Citrus Simulator

Authors: The Citrus Community

Version 2.0.0, 2021-12-15

citrus-simulator

1. Introduction
1.1. Project status
1.2. Prerequisites
1.2.1.Java 8
1.2.2. Browser
2. Installation
2.1. Build with Gradle
2.2. Build with Maven
2.3. Maven archetypes
2.4. Development
3. Concepts
3.1. Simulator application
3.2. Simulator properties
3.2.1. System properties
3.2.2. Environment variables
3.3. Spring bean configuration
3.4. Scenario mapper
3.4.1. Default mapping behavior
3.4.2. Custom mapper configuration
3.5. Simulator scenarios
3.6. Intermediate Messages
4. REST support
4.1. Configuration
4.2. Advanced customizations
4.3. Request mapping
4.4. Http responses
4.5. Swagger support
Swagger system properties
Data dictionaries
5. Web Service support
5.1. Configuration
5.2. Advanced customizations
5.3. SOAP response
5.4. SOAP faults
5.5. WSDL support
WSDL system properties
Data dictionaries
6. JMS support

© OO = kWD DD DNDN

BB R W W W W W W W W NNNDNDNDNDN R R R R) R R R s e
N b b O 00 O R R WD U WWwWw o 00Nl gD R, e, o

6.1. Configuration
6.2. Asynchronous communication
6.3. Synchronous communication
7. Endpoint support
7.1. Configuration
8. User interface
8.1. Dashboard
8.2. Scenarios
8.3. Activities
Messages
9. Starter
9.1. Starter Parameter
10. Samples
10.1. REST sample
10.2. SOAP sample
10.3. JMS sample
10.4. Mail sample
10.5. Combined sample
11. Links & Further reading

48
50
52
35
35
39
39
60
61
62
63
64
66
66
66
66
66
67
68

CITRUSS

Chapter 1. Introduction

This is a standalone simulator for different messaging transports such as Http REST, SOAP
WebService, JMS, RMI, mail messaging and more.

The simulator provides server APIs for clients and responds with predefined messages according to
defined scenarios. The simulator response logic is very powerful and enables us to simulate any
kind of server interface.

The simulator uses Spring Boot in combination with the test framework Citrus. You can code
simulator scenarios in Java or XML. Each scenario execution on the simulator is stored to an
internal database and can be reviewed via web UI in the browser.

Feedback and contributions are highly appreciated!

1.1. Project status

NOTE: This project is considered stable but still under construction!

The simulator application is stable not yet finished. Some features are still under construction.
Some aspects are simply not covered yet. Please see the following experimental features.

Experimental features

WSDL generated scenarios Auto generate simulator scenarios from WSDL file
Swagger generated scenarios Auto generate simulator scenarios from Swagger API file

Combined simulator Use multiple message transports in one simulator instance

Following from that we have to deal with some limitations and trade offs until the project emerges
(hopefully with the help of the community, keeping our fingers crossed!). However the simulator is
usable and all main features are considered to be stable.

1.2. Prerequisites

You may want to check the following prerequisites for using the simulator application.

1.2.1.Java 8

The simulator is a Java application coded in Java 8. Following from that you need at least Java 8 to
run it as a Spring Boot web application. Please make sure that you have Java development kit
installed and set up. You can verify this with this command in a new terminal window.

java -version

https://projects.spring.io/spring-boot/
https://www.citrusframework.org

1.2.2. Browser

The simulator provides a small web user interface when started. You can access this web UI with
your browser. As we are in an early state in this project we do not invest much time in full cross-
browser compatibility. We use Chrome and Firefox during development. So the simulator
application is most likely to be 100% working on these two browsers. Of course other browsers
might work without any limitations, too.

Chapter 2. Installation

The Citrus simulator is a web application that uses Spring boot and Angular2. The simulator is able
to run as Java application on your local machine or as container/pod in Docker, Kubernetes or
Openshift.

You can use any build system you like when building the simulator application. Here we show how
to setup everything using Gradle and Maven.

2.1. Build with Gradle

Gradle uses groovy build scripts that we have to add first when starting a new simulator project.

buildscript {
repositories {
mavenCentral()
}
dependencies {
classpath("org.springframework.boot:spring-boot-gradle-plugin:1.5.6.RELEASE")
}
}

apply plugin: 'java'

apply plugin: ‘'eclipse’

apply plugin: 'idea’

apply plugin: 'org.springframework.boot'

jar {
group = "org.citrusframework.simulator’
baseName = 'citrus-simulator-sample’
version = '1.0.0'

}

repositories {
mavenCentral()

}

1
-_—)

sourceCompatibility
targetCompatibility

oo oo

dependencies {
implementation("org.springframework.boot:spring-boot-starter-web")
implementation("org.citrusframework:citrus-simulator-starter:1.0.0")
testImplementation("junit:junit")

The above build script will setup the Spring Boot dependencies for you. In addition to that we add
the basic citrus-simulator-starter dependency. That’s it for the Gradle build. We are ready to build

http://gradle.org/
https://maven.apache.org/

and run the simulator now.
Before we do that let’s add a basic Spring Boot main class to our project.

src/main/java/com/consol/citrus/simulator/Simulator.java
package org.citrusframework.simulator;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

Also we add an default scenario that is executed for incoming requests.

DefaultScenario.java
package org.citrusframework.simulator;

import com.consol.citrus.http.message.HttpMessage;
import org.citrusframework.simulator.scenario.*;
import org.springframework.http.HttpStatus;

@Scenario("DEFAULT_SCENARIO")
public class DefaultScenario extends AbstractSimulatorScenario {

@0verride

public void run(ScenarioDesigner designer) {
designer.echo("Default scenario executed!");

designer.send()

.message(new HttpMessage("Welcome to the Citrus simulator")
.status(HttpStatus.0K));

The default scenario responds with Http 200 0OK.
You can now build and run the simulator application with:

Gradle build

./gradlew build bootRun

You will see the application starting up. Usually you will see some console log output. The web
server should start within seconds. Once the application is up and running you can open your
browser and point to http://localhost:8080. You will see the very basic simulator user interface. For
a more detailed user interface please follow chapter user-interface.

The REST default scenario that we have added is accessible using http://localhost:8080/services/rest/.
You will see the default output Welcome to the Citrus simulator coming from default scenario
execution.

That’s it you are ready to use the Citrus simulator now. Next thing would be to understand the
concepts and create some simulator scenarios.

2.2. Build with Maven

You can use the simulator in your Maven project. Maven will automatically download all required
dependencies and project artifacts for you. The simulator is then executable as a web archive
representing the the latest simulator distribution.

See the following sample Maven project POM file that defines the project sources as Spring boot
application.

<?xml version="1.0" encoding="UTF-8"7>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/PONM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.citrusframework</groupId>
<artifactId>citrus-simulator-sample</artifactId>
<name>${project.artifactId}</name>
<version>1.0.0</version>

<properties>
<java.version>11</java.version>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<citrus.simulator.version>2.1.0-SNAPSHOT</citrus.simulator.version>
<spring.boot.version>2.5.4</spring.boot.version>

</properties>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>${spring.boot.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>

http://localhost:8080
#user-interface
http://localhost:8080/services/rest/
#concepts
#scenarios

</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>

<!-- Citrus Simulator -->

<dependency>
<groupIld>org.citrusframework</groupId>
<artifactId>citrus-simulator-starter</artifactId>
<version>${citrus.simulator.version}</version>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<configuration>
<encoding>${project.build.sourceEncoding}</encoding>
<source>${java.version}</source>
<target>${java.version}</target>
</configuration>
</plugin>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-war-plugin</artifactId>
<version>3.1.0</version>
<configuration>

<failOnMissingWebXml>false</failOnMissingWebXml>

</configuration>

</plugin>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>${spring.boot.version}</version>
<confiquration>

<fork>true</fork>

</configuration>

</plugin>

</plugins>
</build>

</project>

The above Maven pom file will setup the Spring Boot dependencies for you. In addition to that we
add the basic citrus-simulator-starter dependency. We are now finished with the build setup and
we are ready to build and run the simulator.

Before we do that let’s add a basic Spring Boot main class to our project.

sr¢/main/java/com/consol/citrus/simulator/Simulator.java
package org.citrusframework.simulator;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

Also we add an default scenario that is executed for incoming requests.

DefaultScenario.java
package org.citrusframework.simulator;

import com.consol.citrus.http.message.HttpMessage;
import org.citrusframework.simulator.scenario.*;
import org.springframework.http.HttpStatus;

@Scenario("DEFAULT_SCENARIO")
public class DefaultScenario extends AbstractSimulatorScenario {

@0verride
public void run(ScenarioDesigner designer) {
designer.echo("Default scenario executed!");

designer.send()
.message(new HttpMessage("Welcome to the Citrus simulator")
.status(HttpStatus.0K));

The default scenario responds with Http 200 OK.

You can now build and run the simulator with Maven from a command line. Use following
commands:

Maven build

mvn clean install spring-boot:run

You will see the application starting up. Usually you will see some console log output. The web
server should start within seconds. Once the application is up and running you can open your
browser and point to http://localhost:8080. You will see the very basic simulator user interface. For
a more detailed user interface please follow chapter user-interface.

The REST default scenario that we have added is accessible using http://localhost:8080/services/rest/.
You will see the default output Welcome to the Citrus simulator coming from default scenario
execution.

That’s it you are ready to use the Citrus simulator now. Next thing would be to understand the
concepts and create some simulator scenarios.

2.3. Maven archetypes

The easiest way to get started with a new simulator project is to use a Maven archetype that creates
a new project for you.

mvn archetype:generate -B -DarchetypeGroupId=org.citrusframework.archetypes \
-DarchetypeArtifactId=citrus-simulator-archetype-rest \
-DarchetypeVersion=$§{citrus.simulator.version} \
-DgroupId=org.citrusframework.simulator \
-DartifactId=citrus-simulator-rest \
-Dversion=1.0.0

If you execute the command above the Maven archetype generator will ask you some questions
about versions and project names. Once you have completed the generation you get a new Maven
project that is ready to use. The project is created in a new folder on your machine. Switch to that
folder and continue to build the project.

There are different simulator archetypes available. Please pick the most convenient archetype
according to your project purpose.

Maven archetypes

citrus-simulator-archetype-rest Http REST simulator sample
citrus-simulator-archetype-ws SOAP web service simulator sample
citrus-simulator-archetype-jms JMS simulator sample
citrus-simulator-archetype-mail Mail simulator sample

http://localhost:8080
#user-interface
http://localhost:8080/services/rest/
#concepts
#scenarios

citrus-simulator-archetype-swagger Auto generate simulator from Swagger Open API
specification (experimental)

citrus-simulator-archetype-wsdl Auto generate simulator from SOAP WSDL
specification (experimental)

2.4. Development

Once the project build and sources are setup you can start to code some simulator scenarios. The
project is a normal Java project that you can work with in your favorite Java IDE. Build tools like
Maven and Gradle compile and package the simulator to an executable artifact. Usually this is a
Spring boot web archive.

The simulator web application should start within seconds. Once the application is up and running
on your local machine you can open your browser and point to http://localhost:8080.

Now everything is set up and you can start to create some simulator scenarios.

That’s it you are ready to use the Citrus simulator.

10

http://localhost:8080

Chapter 3. Concepts

The Citrus simulator’s primary focus is to provide a simple means to simulate one or more
endpoints (HTTP, JMS, SMTP, etc). Once the simulator is up and running it waits for an incoming
request (JSON, SOAP, XML, etc) to arrive on any of its configured endpoints and reacts accordingly.
The simulator examines the incoming request and determines which simulator scenario should be
executed for handling the request. Typically the selected scenario creates a response message to
send back to the calling client.

A scenario mapper is used to help the simulator determine the correct scenario to be executed.
Different scenario mappers are supported that use the request header data or payload data to
determine the appropriate scenario to run.

A simulator scenario is capable of handling one or more request messages. When executed it
receives the request and can return an appropriate response message to the calling client. By
defining multiple simulator scenarios the citrus simulator is able to respond to different requests
accordingly.

A simulator scenario is composed of one or more actions. For the most trivial scenarios there is
generally an action for receiving a request and an action for sending a response. Because the Citrus
simulator has access to the underlying Citrus framework functionality you can access a wide range
of actions that are available within the Citrus framework and use these when configuring a
scenario.

To keep an eye on what the simulator is doing, what requests were received or sent or what
scenarios were executed a user interface is provided. In addition to seeing what is going on it is also
possible to trigger scenarios manually.

3.1. Simulator application

The simulator is a usual Spring boot application. This means we have a main class that loads the
Spring boot application.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

This class is the main entrance for all configuration and customization statements. As we have
added the citrus-simulator-starter as dependency in our project auto configuration is enabled for
the simulator application. By default REST support is enabled with all configuration needed. You
can enable/disable the message transport support for different technologies via application

11

#scenarios
#scenario-mapper
#scenarios
#user-interface

properties.

application.properties

citrus.simulator.rest.enabled=true
citrus.simulator.jms.enabled=true
citrus.simulator.ws.enabled=true
citrus.simulator.ws.client.enabled=true
citrus.simulator.endpoint.enabled=true

When enabled the simulator auto configuration for this specific message transport is activated and
all required beans and configuration is loaded at startup.

Simulator support
citrus.simulator.rest.enabled Enables Http REST support
citrus.simulator.ws.enabled Enables SOAP web services support

citrus.simulator.ws.client.enabled = Enables SOAP web services support
citrus.simulator.jms.enabled Enables JMS support

citrus.simulator.endpoint.enabled Enables generic endpoint component support

You can also combine message transports on the simulator application although this feature is of
experimental nature up to now.

3.2. Simulator properties

The simulator is capable of loading configuration from system properties, environment variables
and property files. First of all the default Spring boot properties configuration mechanism is
supported. Following from that you can add properties to the application.properties file in your
project resources in order to adjust simulator behavior.

citrus.simulator.rest.enabled=true
citrus.simulator.defaultTimeout=10000
citrus.simulator.templatePath=com/company/simulator/templates

The available simulator properties are grouped in following configuration classes:

org.citrusframework.simulator.config.Sim prefix=citrus.simulator
ulatorConfigurationProperties

org.citrusframework.simulator.http.Simul prefix=citrus.simulator.rest
atorRestConfigurationProperties

12

#rest-support
#ws-support
#ws-support
#jms-support
#endpoint-component-support

org.citrusframework.simulator.ws.Simulat prefix=citrus.simulator.ws
orWebServiceConfigurationProperties

org.citrusframework.simulator.ws.Simulat prefix=citrus.simulator.ws.client
orWebServiceClientConfigurationProperti
es

org.citrusframework.simulator.jms.Simula prefix=citrus.simulator.jms
torJmsConfigurationProperties

There are several properties that you can use in order to customize the simulator behavior. These
properties are:

Spring boot application properties

citrus.simulator.templatePath Default path to message payload template files.
citrus.simulator.defaultScenario Default scenario name.
citrus.simulator.defaultTimeout Timeout when waiting for inbound messages.
citrus.simulator.templateValidation Enable/disable schema validation.
citrus.simulator.exceptionDelay Default delay in milliseconds to wait after

uncategorized exceptions.

citrus.simulator.rest.urlMapping Handler adapter url mapping for inbound
requests

citrus.simulator.ws.servletMapping Message dispatcher servlet mapping for
inbound SOAP requests

citrus.simulator.jms.inboundDestination = JMS destination name to consume inbound
messages from

citrus.simulator.jms.replyDestination JMS destination name to publish reply messages
to

Please refer to the respective configuration property classes to see what property settings are
supported.

3.2.1. System properties

In addition to that default Spring boot property replacement the simulator also supports system
property and environment variables. The properties are:

System property names

13

citrus.simulator.configuration.class Java configuration class that is automatically

loaded. (default is
org.citrusframework.simulator.SimulatorConfi
g)
citrus.simulator.template.path Default path to message payload template files.
citrus.simulator.default.scenario Default scenario name.
citrus.simulator.default.timeout Timeout when waiting for inbound messages.
citrus.simulator.template.validation Enable/disable schema validation.
citrus.simulator.exception.delay Default delay in milliseconds to wait after

uncategorized exceptions.

citrus.simulator.rest.url.mapping Handler adapter url mapping for inbound
requests

citrus.simulator.ws.servlet.mapping Message dispatcher servlet mapping for
inbound SOAP requests

citrus.simulator.jms.inbound.destination = JMS destination name to consume inbound
messages from

citrus.simulator.jms.reply.destination JMS destination name to publish outbound
messages to

You can set these properties as system properties when starting the Spring boot web application or
you can add the properties to the default Spring Boot application properties file
application.properties that is located as resource file in your project.

The simulator will automatically load these properties during startup and honor this configuration.

3.2.2. Environment variables

Same settings that are editable via system properties are also accessible via environment variables.
This is extremely helpful when running the simulator in a containerized infrastructure such as
Docker or Kubernetes.

Environment settings

CITRUS_SIMULATOR_CONFIGURATION _CL Java configuration class that is automatically

ASS loaded. (default is
org.citrusframework.simulator.SimulatorCon
fig)

14

CITRUS_SIMULATOR_TEMPLATE_PATH

CITRUS_SIMULATOR_DEFAULT_SCENARIO

CITRUS_SIMULATOR_DEFAULT_TIMEOUT

CITRUS_SIMULATOR_TEMPLATE_VALIDAT
ION

CITRUS_SIMULATOR_EXCEPTION_DELAY

CITRUS_SIMULATOR_REST_URL_MAPPING

CITRUS_SIMULATOR_WS_SERVLET_MAPPI
NG

CITRUS_SIMULATOR_JMS_INBOUND_DESTI
NATION

CITRUS_SIMULATOR_JMS_REPLY_DESTINA
TION

Default path to message payload template
files.

Default scenario name.

Timeout when waiting for inbound messages.

Enable/disable schema validation.

Default delay in milliseconds to wait after
uncategorized exceptions.

Handler adapter url mapping for inbound
requests

Message dispatcher servlet mapping for
inbound SOAP requests

JMS destination name to consume inbound
messages from

JMS destination name to publish outbound
messages to

In case these environment variables are present on your local system the simulator will
automatically load these settings during startup and honor the configuration.

3.3. Spring bean configuration

Citrus works with the Spring framework and the simulator is a Spring boot application. Therefore
the configuration is done by adding and overwriting Spring beans in the application context. The
simulator automatically loads Spring beans defined in following locations:

* META-INF/citrus-simulator.xml Xml Spring bean configuration file.

» org.citrusframework.simulator.SimulatorConfig Java configuration class. You can customize

this class by defining the property citrus.simulator.configuration.class

All beans defined in there get automatically loaded to the simulator Spring application context.

3.4. Scenario mapper

The scenario mapper implementation decides how to map incoming request message to simulator
scenarios. Each incoming request triggers a predefined scenario that generates the response
message for the calling client. The simulator identifies the scenario based on a mapping key that is
extracted from the incoming request.

15

There are multiple ways to identify the simulator scenario from incoming request messages:

Scenario mapping identifiers

Message-Type

Content based Xpath

Content based JsonPath

Header value

SOAP action

REST request mappings

Request mapping annotations

Each request message type (XML root QName) results in a
separate simulator scenario

Evaluates Xpath expressions on the request payload and
uses the expression result as scenario name

Evaluates JsonPath expressions on the request payload and
uses the expression result as scenario name

Evaluates header name on request and uses header value
as scenario name

Evaluates SOAP action header on request and uses the
value as scenario name

Identifies the scenario based on Http method and resource
path on server

Uses Spring @RequestMapping annotations on scenarios in
order to map incoming requests based on request method
and/or request path values

Once the simulator scenario is identified with the respective mapping key the scenario get loaded
and executed. All scenarios perform Citrus test logic in order to provide a proper response
messages as a result. This way the simulator is able to perform complex response generating logic

with dynamic values and so on.

The mentioned mapping key extraction strategies are implemented in these classes:

Scenario mapper implementations

HttpRequestAnnotationScenarioMapper Evaluates REST request mappings

SoapActionScenarioMapper

HeaderValueScenarioMapper

Evaluates the SOAP action header

Evaluates any message header

ContentBasedXPathScenarioMapper Evaluates a XPath expression on the message
payload

ContentBasedJsonPathScenarioMapper Evaluates a JsonPath expression on the message
payload

16

Of course you can also implement a custom scenario mapper, too. Just implement the interface
methods of that API and add the implementation to the simulator configuration as described later
on in this document.

3.4.1. Default mapping behavior

The default mapping key logic extracts the message type of incoming requests. This is done by
evaluating a Xpath expression on the request payload that uses the root element of the message as
the mapping key. Each message type gets its own simulator scenario.

Let’s demonstrate that in a simple example. We know three different message types named
successMessage, warningMessage and errorMessage. We create a simulator scenario for each of
these message types with respective naming. Given the following incoming requests the simulator
will pick the matching scenario for execution.

<successMessage>
<text>This is a success message</text>
</successMessage>

<warningMessage>
<text>This is a warning message</text>
</warningMessage>

<errorMessage>
<text>This is a error message</text>
</errorMessage>

The simulator evaluates the root element name and maps the requests to the matching scenario.
Each scenario implements different response generating logic so the simulator is able to respond to
a successMessage in a different way than for errorMessage types.

3.4.2. Custom mapper configuration

You can change the scenario mapping behavior by overwriting the default scenario mapper in your
simulator.

@Component
public class SimulatorAdapter extends SimulatorRestAdapter {
@0verride
public ScenarioMapper scenarioMapper() {
HeaderValueScenarioMapper scenarioMapper = new HeaderValueScenarioMapper();
scenarioMapper.setHeaderName("X-simulator-scenario");
return scenarioMapper;

With the configuration above we use the HeaderValueScenarioMapper implementation so the
header name X-simulator-scenario gets evaluated for each incoming request message. Depending

17

on that header value the matching scenario is executed as a result. The scenario mapper is just a
bean in the Spring application context. There is a default implementation but you can overwrite
this behavior very easy in the simulator adapter configuration. Read more about how to add
simulator adapter configuration classes in configuration chapters rest-config, ws-config or jms-
config.

3.5. Simulator scenarios

The simulator provides the response generating logic by defining one to many scenarios that get
executed based on the incoming request. The different scenarios on the simulator describe
different response messages and stand for individual simulation logic. Each scenario is capable of
receiving and validating the incoming request message. Based on that the scenario is in charge of
constructing a proper response message.

First of all the scenario gets a name under which mapping strategies can identify the scenario. This
name is very important when it comes to mapping incoming requests to scenarios. Besides that the
scenario is a normal Java class that implements following interface SimulatorScenario

package org.citrusframework.simulator.scenario;

public interface SimulatorScenario {
ScenarioEndpoint getScenarioEndpoint();

default void run(ScenarioDesigner designer) {}

default void run(ScenarioRunner runner) {}

The simulator scenario provides access to the endpoint that has been invoked to start this scenario.
In the scenario logic you can receive that request message using this endpoint. Also you can send
back a response using this scenario endpoint. The scenario logic goes to one of the default run
methods depending on what designer or runner Java DSL API you want to use. Fortunately there is
an abstract default implementation
org.citrusframework.simulator.scenario.AbstractSimulatorScenario that you can inherit from.

So a typical simulator scenario can look like the following code sample.

18

#rest-config
#ws-config
#jms-config
#jms-config

@Scenario("Hello")
public class HelloScenario extends AbstractSimulatorScenario {

@override
public void run(ScenarioDesigner scenario) {
scenario
.receijve()
.payload("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Say Hello!" +
"</Hello>");
scenario
.send()

.payload("<HelloResponse
xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Hi there!™ +
"</HelloResponse>");

As you can see we extend from AbstractSimulatorScenario. We just add receive and send logic for
generating the response message in the designer run method. The scenario above is annotated with
@Scenario for defining a scenario name. There is one single configure method to be implemented.
We can use Citrus Java DSL methods in the method body in order to receive the incoming request
and send back a proper response message. Of course we can use the full Citrus power here in order
to construct different message payloads such as XML, JSON, PLAINTEXT and so on.

So we could also extract dynamic values from the request in order to reuse those in our response
message:

19

@Scenario("Hello")
public class HelloScenario extends AbstractSimulatorScenario {

@override
public void run(ScenarioDesigner scenario) {
scenario
.receijve()
.payload("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"<user>@ignore@</user>" +
"</Hello>")
.extractFromPayload("/Hello/user", "userName");

scenario
.send()
.payload("<HelloResponse
xmlns=\"http://citrusframework.org/schemas/hello\">" +
"<text>Hi there ${userName}!</text>" +
"</HelloResponse>");

In the receive operation the user name value is extracted to a test variable ${userName}. In the
response we are able to use this variable in order to greet the user by name. This way we can use
the Citrus test power for generating dynamic response messages. Of course this mechanism works
for XML, Json and Plaintext payloads.

Now you are ready to write different scenarios that generate different response messages for the
calling client. Just remember the scenarios do get unique names that match a value that is
evaluated through the scenario mapper. With this mechanism we are able to code different
simulator scenarios for different incoming request messages. Also with the Citrus send and receive
operations we are able to handle messages of different transport types.

Read more about special message transport support in chapters rest-support, web-service-support,
jms-support, endpoint-support.

3.6. Intermediate Messages

The simulator starts a new scenario instance for each incoming request based on the defined
scenario mapping. Sometimes a running scenario instance needs to receive another incoming
request. The simulator has to handle things in a different way then because the incoming request
should not trigger an new scenario instance but forward that request to the running scenario.

This mechanism is called intermediate message handling in scenarios. The scenario can activate the
message correlation for a certain request. The simulator will always check all running scenarios for
matching intermediate message correlations before starting a new scenario. This mechanism
enables us to receive further incoming request within the same scenario instance.

Let us clarify this with a simple example.

20

#rest
#web-service
#jms
#endpoint

@Scenario("GoodNight")
public class GoodNightScenario extends AbstractSimulatorScenario {

@override
public void run(ScenarioDesigner scenario) {
scenario
.receive()
.payload("<GoodNight xmlns=\"http://citrusframework.org/schemas/hello\">"

"Go to sleep!" +
"</GoodNight>")
.extractFromHeader ("X-CorrelationId", "correlationId");

scenario.correlation().start()
.onHeader ("X-CorrelationId", "${correlationId}");

scenario
.send()
.payload("<GoodNightResponse
xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Good Night!" +
"</GoodNightResponse>");

scenario
.receive()
.payload("<IntermediateRequest>In between!</IntermediateRequest>");

scenario
.send()
.payload("<IntermediateResponse>In between!</IntermediateResponse>");

The scenario above starts a new correlation on the header entry "X-CorrelationId" and the
variable value ${correlationld} that has been extracted from first request message. Now the
scenario is able to receive further incoming request messages with the correlation identifier. This
makes sure that no other running scenario is catching this message before. The scenario is
provided with that specific message first.

This is how a scenario instance is able to receive more than one single incoming request. The
message correlation is able to run on header values as well as based on XPath expressions
evaluated within the message payload.

21

@Scenario("FaxCancelled")
public class FaxCancelledScenario extends AbstractFaxScenario {

public static final String ROOT_ELEMENT_XPATH
public static final String REFERENCE_ID_XPATH

"string:local-name(/*)";
"//fax:referenceld";

@0verride
public void run(ScenarioDesigner scenario) {
scenario
.receijve()
.xpath(ROOT_ELEMENT_XPATH, "SendFaxMessage")
.extractFromPayload(REFERENCE_ID_XPATH, "referenceId");

scenario.correlation().start()
.onPayload(REFERENCE_ID_XPATH, "${referenceld}");

scenario
.send(getStatusEndpoint())
.payload(
getPayloadHelper().generateFaxStatusMessage("${referenceld}",
FaxStatusEnumType.QUEUED,
"The fax message has been queued and will be send
shortly"),
getPayloadHelper().getMarshaller()
)i
scenario
.receijve()

.xpath(ROOT_ELEMENT_XPATH, "CancelFaxMessage")
.xpath(REFERENCE_ID_XPATH, "${referenceld}");

scenario
.send(getStatusEndpoint())
.payload(
getPayloadHelper().generateFaxStatusMessage("${referenceld}",
FaxStatusEnumType.CANCELLED,
"The fax message has been cancelled"),
getPayloadHelper().getMarshaller()
)i

The sample above uses XPath expressions to start a new correlation within the scenario. This
makes sure that the second incoming request CancelFaxMessage is forwarded to this very same
scenario.

With intermediate message handling we are able to create more complex scenarios that require
multiple request/response messages. The message correlation makes sure that the needed requests
are handled within the same scenarion and other parallel running scenarios are not affected.

22

Chapter 4. REST support

The simulator is able to provide Http REST APIs as a server. Clients can call the simulator on
request paths using methods such as Http GET, POST, PUT, DELETE and so on.

The generic rest support is activated by setting the property citrus.simulator.rest.enabled=true.
You can do so in the basic application.properties file or via system property or environment
variable setting.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

The citrus.simulator.rest.enabled property performs some auto configuration steps and loads
required beans for the Spring application context in the Spring boot application.

After that we are ready to handle incoming REST API calls on the simulator.

4.1. Configuration

Once the REST support is enabled on the simulator we have different configuration options. The
most comfortable way is to add a SimulatorRestAdapter implementation to the classpath. The
adapter provides several configuration methods.

public abstract class SimulatorRestAdapter implements SimulatorRestConfigurer {

@0verride
public ScenarioMapper scenarioMapper() {
return new HttpRequestAnnotationScenarioMapper();

}

@0verride
public HandlerInterceptor[] interceptors() {
return new HandlerInterceptor[] { new LoggingHandlerInterceptor() };

}

@0verride
public String urlMapping() {
return "/services/rest/**";

}

23

The adapter defines methods that configure the simulator REST handling. For instance we can add
another scenario mapper implementation or add handler interceptors to the REST API call
handling.

Note The REST support is using the default scenario mapper
HttpRequestAnnotationScenarioMapper that searches for @RequestMapping annotations on
scenario classes. Read more about that in rest-request-mapping.

The urlMapping defines how clients can access the simulator REST API. Assuming the Spring boot

simulator application is running on port 8080 the REST API would be accessible on this URI:

http://localhost:8080/services/rest/*

The clients can send GET, POST, DELETE and other calls to that endpoint URI then. The simulator
will respond with respective responses based on the called scenario.

You can simply extend the adapter in a custom class for adding customizations.

@Component
public class MySimulatorRestAdapter extends SimulatorRestAdapter {

@override
public String urlMapping() {
return "/my-rest-service/**";

}

As you can see the class is annotated with @Component annotation. This is because the adapter
should be recognized by Spring in order to overwrite the default REST adapter behavior. The
custom adapter just overwrites the urlMapping method so the REST simulator API will be
accessible for clients under this endpoint URI:

http://localhost:8080/my-rest-service/*

This is the simplest way to customize the simulator REST support. We can also use the adapter
extension directly on the Spring boot main application class:

24

#rest-request-mapping

import org.citrusframework.simulator.http.SimulatorRestAdapter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorRestAdapter {

@0verride
public String urlMapping() {
return "/my-rest-service/**";

}

@0verride

public ScenarioMapper scenarioMapper() {
HeaderValueScenarioMapper scenarioMapper = new HeaderValueScenarioMapper();
scenarioMapper.setHeaderName("X-simulator-scenario");
return scenarioMapper;

}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

4.2. Advanced customizations

For a more advanced -configuration option we can extend the SimulatorRestSupport
implementation.

25

import org.citrusframework.simulator.http.SimulatorRestAutoConfiguration;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorRestAutoConfiguration {

@Override
protected String getUr1lMapping() {
return "/my-rest-service/**";

}

@0verride
public FilterRegistrationBean requestCachingFilter() {
FilterRegistrationBean filterRegistrationBean = new FilterRegistrationBean(new
RequestCachingServletFilter());

String urlMapping = getUrlMapping();
if (urlMapping.endsWith("**")) {

urlMapping = urlMapping.substring(@, urlMapping.length() - 1);
}
filterRegistrationBean.setUr1Patterns(Collections.singleton(urlMapping));
return filterRegistrationBean;

}

@0verride

public HandlerMapping handlerMapping(ApplicationContext applicationContext) {
SimpleUr1lHandlerMapping handlerMapping = new SimpleUrlHandlerMapping();
handlerMapping.setOrder(Ordered.HIGHEST_PRECEDENCE);
handlerMapping.setAlwaysUseFullPath(true);

Map<String, Object> mappings = new HashMap<>();
mappings.put(getUrlMapping(), getRestController(applicationContext));

handlerMapping.setUr1lMap(mappings);
handlerMapping.setInterceptors(interceptors());

return handlerMapping;
}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

With that configuration option we can overwrite REST support auto configuration features on the
simulator such as the requestCachingFilter or the handlerMapping. We extend the
SimulatorRestAutoConfiguration implementation directly.

26

4.3. Request mapping

By default the simulator will map incoming requests to scenarios using so called mapping keys that
are evaluated on the incoming request. When using REST support on the simulator we can also use
@RequestMapping annotations on scenarios in order to map incoming requests.

This looks like follows:

@Scenario("Hello")

@RequestMapping(value = "/services/rest/simulator/hello”, method = RequestMethod.POST,
params = {"user"})

public class HelloScenario extends AbstractSimulatorScenario {

@lverride
public void run(ScenarioDesigner scenario) {
scenario
.receijve()
.payload("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Say Hello!" +
"</Hello>");
scenario
.send()

.payload("<HelloResponse
xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Hi there!" +
"</HelloResponse>");

As you can see the example above uses @RequestMapping annotation in addition to the
@Scenario annotation. All requests on the request path /services/rest/simulator/hello of method
POST that include the query parameter user will be mapped to the scenario. With this strategy the
simulator is able to map requests based on methods, request paths and query parameters.

The mapping strategy requires a special scenario mapper implementation that is used by default.
This scenario mapper automatically scans for scenarios with @RequestMapping annotations. The
HttpRequestAnnotationScenarioMapper is active by default when enabling REST support on the
simulator. Of course you can use traditional scenario mappers, too when using REST. So in case you
need to apply different mapping strategies you can overwrite the scenario mapper implementation
in the configuration adapter.

4.4. Http responses

As Http is a synchronous messaging transport by its nature we can provide response messages to
the calling client. In Http REST APIs this should include some Http status code. You can specify the
Http status code very easy when using the Citrus Java DSL methods as shown in the next example.

27

@Scenario("Hello")
@RequestMapping(value = "/services/rest/simulator/hello", method = RequestMethod.POST)
public class HelloScenario extends AbstractSimulatorScenario {

@0verride
public void run(ScenarioDesigner scenario) {
scenario
.http()
.receive()
.post()
.payload("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Say Hello!" +
"</Hello>");

scenario

.http()

.send()

.response(HttpStatus.0K)

.payload("<HelloResponse

xmlns=\"http://citrusframework.org/schemas/hello\">" +

"Hi there!" +
"</HelloResponse>");

The Http Java DSL extension in Citrus provides easy access to Http related identities such as request
methods, query parameters and status codes. Please see the official Citrus documentation for more
details how to use this Http specific Java fluent API.

4.5. Swagger support

The simulator application is able to read Swagger Open API V3.0 specifications for auto generating
simulator scenarios for each operation. The Open API specification defines available REST request
paths, supported methods (GET, POST, PUT, DELETE, ...) and their outcome when clients call that API
operations. The simulator generates basic scenarios for these specification information.

See the following sample how to do that:

28

https://swagger.io/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md

@SpringBootApplication
public class Simulator extends SimulatorRestAdapter {

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

@0verride
public ScenarioMapper scenarioMapper() {

return new HttpRequestPathScenarioMapper();
}

@0verride
public String urlMapping(SimulatorRestConfigurationProperties
simulatorRestConfiguration) {
return "/petstore/v2/**";

}

@0verride
public EndpointAdapter fallbackEndpointAdapter() {
return new StaticEndpointAdapter() {
@0verride
protected Message handleMessageInternal(Message message) {
return new HttpMessage().status(HttpStatus.NOT_FOUND);
}
b

@Bean
public static HttpScenarioGenerator scenarioGenerator() {
HttpScenarioGenerator generator = new HttpScenarioGenerator(new
(lassPathResource("swagger/petstore-api.json"));
generator.setContextPath("/petstore");
return generator;

The listing above adds a HttpScenarioGenerator as Spring bean to the simulator application. The
generator receives the swagger api file location swagger/petstore-api.json and the context path for
this API. In addition to that we need to set a special scenario mapper implementation
HttpRequestPathScenarioMapper that is aware of generated REST scenarios.

Also we set a custom fallback endpoint adapter. This one is used when no scenario matches the
incoming request or when the scenario itself did not produce a proper response because of some
validation error.

On startup the generator dynamically generates a scenario for each operation defined in that
swagger api file. You can review all generated scenarios in the user interface.

29

Let’s have a look at a sample operation in that petstore swagger api file:

"/pet/findByStatus": {
"get": {
"tags": [
"pet”
1
"summary": "Finds Pets by status",
"description": "Multiple status values can be provided with comma separated
strings",
"operationId": "findPetsByStatus",
"produces": [
"application/xml",
"application/json"
I
"parameters": [
{
"name": "status",
"in": "query",
"description": "Status values that need to be considered for filter",
"required": true,
"type": "array",
"items": {
"type": "string",
"enum": [
"available",
"pending"”,
"sold"
1
"default": "available"
}
}
1,
"responses”: {
"200": {
"description": "successful operation”,
"schema": {
"type": "array",
"items": {
"$ref": "#/definitions/Pet"
}
}
H
"400": {
"description": "Invalid status value"
}
i
"security": [

{

ollectionFormat": "multi"

30

"petstore_auth": [
"write:pets",
"read:pets"

The REST operation above defines a GET method on /pet/findByStatus. The required query
parameter status is defined to filter the returned list of pets. As a response the API defines 200 OK
with an array of Pet objects. In addition to that 400 response is defined when the status parameter
is not within its restriction enumeration available, pending, sold.

IMPORTANT: The simulator will always generate the success case exclusively. Here this would be the
200 OK response. Other response variations are not generated up to now!

The generated scenario for this operation verifies that the request is using GET method on request
path /pet/findByStatus. Also the scenario verifies the existence of the status query parameter and
that the value is within the enumeration boundaries.

Only in case these verification steps are performed successfully the simulator scenario generates a
proper response 200 OK that contains a dynamic array of pet objects.

Let’s have a look at the communication on that scenario:

Request

GET http://localhost:8080/petstore/v2/pet/findByStatus?status=pending
Accept:application/json

Content-Type:text/plain;charset=UTF-8

Content-Length:0

Response

HTTP/1.1 200
X-Application-Context:application
Content-Type:application/json
Content-Length:193

Date:Wed, 13 Sep 2017 08:13:52 GMT

[{"id": 5243024128, "category": {"id": 5032916791, "name": "hneBENfFDq"}, "name":
"JjZhcsvSRA", "photoUrls": ["GwSVIBOhsi"],"tags": [{"id": 8074462757, "name":
"DYwotNekKc"}],"status": "available"}]

The request did match all verification steps on the simulator for this operation. Following from that
we receive a generated response message with some sample data as array of pet objects. The
simulator is able to generate dynamic identifier such as id, category and name values. According
to the field type the simulator generates dynamic number of string values. When there is a

31

enumeration value restriction as seen in status the simulator generates a dynamic enumeration
value.

This is how we always get a proper generated response from the simulator API. The petstore
swagger Open API specification defines the returned objects and how to validate the incoming
requests.

Just in case we sent an invalid request according to the Open API specification we do not get a
proper response.

Request

GET http://localhost:8080/petstore/v2/pet/findByStatus
Accept:application/json
Content-Type:text/plain;charset=UTF-8

Content-Length:0

Response

HTTP/1.1 404
X-Application-Context:application
Content-Type:text/plain;charset=UTF-8
Content-Length:0

Date:Wed, 13 Sep 2017 08:42:56 GMT

The sample request above is missing the required status query parameter on the findByStatus
operation. As a result we get a 404 NOT_FOUND response from the fallback endpoint adapter as the
scenario did not complete because of validation errors. You will see the failed scenario activity with
proper error message on that missing status parameter in the user interface then.

Swagger system properties

The simulator Swagger API auto generate scenario feature can also be activated using pure
property settings on the Spring boot application. Instead of adding the Spring bean
HttpScenarioGenerator in your simulator configuration you could just set the following properties
on the simulator application:

Enable swagger api support
citrus.simulator.rest.swagger.enabled=true
citrus.simulator.rest.swagger.api=classpath:swagger/petstore-api.json
citrus.simulator.rest.swagger.contextPath=/petstore

Of course you can also use environment variables.

CITRUS_SIMULATOR_REST_SWAGGER_ENABLED=true
CITRUS_SIMULATOR_REST_SWAGGER_API=classpath:swagger/petstore-api.json
CITRUS_SIMULATOR_REST_SWAGGER_CONTEXT_PATH=/petstore

32

We just add the api file location and everything else is auto configuration done in the simulator
application.

Data dictionaries

Data dictionaries enable us to centralize data manipulation via JsonPath expressions in order to
have more dynamic message values in generated request and response message. When a scenario
receives and sends messages the data dictionary is asked for available translations for message
elements. This means that data dictionaries are able to manipulate message content before they are
processed.

The auto generated scenario references both inbound and outbound data dictionaries. We simply
need to enable those in the Spring boot application.properties file:

citrus.simulator.inbound.json.dictionary.enabled=true
citrus.simulator.inboundJsonDictionary=classpath:dictionary/inbound_mappings.propertie
s

citrus.simulator.outbound.json.dictionary.enabled=true
citrus.simulator.outbound]sonDictionary=classpath:dictionary/outbound_mappings.propert
ies

As you can see you have the possibility to define mapping files that map JsonPath expression
evaluation with pre defined values in the dictionary:

Now we have added some mapping files for inbound and outbound dictionaries. The mapping file
can look like this:

inbound mappings

$.category.name=@assertThat(any0f(is(dog),is(cat)))e
$.status=@matches(available|pending|sold|placed)@
$.quantity=@greaterThan(0)@

outbound mappings

$.category.name=citrus:randomEnumValue('dog', 'cat')
$.name=citrus:randomEnumValue('hasso', 'cutie', 'fluffy')

The inbound and outbound mapping files defines several JsonPath expressions that should set
predefined values before incoming and outgoing messages are validated respectively sent out. As
you can see we can use Citrus validation matchers and functions in order to get more complex
value generation.

33

Chapter 5. Web Service support

The simulator is able to handle SOAP Web Service calls as a server.

The generic SOAP web service support is activated by setting the property
citrus.simulator.ws.enabled=true. You can do so in the basic application.properties file or via
system property or environment variable setting.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

The citrus.simulator.ws.enabled property performs some auto configuration steps and loads
required beans for the Spring application context in the Spring boot application.

As SOAP web service support is not included by default in the simulator we need to add some Citrus
dependencies to our project. In Maven we simply add the following dependency to the project POM.

<!-- Citrus web service support -->
<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-ws</artifactId>
<version>${citrus.version}</version>
</dependency>

After that we are ready to handle incoming SOAP Web Service calls on the simulator. When SOAP
web service handling is enabled on the simulator the SOAP envelope handling is done
automatically. This means we do not have to deal with that SOAP envelope in the scenario receive
and send operations. Also the scenario receive operation has access to the SOAP action of the
incoming request call. Besides that we can also return a SOAP fault message as scenario outcome.

Let’s move on with having a look at the SOAP related configuration options as described in the
following sections.

5.1. Configuration

Once the SOAP support is enabled on the simulator we have different configuration options. The
most comfortable way is to add a SimulatorWebServiceAdapter implementation to the classpath.
The adapter provides several configuration methods.

34

#ws-soap-faults

public abstract class SimulatorWebServiceAdapter implements
SimulatorWebServiceConfigurer {
@0verride
public String servletMapping() {
return "/services/ws/*";

}

@lverride
public ScenarioMapper scenarioMapper() {
return new ContentBasedXPathScenarioMapper().addXPathExpression("local-
name(/*)");

}

@0verride
public EndpointInterceptor[] interceptors() {

return new EndpointInterceptor[] { new LoggingEndpointInterceptor() };
}

The adapter defines methods that configure the simulator SOAP message handling. For instance we
can add another mapping key extractor implementation or add endpoint interceptors to the SOAP
service call handling.

The servletMapping defines how clients can access the simulator SOAP service. Assuming the
Spring boot simulator application is running on port 8080 the SOAP service would be accessible on
this URI:

http://localhost:8080/services/ws/*

The clients can send SOAP calls to that endpoint URI then. The simulator will respond with
respective SOAP responses based on the called scenario.

You can simply extend the adapter in a custom class for adding customizations.

@Component
public class MySimulatorWebServiceAdapter extends SimulatorWebServiceAdapter {

@0verride
public String servletMapping() {
return "/my-soap-service/**";

}

As you can see the class is annotated with @Component annotation. This is because the adapter
should be recognized by Spring in order to overwrite the default SOAP adapter behavior. The
custom adapter just overwrites the servletMapping method so the SOAP simulator API will be
accessible for clients under this endpoint URI:

35

http://localhost:8080/my-soap-service/*

This is the simplest way to customize the simulator SOAP support. We can also use the adapter
extension directly on the Spring boot main application class:

import org.citrusframework.simulator.ws.SimulatorWebServiceAdapter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorWebServiceAdapter {

@0verride
public String servletMapping() {
return "/my-soap-service/**";

}

@0verride
public ScenarioMapper scenarioMapper() {
return new SoapActionScenarioMapper();

}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

5.2. Advanced customizations

For a more advanced configuration option we can extend the SimulatorWebServiceSupport
implementation.

36

import org.citrusframework.simulator.ws.SimulatorWebServiceAutoConfiguration;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorWebServiceAutoConfiguration {

@Override
protected String getServletMapping() {
return "/my-soap-service/**";

}

@Bean
public ServletRegistrationBean messageDispatcherServlet(ApplicationContext
applicationContext) {
MessageDispatcherServlet servlet = new MessageDispatcherServlet();
servlet.setApplicationContext(applicationContext);
servlet.setTransformWsdlLocations(true);
return new ServletRegistrationBean(servlet, getDispatcherServletMapping());

}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

With that configuration option we can overwrite SOAP support auto configuration features on the
simulator such as the messageDispatcherServlet. We extend the
SimulatorWebServiceAutoConfiguration implementation directly.

5.3. SOAP response

When using Http SOAP services we may want to respond to the calling client with a synchronous
SOAP response message. As the SOAP communication is automatically handled within the simulator
we can simply send back a response message in the scenario.

37

@Scenario("Hello")
public class HelloScenario extends AbstractSimulatorScenario {

@0verride
public void run(ScenarioDesigner scenario) {
scenario

.s0ap()
.receive()
.payload("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Say Hello!" +
"</Hello>")
.soapAction("Hello");

scenario

.soap()
.send()
.payload("<HelloResponse
xmlns=\"http://citrusframework.org/schemas/hello\">" +
"Hi there!" +
"</HelloResponse>");

As you can see the Citrus Java DSL provides special SOAP related methods that specify the SOAP
request and response data. Once again the SOAP envelope is automatically handled so we do not
have to add this here. The receive operation is able to verify the SOAP action header value. In
addition to that we are able to specify the synchronous SOAP response message.

When using SOAP message protocols we may need to send SOAP faults as response message. This is
handled in the next section.

5.4. SOAP faults

The simulator is in charge of sending proper response messages to the calling client. When using
SOAP we might also want to send back a SOAP fault message. Therefore the default Web Service
scenario implementation also provides fault responses as scenario result.

38

@Scenario("GoodNight")
public class GoodNightScenario extends AbstractSimulatorScenario {

@override
protected void configure() {
scenario
.receijve()
.payload("<GoodNight xmlns=\"http://citrusframework.org/schemas/hello\">"
+
"Go to sleep!" +
"</GoodNight>")
.header (SoapMessageHeaders.SOAP_ACTION, "GoodNight");
scenario
.sendFault()
.faultCode("{http://citrusframework.org}CITRUS:SIM-1001")
.faultString("No sleep for me!");
}
}

The example above shows a simple fault generating SOAP scenario. The base class
SimulatorWebServiceScenario provides the sendFault() method in order to create proper SOAP
fault messages. The simulator automatically add SOAP envelope and SOAP fault message details for
you. So we can decide wheather to provide a success response or SOAP fault.

5.5. WSDL support

The simulator is able to read your WSDL web service specifications for auto generating simulator
scenarios. The WSDL defines multiple operations with request and response message data. The
simulator reads the WSDL information and generates basic scenarios for these operations.

See the following sample how to do that:

39

The listing above uses a Wsd1ScenarioGenerator as Spring bean. The generator requires the WSDL

@SpringBootApplication
public class Simulator extends SimulatorWebServiceAdapter {

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

@Override

public String servletMapping(SimulatorWebServiceConfigurationProperties

simulatorWebServiceConfiguration) {
return "/services/ws/HelloService/v1/*";

}

@0verride
public EndpointAdapter fallbackEndpointAdapter() {
return new StaticEndpointAdapter() {
@0verride
protected Message handleMessageInternal(Message message) {
return new SoapFault()
.faultActor ("SERVER")

.faultCode("{http://localhost:8080/HelloService/v1}HELLO:ERROR-1001")
.faultString("Internal server error");
}
b
}

@Bean
public static WsdlScenarioGenerator scenarioGenerator() {
Wsd1ScenarioGenerator generator = new Wsd1ScenarioGenerator(new
ClassPathResource("xsd/Hello.wsdl"));
return generator;

}

file location xsd/Hello.wsdl and the servlet mapping path for this API.

Also we set a custom fallback endpoint adapter. This one is used when no scenario matches the
incoming request or when the scenario itself did not produce a proper response because of some
validation error. The fallback endpoint adapter sends a default SOAP fault message with "Internal

se

On startup the generator dynamically generates a scenario for each operation defined in that WSDL

rver error".

file. You can review all generated scenarios in the user interface.

Let’s have a look at the sample WSDL file:

40

<?xml version="1.0" encoding="UTF-8"7>

<wsdl:definitions name="Hello"
xmlns:tns="http://citrusframework.org/schemas/hello"
xmlns:wsd1="http://schemas.xmlsoap.org/wsd1/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://citrusframework.org/schemas/hello"
xmlns="http://www.w3.0rg/2001/XMLSchema">

<wsd1l:documentation>Version 1.0</wsdl:documentation>

<wsdl:types>
<xs:schema xmlns="http://citrusframework.org/schemas/hello"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://citrusframework.org/schemas/hello"
version="1.0"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="Hello" type="xs:string"/>
<xs:element name="HelloResponse" type="xs:string"/>

<xs:element name="GoodBye" type="xs:string"/>
<xs:element name="GoodByeResponse" type="xs:string"/>

<xs:element name="GoodNight" type="xs:string"/>
<xs:element name="GoodNightResponse" type="xs:string"/>
</xs:schema>
</wsdl:types>

<wsdl:message name="Hello">
<wsdl:part name="parameters" element="tns:Hello"/>
</wsdl:message>

<wsdl:message name="HelloResponse">
<wsdl:part name="parameters" element="tns:HelloResponse"/>
</wsdl:message>

<wsdl:message name="GoodBye">
<wsdl:part name="parameters" element="tns:GoodBye"/>
</wsdl:message>

<wsdl:message name="GoodByeResponse">
<wsdl:part name="parameters" element="tns:GoodByeResponse"/>
</wsdl:message>

<wsdl:message name="GoodNight">
<wsdl:part name="parameters" element="tns:GoodNight"/>
</wsdl:message>

<wsdl:message name="GoodNightResponse">
<wsdl:part name="parameters" element="tns:GoodNightResponse"/>
</wsdl:message>

41

42

<wsdl:portType name="HelloPortType">
<wsdl:operation name="hello">
<wsdl:input name="Hello" message="tns:Hello"/>
<wsdl:output name="HelloResponse" message="tns:HelloResponse"/>
</wsdl:operation>
<wsdl:operation name="goodbye">
<wsdl:input name="GoodBye" message="tns:GoodBye"/>
<wsdl:output name="GoodByeResponse" message="tns:GoodByeResponse"/>
</wsdl:operation>
<wsdl:operation name="goodnight">
<wsdl:input name="GoodNight" message="tns:GoodNight"/>
<wsdl:output name="GoodNightResponse" message="tns:GoodNightResponse"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:service name="HelloService">
<wsdl:port name="HelloServiceHTTP"
binding="tns:HelloServiceHTTPBinding">
<soap:address location="http://localhost:8080/services/ws/HelloService/v1"/>
</wsdl:port>
</wsdl:service>

<wsdl:binding name="HelloServiceHTTPBinding"
type="tns:HelloPortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="hello">
<soap:operation style="document"
soapAction="Hello"/>
<wsdl:input name="Hello">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="HelloResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="goodbye">
<soap:operation style="document"
soapAction="GoodBye" />
<wsdl:input name="GoodBye">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="GoodByeResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="goodnight">
<soap:operation style="document"
soapAction="GoodNight"/>
<wsdl:input name="GoodNight">
<soap:body use="literal"/>

</wsdl:input>
<wsdl:output name="GoodNightResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

</wsdl:definitions>

The WSDL above defines a hello operation with Hello as input and HelloResponse as output. The
SOAP action is defined as Hello.

The generated scenario for this operation verifies that the request is a valid Hello request
according to the XSD schema definition in the WSDL. Also the scenario verifies the basic XML
structure of that message.

Only in case these verification steps are performed successfully the simulator scenario generates a
proper response HelloResponse. The generated scenario is able to create dynamic values in the
response according to the XSD schema in the WSDL. We will cover this feature in more detail on
later in this chapter.

Let’s have a look at the communication that the generated scenario is going to perform:

Request

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<Hello xmlns="http://citrusframework.org/schemas/hello">Say Hello!</Hello>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Response

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<HelloResponse
xmlns="http://citrusframework.org/schemas/hello">GL29HT</hel:HelloResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The Hello SOAP request matches all verification steps on the simulator for this operation. Following
from that we receive a generated HelloResponse response message with some sample data. The
simulator is able to generate dynamic values such as GL29HT which is according to the WSDL
schema rules a string value.

This is how we always get a proper generated response from the simulator API. The HelloService
WSDL specification defines the returned objects and how to validate the incoming requests.

43

Just in case we sent an invalid request to the simulator we do not get a proper response. For
instance if we sent a wrong SOAP action we receive following fault response:

Fault response

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode
xmlns:HELLO="http://1localhost:8080/HelloService/v1">HELLO:ERROR-1001</faultcode>
<faultstring xmlns:xml="http://www.w3.0org/XML/1998/namespace"
xml:lang="en">Internal server error</faultstring>
<faultactor>SERVER</faultactor>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As a result we get a SOAP fault message with fault code ERROR-1001 and message "Internal server
error" as defined in the fallback endpoint adapter. You will also see the failed scenario activity
with proper error message in the user interface then.

WSDL system properties

The simulator WSDL auto generate scenario feature can also be activated using pure property
settings on the Spring boot application. Instead of adding the Spring bean Wsd1ScenarioGenerator in
your simulator configuration you could just set the following properties on the simulator
application:

Enable SOAP web service support
citrus.simulator.ws.wsdl.enabled=true
citrus.simulator.ws.wsdl.location=classpath:xsd/Hello.wsdl

Of course you can also use environment variables.

CITRUS_SIMULATOR_WS _WSDL _ENABLED=true
CITRUS_SIMULATOR_WS_WSDL_LOCATION=classpath:xsd/Hello.wsdl

We just add the WSDL location and everything else is auto configuration done in the simulator
application.

Data dictionaries

The auto generated WSDL scenarios make us of so called data dictionaries in order to create
dynamic values both in request and response messages. The data dictionaries are a well known
Citrus functionality that enable us to centralize data manipulation via XPath expressions for
example. Each XML message construction will consult the data dictionary for some translation of

44

elements and attributes.

The auto generated scenario references both inbound and outbound data dictionaries. We simply
need to enable those in the Spring boot application.properties file:

citrus.simulator.inbound.xml.dictionary.enabled=true
citrus.simulator.outbound.xml.dictionary.enabled=true

These property settings automatically activate the data dictionaries and you will get random
numbers and strings in all generated WSDL messages. For incoming requests the dictionary makes
sure that elements and attributes are ignored in validation by default. This is a good idea as we can
not know all data that is sent to the simulator.

Fortunately you have the possibility to define mapping files that map XPath expression evaluation
with pre defined values in the dictionary:

citrus.simulator.inbound.xml.dictionary.enabled=true
citrus.simulator.inboundXmlDictionary=classpath:dictionary/inbound_mappings.xml
citrus.simulator.outbound.xml.dictionary.enabled=true
citrus.simulator.outboundXmlDictionary=classpath:dictionary/outbound_mappings.xml

Now we have added some mapping files for inbound and outbound dictionaries. The mapping file
can look like this:

<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="//sim:Hello">Say Hello!</entry>

<entry key="//sim:GoodBye">Say GoodBye!</entry>
</properties>

The inbound mapping file defines two XPath expressions that should set predefined values before
incoming request are validated. So in this case we set Say Hello! as string element value to the
element <Hello> in the request. When dealing with XML and XPath we need to take care on proper
namespace handling. In the XPath expression above we make use of the namespace prefix sim:.
This prefix resoves to a proper namespace in the WSDL schema for Hello messages and is defined
in a global namespace context within the Spring application.

You can add that namespace context as Spring bean for instance.

45

©Bean
public NamespaceContextBuilder namespaceContextBuilder() {
NamespaceContextBuilder namespaceContextBuilder = new NamespaceContextBuilder();
namespaceContextBuilder.getNamespaceMappings().put("sim",
"http://citrusframework.org/schemas/hello");

return namespaceContextBuilder;

After that we are able to use the global sim namespace prefix in all XPath expressions. The XPath
expression evaluation will take care on proper namespace handling then.

Of course we can also add outbound bindings for creating special response element values.

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="//sim:HelloResponse">Hello!</entry>

<entry key="//sim:GoodByeResponse">GoodBye!</entry>
</properties>

Now the auto generated response for HelloResponse messages will always use Hello! as value. in
combination with Citrus functions we are able to define more complex response element values in
auto generated messages.

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<entry key="//sim:HelloResponse">citrus:randomString(10)</entry>
<entry key="//sim:GoodByeResponse">citrus:randomEnumValue('GoodBye!"', 'SeeYalater!',
'ByeBye!")</entry>
</properties>

46

Chapter 6. JMS support

The simulator is able to receive messages from message brokers using the Java Message Service
API (JMS). As a consumer the simulator constantly polls JMS destinations (queue or topic) for
incoming request messages. When the queue is of synchronous nature the simulator is able to send
synchronous response messages.

The generic jms support is activated by setting the property citrus.simulator.jms.enabled=true.
You can do so in the basic application.properties file or via system property or environment
variable setting.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

The citrus.simulator.jms.enabled property performs some auto configuration steps and loads
required beans for the Spring application context in the Spring boot application.

As JMS support is not included by default in the simulator we need to add some Citrus
dependencies to our project. In Maven we simply add the following dependency to the project POM.

<!-- Citrus web service support -->
<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-jms</artifactId>
<version>${citrus.version}</version>
</dependency>

Also we might want to add JMS vendor specific connection factory implementations depending on
what JMS message broker you are using:

47

<!-- ActiveMQ message broker support -->

<dependency>
<groupId>org.apache.activemq</groupld>
<artifactId>activemq-broker</artifactId>
<version>${activemq.version}</version>

</dependency>

<dependency>
<groupld>org.apache.activemq</groupld>
<artifactId>activemq-spring</artifactId>
<version>${activemq.version}</version>

</dependency>

<dependency>
<groupld>org.apache.xbean</groupld>
<artifactId>xbean-spring</artifactId>
<version>4.4</version>

</dependency>

With that piece of configuration we are ready to handle incoming JMS messages on the simulator.
Of course we need a JMS connection factory and other JMS related configuration options as
described in the following sections.

6.1. Configuration

Once the JMS support is enabled on the simulator we have different configuration options. The
most comfortable way is to add a SimulatorJmsAdapter implementation to the project. The
adapter provides several configuration methods.

48

public abstract class SimulatorJmsAdapter implements SimulatorJImsConfigurer {
@0verride
public ConnectionFactory connectionFactory() {
return new SingleConnectionFactory();

}

@0verride
public String destinationName() {
return System.getProperty("citrus.simulator.jms.destination",
"Citrus.Simulator.Inbound");

}

@0verride
public boolean useSoapEnvelope() {
return false;

}

@0verride
public ScenarioMapper scenarioMapper() {
return new ContentBasedXPathScenarioMapper().addXPathExpression("local-
name(/*)");
}
}

The adapter defines methods that configure the simulator JMS handling. For instance we can add
another scenario mapper implementation or enable automatic SOAP envelope handling.

The destinationName defines the incoming JMS destination to poll as a consumer. The
connectionFactory is mandatory in order to connect to a JMS message broker.

You can simply extend the adapter in a custom class for adding customizations.

@Component
public class MySimulatorImsAdapter extends SimulatorJmsAdapter {

@0verride
public String destinationName() {
return "JMS.Queue.simulator.inbound";

}

@0verride
public ConnectionFactory connectionFactory() {

return new ActiveMQConnectionFactory("tcp://localhost:61616");
}

As you can see the class is annotated with @Component annotation. This is because the adapter
should be recognized by Spring in order to overwrite the default JMS adapter behavior. The custom

49

adapter just overwrites the connectionFactory and destinationName methods so the JMS
simulator will connect to the ActiveMQ message broker and listen for incoming requests on that
queue JMS.Queue.simulator.inbound.

This is the simplest way to customize the simulator JMS support. We can also use the adapter
extension directly on the Spring boot main application class:

import org.citrusframework.simulator.jms.SimulatorJmsAdapter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorJImsAdapter {

@0verride
public String destinationName() {
return "JMS.Queue.simulator.inbound";

}

@0verride
public ConnectionFactory connectionFactory() {

return new ActiveMQConnectionFactory("tcp://localhost:61616");
}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

Once this is done the simulator polls the target destination for new incoming request messages. As
usual the simulator maps incoming requests to simulator scenarios for execution. Inside the
scenario you can receive the JMS request messages as usual using the scenario endpoint. The
scenario logic is then able to provide a response message that is sent back to the synchronous reply
destination if any is specified.

6.2. Asynchronous communication

For asynchronous communication we can define normal JMS destination endpoints in Citrus in
order to autowire those in the scenario.

50

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

@0verride
public String destinationName() {
return "JMS.Queue.simulator.inbound";

}

@0verride
public ConnectionFactory connectionFactory() {
return new ActiveMQConnectionFactory("tecp://localhost:61616");

}

@Bean
public JmsEndpoint replyEndpoint() {
return CitrusEndpoints.jms()
.asynchronous()
.destinationName("JMS.Queue.simulator.reply")
.connectionFactory(connectionFactory())
.build();

As you can see we are able to create several JMS endpoints in Citrus. We can autowire those
endpoints in a scenario for sending back an asynchronous response.

31

@Scenario("Hello")
public class HelloJmsScenario extends AbstractSimulatorScenario {

@Autowired
private JmsEndpoint replyEndpoint;

@0verride
public void run(ScenarioDesigner scenario) {
scenario
.receijve()
.payload("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"<user>@ignore@</user>" +
"</Hello>")
.extractFromPayload("/Hello/user", "userName");

scenario
.send(replyEndpoint)
.payload("<HelloResponse
xmlns=\"http://citrusframework.org/schemas/hello\">" +
"<text>Hi there ${userName}!</text>" +
"</HelloResponse>");

In this sample above we receive the scenario request message as usual using the scenario endpoint.
After that we send back a response on the replyEndpoint which has been injected to the scenario
using the @Autowired annotation.

In general scenarios can interact with all Citrus endpoints that get defined as Spring beans in the
application context configuration.

6.3. Synchronous communication

When dealing with synchronous communication the message producer waits for a reply message
on a reply destination. This reply destination handling is automatically done within the simulator.
So when we have synchronous communication we simply send back a response message using the
scenario endpoint. The simulator makes sure that the response is provided to the waiting producer
on the reply destination.

32

@Scenario("Hello")
public class HelloJmsScenario extends AbstractSimulatorScenario {

@override
public void run(ScenarioDesigner scenario) {
scenario
.receijve()
.payload("<Hello xmlns=\"http://citrusframework.org/schemas/hello\">" +
"<user>@ignore@</user>" +
"</Hello>")
.extractFromPayload("/Hello/user", "userName");

scenario
.send()
.payload("<HelloResponse
xmlns=\"http://citrusframework.org/schemas/hello\">" +
"<text>Hi there ${userName}!</text>" +
"</HelloResponse>");

The synchronous JMS communication needs to be enabled on the JMS simulator adapter.

33

import org.citrusframework.simulator.jms.SimulatorJmsAdapter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorJmsAdapter {

@0verride
public String destinationName() {
return "JMS.Queue.simulator.inbound";

}

@0verride
public ConnectionFactory connectionFactory() {

return new ActiveMQConnectionFactory("tcp://localhost:61616");
}

@0verride
public boolean synchronous(SimulatorJmsConfigurationProperties
simulatorJmsConfiguration) {
return true;

}

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

This completes the JMS communication support within the simulator. Read more about other
messaging transports such as Http REST or SOAP in this documentation.

54

Chapter 7. Endpoint support

We have seen how the simulator handles different transports such as Http REST, SOAP web services
and JMS. Now the simulator is also able to handle other message transports such as mail
communication, JMX mbean server, RMI invocations and much more. The simulator is able to deal
with any kind of endpoint component that is supported in Citrus framework.

The generic endpoint support is activated by setting the property
citrus.simulator.endpoint.enabled=true. You can do so in the basic application.properties file or
via system property or environment variable setting.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator {
public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

The citrus.simulator.endpoint.enabled property performs some auto configuration steps and
loads required beans for the Spring application context in the Spring boot application. Once we use
that feature we can have any Citrus endpoint component as inbound source for simulator
scenarios. This means we can have a mail server or a RMI server that is simulated with proper
response messages.

7.1. Configuration

As we are using generic Citrus endpoint components as inbound source we need to configure those
endpoint components. The most comfortable way is to add a
SimulatorEndpointComponentAdapter implementation to the classpath. The adapter provides
several configuration methods.

55

#rest
#web-service
#jms

public abstract class SimulatorEndpointComponentAdapter implements
SimulatorEndpointComponentConfigurer {

@0verride
public abstract Endpoint endpoint(ApplicationContext applicationContext);

@0verride
public boolean useSoapEnvelope() {
return false;

}

@0verride
public ScenarioMapper scenarioMapper() {

return new ContentBasedXPathScenarioMapper().addXPathExpression("local-
name(/*)");

}
}

The adapter defines methods that configure the endpoint component used as inbound source. As
usual we can set the scenario mapper implementation or add automatic SOAP envelope support.

More importantly we need to define an inbound endpoint that is used as source for scenarios. Let’s
have a simple endpoint component adapter example.

36

import org.citrusframework.simulator.endpoint.SimulatorEndpointComponentAdapter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Simulator extends SimulatorEndpointComponentAdapter {

public static void main(String[] args) {
SpringApplication.run(Simulator.class, args);

}

@0verride

public Endpoint endpoint(ApplicationContext applicationContext) {
MailServer mailServer = new MailServer();
mailServer.setPort(2222);
mailServer.setAutoStart(true);

return mailServer;

}

@0verride
public ScenarioMapper scenarioMapper() {
return new ContentBasedXPathScenarioMapper()
.addNamespaceMapping("mail",
"http://www.citrusframework.org/schema/mail/message")
.addXPathExpression("/mail:mail-message/mail:subject");

}

The custom adapter defines a Citrus mail server endpoint that should be used as inbound source.
Any mail message that arrives at this mail server component will trigger a new simulator scenario
then. Also we overwrite the scenario mapper implementation. The sample uses a content based
XPath mapper that uses the mail subject value as scenario mapping key.

As mail server endpoint support is not included by default in the simulator we need to add some
Citrus dependencies to our project. In Maven we simply add the following dependency to the
project POM.

<!-- Citrus web service support -->
<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-mail</artifactId>
<version>${citrus.version}</version>
</dependency>

This configuration would lead us to a mail server that responds to incoming mail messages base on
the mail subject. So we can have several simulator scenarios for different mail messages.

57

@Scenario("Hello")
public class HelloScenario extends AbstractSimulatorScenario {

@0verride
public void run(ScenarioDesigner scenario) {
scenario
.receijve()
.payload("<mail-message
xmlns=\"http://www.citrusframework.org/schema/mail/message\">" +
"<from>user@citrusframework.org</from>" +
"<to>citrus@citrusframework.org</to>" +
"<ce></ee>" +
"<bee></bee>" +
"<subject>Hello</subject>" +
"<body>" +
"<contentType>text/plain; charset=utf-8</contentType>" +
"<content>Say Hello!</content>" +
"</body>" +
"</mail-message>");

scenario
.send()
.payload("<mail-response
xmlns=\"http://www.citrusframework.org/schema/mail/message\">" +
"<code>250</code>" +
"<message>0K</message>" +
"</mail-response>");

The scenario implementation above is listening for mail messages of subject Hello. The mail XML
marshalling is automatically done by Citrus. This is the usual way how the Citrus mail component
handles mail messages and responses. That means we can use the default Citrus features in our
simulator, too. The scenario sends back a positive mail response to the calling client.

This is how we can use any Citrus endpoint component as simulator inbound source. This gives us
the opportunity to support a huge set of message transports and message types in our simulator
applications. Each incoming request on the endpoint component triggers a new simulator scenario.

38

Chapter 8. User interface

The simulator application is started as a Spring boot web application. If you open your browser and
point to the running simulator instance at http://localhost:8080 you will see the default welcome

page.

Citrus Simulator

Welcome to the standalone Citrus simulator application!

Summary
Active
Activity
Scenarios
Messages

https://citrusframework.org
Sponsored by ConSol Software GmbH

The default ui is straight forward and limited to viewing Json response data returned by the
simulator REST API. Fortunately there is also a more comfortable user interface based on Angular2
available. Users can then access an administrative web user interface in order to review the
simulator status and list all executed scenarios and their outcome.

The simulator Angular2 user interface comes as dependency that is added to the simulator project.
In Maven we simply add the following dependency:

<!-- Simulator web ui -->

<dependency>
<groupId>com.consol.citrus</groupIld>
<artifactId>citrus-simulator-ui</artifactId>
<version>${citrus.simulator.version}</version>

</dependency>

Now you can start the simulator and open your browser pointing to the simulator UI at
http://localhost:8080. You will see the extended web application user interface that gives you
information about the simulator.

8.1. Dashboard

The simulator dashboard gives you a quick overview of the numbers and facts on your simulator
project.

39

http://localhost:8080
http://localhost:8080

. Simulator € Status & Activity & Scenarios 1 Messages

&) Simulator: REST Petstore Simulator

Name: REST Petstore Simulator

Version: 1.0.0-SNAPSHOT

€ Status o0
0
PASSED FAILED ACTIVE TOTAL
100 % 0% 0 16

8.2. Scenarios

The user interface lists all available scenarios. These are scenarios that are available for automatic
mapping when incoming requests are handled.

. Simulator ¢ Status o8 Activity & Scenarios =) Messages

& Scenarios

Filter By Name « Starter +_Non-Starter

Name

addPet

createUser
createUsersWithArrayinput
createUsersWithListInput
deleteOrder

deletePet

deleteUser
findPetsByStatus
findPetsByTags
getlnventory
getOrderByld

getPetByld
getUserByName
loginUser

logoutUser

placeOrder

updatePet
updatePetWithFerm
updateUser

uploadFile

In case you open one of the listed scenarios you get a detailed information page of that specific

60

scenario.

. Simulator & Status 5 Activity & Scenarios] Messages

& Scenario: addPet

E R+ Success « Failed + _Active

Q

Start End Status
2017-09-12 15:00:11 2017-08-12 15:00:11
2017-09-12 14:59:48 2017-09-12 14:59:48

8.3. Activities

Each time a scenario instance is started the user interface will display that scenario as running
activity.

@ simulator ¢ status a8 Activity & Scenarios [Messages

L Activity o0

Filter By Name

+ Success + Failed + Active

Scenario Start End Status

updatePet 2017-09-12 15:00:11 2017-09-12 15:00:11
placeOrder 2017-09-12 15:00:11 2017-09-12 15:00:11
loginUser 2017-09-12 15:00:11 2017-09-12 15:00:11
getPetByld 2017-09-12 15:00:11 2017-09-12 15:00:11
findPetsByTags 2017-09-12 15:00:11 2017-09-12 15:00:11
findPetsByStatus 2017-09-12 15:00:11 2017-09-12 15:00:11
deletePet 2017-09-12 15:00:11 2017-09-12 15:00:11
addPet 2017-09-12 15:00:11 2017-09-12 15:00:11
updatePet 2017-09-12 14:59:49 2017-09-12 14:59:48
placeOrder 2017-09-12 14:59:49 2017-09-12 14:59:49

You can view the details of that scenario activity when opening a specific activity entry.

61

. Simulator ¢ Status o Activity & Scenarios £ Messages

& Scenario activity: updatePet (#16)

Name: updatePet
Id: #16
Started: 2017-09-12 15:00:11

Completed: 2017-09-12 15:00:11

Status: SUCCESS

4 Back

Scenario Parameters
Name Type Value

No start parameters were used

Scenario Actions

Name Start End

echo 2017-09-12 15:00:11 2017-09-12 15:00:11
receive 2017-08-12 15:00: 11 2017-09-12 15:00:11
send 2017-09-12 15:00:11 2017-09-12 15:00:11

Messages

When scenarios get executed they usually exchange several messages in request and response
communication. These messages are also stored in the simulator so you can review all exchanged
messages on a scenario in the user interface.

. Simulator ¢ Status 25 Activity & Scenarios Messages

& Messages oo
Filter By Content

4 1 » 10 -
Direction Date Content
OUTBOUND 2017-09-12 17:00:11
INBOUND 2017-09-12 17:00:11 {"id™: "1373747189", "name": "catty”, "photoUrs™; ["hitp://petstore...
OUTBOUND 2017-09-12 17:00:11 {"id": 7350988575, "petld": 8158805464, quantity™: 5726125455, "shipDate™ "2017-0...
2017-09-12 17:00:11 { "id™: "2740670514", "petid": "3562860705", "quantity": "1", "shipDate"...
2017-09-12 17:00:11 muVhkcJAHr

2017-09-12 17:00:11
2017-09-12 17:00:11 {"id": 9867079404, "category": {"id": 1718499110,"name": "(TgrXNsixm"},"name": "q...

2017-09-12 17:00:11

2017-09-12 17:00:11 [{"id": 6230195021, category™: {'id": 3678144821, name": "iIkQANpHew"},"name": "...

2017-09-12 17:00:11

i

Open a specific message entry and you will see the details such as header information and message
payload details.

62

Chapter 9. Starter

Usually the simulator provides simulation for server APIs so clients are able to call the simulator. In
some cases things may go the other way round. The simulator is able to start scenarios via web user
interface. This way the simulator is able to start a communication instead of waiting for requests to
arrive. In this case the simulator is able to act as client in order to call other server APIs.

This mechanism is covered by starter implementations on the simulator. In fact the starter
implementations are simulator scenarios that also implement the ScenarioStarter interface.

public interface ScenarioStarter extends SimulatorScenario {

default Collection<ScenarioParameter> getScenarioParameters() {
return Collections.EMPTY_LIST;

The ScenarioStarter extends the SimulatorScenario interface. So each scenario can also act as a
starter. See the following sample starter implementation.

@Starter("HelloStarter")
public class HelloStarter extends AbstractScenarioStarter {

@Autowired
private JmsEndpoint outboundEndpoint;

@0verride
public void run(ScenarioRunner scenario) {
scenario.send(outboundEndpoint)
.payload("Hello from simulator!");

The starter class is annotated with @Starter annotation and gets a unique name. The class extends
from AbstractScenarioStarter for most comfortable setup. In the run method we can add custom
scenario logic as usual. Inthe sample above we send a JMS message to some endpoint that has been
injected as Spring bean component.

All these starter implementations in the project are automatically loaded in the simulator user
interface so you can launch those scenarios.

63

. Simulator € Status 8 Activity & Scenarios I Messages

& Scenarios

Filter By Name + Starter + Non-Starter

Name
Default
GoodBye

GoodByeStarter

GoodNight

Hello

HelloStarter ===3

The list of available scenarios now also contains the starter implementations. The launch button
brings you to the starter detail page.

@ Simulator ¢ status 2 Activity & Scenarios [Messages © About

& Start scenario: HelloStarter

Greeting Text Hi there!

Payload <?xml version="1.0" encoding="UTF-8"?>
<Hello xmins="http://citrusframework.org/schemas/hello">Say Hello!</Hello>

The scenario starter is able to define parameters that need to be filled before the starter is
executed. In case you press the Launch button the scenario is executed with those parameters. The
parameter HTML form is auto generated from the starter class. In the following section we see how
the starter class is able to define those parameters.

9.1. Starter Parameter

Starter implementations are executable in the simulator user interface. The starter is able to define
parameters that should be filled out before the starter performs its actions. In the starter class you
can specify the parameters as follows:

64

@Starter ("HelloStarter")
public class HelloStarter extends AbstractScenarioStarter {

@Autowired
private JmsEndpoint outboundEndpoint;

@0verride
public void run(ScenarioRunner scenario) {
scenario.send(outboundEndpoint)
.payload("${greeting}");
}

@0verride
public List<ScenarioParameter> getScenarioParameters() {
List<ScenarioParameter> scenarioParameters = new ArraylList<>();

// greeting (text box)
scenarioParameters.add(new ScenarioParameterBuilder()
.name("greeting")
.label("Greeting Text")
.required()
.textbox()
.value("Hi there!")
.build());

return scenarioParameters;

The sample above defines a parameter called greeting. The parameter is of type textbox and has a
default value Hi there!. This parameter information is used to aut generate a HTML form in the
simulator user interface. You can specify as multiple parameters of different types.

Parameter types

texthox Renders a normal HTML input field
textarea Renders a textarea input field

dropdown Renders a dropdown select field with predefined options

Parameters can be required or optional and receive a label that is displayed in the HTML form. Also
you can add default values.

65

Chapter 10. Samples

Documentation can only provide theoretical insights of what the application is capable to do or not
to do. Good sample projects help both beginners and experts to reach complete understanding of
how the simulator works in different environments.

Following from that we try to provide sample project that demonstrate the simulator usage in real
world examples. Please see the following sample projects with complete code available on github.

10.1. REST sample

Sample repositories
Http REST

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-rest

Auto generated from swagger

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-
swagger

10.2. SOAP sample

Sample repositories
Http SOAP

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-ws

Http SOAP client

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-ws-
client

Auto generated from WSDL

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-wsdl

10.3. JMS sample

Sample repositories
JMS synchronous

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-jms

JMS asynchronous

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-jms-
fax

10.4. Mail sample

Sample repositories

66

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-rest
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-swagger
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-swagger
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-ws
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-ws-client
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-ws-client
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-wsdl
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-jms
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-jms-fax
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-jms-fax

Mail endpoint simulator

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-mail

10.5. Combined sample

Sample repositories
Http REST and JMS combined

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-
combined

67

https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-mail
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-combined
https://github.com/citrusframework/citrus-simulator/tree/master/simulator-samples/sample-combined

Chapter 11. Links & Further reading

Reading material

Citrus manual gives you a detailed description of all Citrus features
Sample projects demonstrate typical simulator scenarios with different message transports
ChangeLog shows the release history

Contributing explains how you can contribute to this project

68

https://www.citrusframework.org/reference/html/
https://github.com/citrusframework/citrus-simulator/blob/master/simulator-samples
https://www.citrusframework.org/docs/history
https://github.com/citrusframework/citrus-simulator/blob/master/simulator-docs/contributing.md

	Citrus Simulator
	citrus-simulator
	Chapter 1. Introduction
	1.1. Project status
	1.2. Prerequisites
	1.2.1. Java 8
	1.2.2. Browser

	Chapter 2. Installation
	2.1. Build with Gradle
	2.2. Build with Maven
	2.3. Maven archetypes
	2.4. Development

	Chapter 3. Concepts
	3.1. Simulator application
	3.2. Simulator properties
	3.2.1. System properties
	3.2.2. Environment variables

	3.3. Spring bean configuration
	3.4. Scenario mapper
	3.4.1. Default mapping behavior
	3.4.2. Custom mapper configuration

	3.5. Simulator scenarios
	3.6. Intermediate Messages

	Chapter 4. REST support
	4.1. Configuration
	4.2. Advanced customizations
	4.3. Request mapping
	4.4. Http responses
	4.5. Swagger support
	Swagger system properties
	Data dictionaries

	Chapter 5. Web Service support
	5.1. Configuration
	5.2. Advanced customizations
	5.3. SOAP response
	5.4. SOAP faults
	5.5. WSDL support
	WSDL system properties
	Data dictionaries

	Chapter 6. JMS support
	6.1. Configuration
	6.2. Asynchronous communication
	6.3. Synchronous communication

	Chapter 7. Endpoint support
	7.1. Configuration

	Chapter 8. User interface
	8.1. Dashboard
	8.2. Scenarios
	8.3. Activities
	Messages

	Chapter 9. Starter
	9.1. Starter Parameter

	Chapter 10. Samples
	10.1. REST sample
	10.2. SOAP sample
	10.3. JMS sample
	10.4. Mail sample
	10.5. Combined sample

	Chapter 11. Links & Further reading

