Chapter 16. JMS support
	16.1. JMS endpoints
	16.2. JMS synchronous endpoints
	16.3. JMS topics
	16.4. JMS message headers
	16.5. SOAP over JMS

	Chapter 17. HTTP REST support
	17.1. HTTP REST client
	17.2. HTTP REST server
	17.3. HTTP headers
	17.4. HTTP form urlencoded data
	17.5. HTTP error handling
	17.6. HTTP client basic authentication
	17.7. HTTP server basic authentication
	17.8. HTTP servlet context customization

	Chapter 18. WebSocket support
	18.1. WebSocket client
	18.2. WebSocket server endpoints
	18.3. WebSocket headers

	Chapter 19. SOAP WebServices
	19.1. SOAP client
	19.2. SOAP server
	19.3. SOAP headers
	19.4. SOAP HTTP mime headers
	19.5. SOAP Envelope handling
	19.6. SOAP 1.2
	19.7. SOAP faults
	19.7.1. Send SOAP faults
	19.7.2. Receive SOAP faults
	19.7.3. Multiple SOAP fault details

	19.8. Send HTTP error codes with SOAP
	19.9. SOAP attachment support
	19.9.1. Send SOAP attachments
	19.9.2. Receive SOAP attachments
	19.9.3. SOAP MTOM support

	19.10. SOAP client basic authentication
	19.11. SOAP server basic authentication
	19.12. WS-Addressing support
	19.13. SOAP client fork mode
	19.14. SOAP servlet context customization

	Chapter 20. FTP support
	20.1. FTP client
	20.2. FTP server

	Chapter 21. Message channel support
	21.1. Channel endpoint
	21.2. Synchronous channel endpoints
	21.3. Message selectors on channels
	21.3.1. Root QName Message Selector
	21.3.2. XPath Evaluating Message Selector

	Chapter 22. File support
	22.1. Write files
	22.2. Read files

	Chapter 23. Apache Camel support
	23.1. Camel endpoint
	23.2. Synchronous Camel endpoint
	23.3. Camel exchange headers
	23.4. Camel exception handling
	23.5. Camel context handling
	23.6. Camel route actions
	23.7. Camel controlbus actions

	Chapter 24. Vert.x event bus support
	24.1. Vert.x endpoint
	24.2. Synchronous Vert.x endpoint
	24.3. Vert.x instance factory

	Chapter 25. Mail support
	25.1. Mail client
	25.2. Mail server

	Chapter 26. Arquillian support
	26.1. Citrus Arquillian extension
	26.2. Client side testing
	26.3. Container side testing
	26.4. Test runners

	Chapter 27. Docker support
	27.1. Docker client
	27.2. Docker commands

	Chapter 28. SSH support
	28.1. SSH Client
	28.2. SSH Server

	Chapter 29. RMI support
	29.1. RMI client
	29.2. RMI server

	Chapter 30. JMX support
	30.1. JMX client
	30.2. JMX server

	Chapter 31. Dynamic endpoint components
	Chapter 32. Endpoint adapter
	32.1. Empty response endpoint adapter
	32.2. Static response endpoint adapter
	32.3. Request dispatching endpoint adapter
	32.4. Channel endpoint adapter
	32.5. JMS endpoint adapter

	Chapter 33. Functions
	33.1. citrus:concat()
	33.2. citrus:substring()
	33.3. citrus:stringLength()
	33.4. citrus:translate()
	33.5. citrus:substringBefore()
	33.6. citrus:substringAfter()
	33.7. citrus:round()
	33.8. citrus:floor()
	33.9. citrus:ceiling()
	33.10. citrus:randomNumber()
	33.11. citrus:randomString()
	33.12. citrus:randomEnumValue()
	33.13. citrus:currentDate()
	33.14. citrus:upperCase()
	33.15. citrus:lowerCase()
	33.16. citrus:average()
	33.17. citrus:minimum()
	33.18. citrus:maximum()
	33.19. citrus:sum()
	33.20. citrus:absolute()
	33.21. citrus:mapValue()
	33.22. citrus:randomUUID()
	33.23. citrus:encodeBase64()
	33.24. citrus:decodeBase64()
	33.25. citrus:escapeXml()
	33.26. citrus:cdataSection()
	33.27. citrus:digestAuthHeader()
	33.28. citrus:localHostAddress()
	33.29. citrus:changeDate()
	33.30. citrus:readFile()

	Chapter 34. Validation matcher
	34.1. matchesXml()
	34.2. equalsIgnoreCase()
	34.3. contains()
	34.4. startsWith()
	34.5. endsWith()
	34.6. matches()
	34.7. matchesDatePattern()
	34.8. isNumber()
	34.9. lowerThan()
	34.10. greaterThan()
	34.11. isWeekday()
	34.12. variable()
	34.13. dateRange()
	34.14. assertThat()

	Chapter 35. Data dictionaries
	35.1. XML data dictionaries
	35.2. JSON data dictionaries
	35.3. Dictionary scopes
	35.4. Path mapping strategies

	Chapter 36. Test actors
	36.1. Define test actors
	36.2. Link test actors
	36.3. Disable test actors

	Chapter 37. Test suite actions
	37.1. Before suite
	37.2. After suite
	37.3. Before test
	37.4. After test

	Chapter 38. Customize meta information
	Chapter 39. Tracing incoming/outgoing messages
	Chapter 40. Reporting and test results
	40.1. Console logging
	40.2. JUnit reports
	40.3. HTML reports

	Appendix A. Citrus Samples
	A.1. The FlightBooking sample
	A.1.1. The use case
	A.1.2. Configure the simulated systems
	A.1.3. Configure the Http adapter
	A.1.4. The test case

	Appendix B. Change History
	B.1. Changes in Citrus 2.4?!
	B.1.1. Docker support
	B.1.2. Http REST actions
	B.1.3. Wait test action
	B.1.4. Camel actions
	B.1.5. Purge endpoints action
	B.1.6. Release to Maven Central

	B.2. Changes in Citrus 2.3?!
	B.2.1. Test runner and test designer
	B.2.2. WebSocket support
	B.2.3. JSONPath support
	B.2.4. Customize message validators
	B.2.5. Library upgrades
	B.2.6. Upgrade from Citrus 2.2
	B.2.7. Bugfixes

	B.3. Changes in Citrus 2.2?!
	B.3.1. Arquillian support
	B.3.2. JUnit support
	B.3.3. Start/Stop server action
	B.3.4. Citrus Ant tasks
	B.3.5. Bugfixes

	B.4. Changes in Citrus 2.1
	B.4.1. SOAP MTOM support
	B.4.2. SOAP envelope handling
	B.4.3. SOAP 1.2 message factory
	B.4.4. TestNG data provider handling
	B.4.5. Mail message namespace
	B.4.6. Ssh message namespace

	B.5. Changes in Citrus 2.0
	B.5.1. Refactoring
	B.5.2. Spring framework 4.x
	B.5.3. FTP support
	B.5.4. Functions with test context access
	B.5.5. Validation matcher with test context access
	B.5.6. Message listener with test context access
	B.5.7. SOAP over JMS
	B.5.8. Multiple SOAP attachments
	B.5.9. Multiple SOAP XML header fragments
	B.5.10. Create variable validation matcher
	B.5.11. New configuration components
	B.5.12. Before/after suite components
	B.5.13. Citrus JMS module

	B.6. Changes in Citrus 1.4.x
	B.6.1. Refactoring
	B.6.2. Data dictionaries
	B.6.3. Mail adapter
	B.6.4. Endpoint adapter
	B.6.5. Global variables component
	B.6.6. Json text validator mode
	B.6.7. HTTP REST specific Java DSL options
	B.6.8. SOAP HTTP validation
	B.6.9. Apache Camel integration
	B.6.10. Vert.x integration
	B.6.11. Dynamic endpoint components

	B.7. Changes in Citrus 1.3.x
	B.7.1. @CitrusTest and @CitrusXmlTest annotations
	B.7.2. @CitrusParameters annotation
	B.7.3. Schema repository configuration components
	B.7.4. Change date function
	B.7.5. Weekday validation matcher
	B.7.6. Java DSL
	B.7.7. XHTML message validation
	B.7.8. Multiple SOAP fault detail support
	B.7.9. Jetty server security handler
	B.7.10. Test actors
	B.7.11. Simulate Http error codes with SOAP
	B.7.12. SSH server and client
	B.7.13. ANT run test action
	B.7.14. Polling interval for reply handlers
	B.7.15. Upgrading from version 1.2

	B.8. Changes in Citrus 1.2
	B.8.1. Spring version update
	B.8.2. New groovy features
	B.8.3. SQL multi-line result set validation
	B.8.4. Extended message format support
	B.8.5. New XML features
	B.8.6. SOAP support improvements
	B.8.7. Http and RESTful WebServices
	B.8.8. HTML reporting
	B.8.9. Validation matchers
	B.8.10. Conditional container
	B.8.11. Support for message selectors on message channels
	B.8.12. New test actions
	B.8.13. New functions
	B.8.14. Upgrading from version 1.1

